Demonstration of Rabi Oscillations in a Josephson Tunnel Junction

Siyuan Han Department of Physics and Astronomy University of Kansas (KU)

Simons Conference on Quantum and Reversible Computation, Stony Brook, NY, May 30, 2003

Quantum Computing with Superconducting Qubits

• Basic types of superconducting Josephson devices:

a. Charge, e.g., Cooper pair box.

b. Flux, e.g., RF SQUIDs, 3-JJ persistent current qubits.

c. Phase, e.g., Josephson tunnel junctions.

- As qubits:
 - 1. Solid state approach leads to better scalability.
 - 2. Engineered Hamiltonians are easy to control.
 - 3. Long coherence time (compare to other solid state approaches).
 - 4. Very easy initial state preparation.
 - 5. Qubit rotation using microwave.
 - 6. Adjustable interaction between qubits.
 - 7. Non-invasive (in a practical sense) single-shot state detection.
 - 8. Coupling to flying qubits via cavity QED.

Josephson Tunnel Junction

"Potential Energy":

$$U_{J} = -E_{J}\cos\varphi, \quad \varphi \equiv \varphi_{2} - \varphi_{1}$$
$$E_{J} \equiv \frac{I_{c}\Phi_{0}}{\varphi}, \quad \varphi \Rightarrow \text{"position"}$$

"Kinetic Energy":

 $KE = E_c = \frac{Q^2}{2C}, \quad C \Rightarrow "mass"; \quad Q = 2eN$ $Q \Rightarrow "momentum"$

Josephson Effect (1962)

 $I_s = I_c \sin \varphi$, where $I_c \equiv E_J / (\Phi_0 / 2\pi)$ $V = \frac{\Phi_0}{2\pi} \frac{\partial \varphi}{\partial t}$ $[\varphi, N] = i$ $H = E_c + U_J + U_{ex}$ U_{ex} depends on the circuit

Classical Dynamics of a Current Biased Josephson Junction

RSJ model

$$U_{ex} = -\frac{\Phi_0}{2\pi} \varphi I_b$$

Conservation of current:

$$C\frac{dV}{dt} + \frac{V}{R} + I_s = I_t$$

1st and 2nd Josephson equations

$$C\frac{\partial^2 \Phi}{\partial t^2} + R^{-1}\frac{\partial \Phi}{\partial t} = I_b - I_c \sin\left(2\pi\frac{\Phi}{\Phi_0}\right)$$

where, $\Phi \equiv (\varphi/2\pi)\Phi_0$

Mechanical model of a Josephson junction - a "particle" in a tilted washboard potential $U(\Phi)$

$$C\ddot{\Phi}+R^{-1}\dot{\Phi}=-\frac{\partial U}{\partial \Phi},$$

Electrical model of a JJ - a nonlinear LCR resonantor

Quality factor: $Q = RC\omega_p$

I-V Curve of a Josephson Tunnel Junction

Quantum mechanical description

Phase qubit Hamiltonian:

$$H = \frac{\hat{Q}^2}{2C} - E_J \cos(2\pi\hat{\Phi}/\Phi_0) - I_b(t)\hat{\Phi}$$
$$I_b(t) = I_{dc} + \delta I(t)$$
$$= I_{dc} + \delta I_{dc}(t) + I_{mwc}(t) \cos \omega_{10} t + I_{mws} \sin \omega_{10} t$$

Cubic potential: $\omega_{10} > \omega_{21} > \omega_{32} \dots$

Two-level approximation:

$$H = \begin{pmatrix} E_0 + \hat{\Phi}_{00} \delta I & \hat{\Phi}_{01} \delta I \\ \hat{\Phi}_{10} \delta I & E_1 + \hat{\Phi}_{11} \delta I \end{pmatrix},$$

where, $\hat{\Phi}_{ij} \equiv \langle i | \hat{\Phi} | j \rangle$

Rabi oscillation in a metastable two-level system

Excitation and detection

- Microwave excites Rabi oscillations between the two levels.
- Excited state detected by monitoring tunneling events.

Potential Energy

Liouville equation: $i\hbar\dot{\rho}(t) = [\hat{H}(t), \rho(t)] + i\hbar[\hat{R}\rho(t)]$

$$H(t) = \begin{pmatrix} E_0 & \hbar\Omega_0 \cos \omega t \\ \hbar\Omega_0 \cos \omega t & E_1 \end{pmatrix}, \qquad \begin{bmatrix} \hat{R}\rho(t) \end{bmatrix}_{\alpha\alpha} = -\Gamma_\alpha \rho_{\alpha\alpha} + \sum_{\alpha \neq \beta} \gamma_{\beta\alpha} \rho_{\beta\beta} \qquad (T_1 \text{ process}) \\ \begin{bmatrix} \hat{R}\rho(t) \end{bmatrix}_{\alpha\beta} = -\Gamma_{\alpha\beta} \rho_{\alpha\beta}, \qquad \alpha \neq \beta \qquad (T_2 \text{ process}) \end{cases}$$

$$U = \rho_{01} + \rho_{10}, \quad V = i(\rho_{10} - \rho_{01}), \quad W = \rho_{11} - \rho_{00}, \quad S = \rho_{00} + \rho_{11}.$$

$$\begin{split} \dot{U} &= \Delta V(t) - \Gamma U(t), \\ \dot{V} &= -\Delta U(t) - \Gamma V(t) + \Omega W(t), \\ \dot{W} &= -\frac{1}{2} (\Gamma_1 + 2\gamma_{10} + \Gamma_0) W(t) - \Omega V(t) - \frac{1}{2} (\Gamma_1 + 2\gamma_{10} - \Gamma_0) S(t), \\ \dot{S} &= -\frac{1}{2} (\Gamma_1 + \Gamma_0) S(t) - \frac{1}{2} (\Gamma_1 - \Gamma_0) W(t), \end{split}$$

 $\Omega = \sqrt{\Omega_0^2 - (\Gamma - i\Delta)^2}, \text{ Rabi frequency. Total off-diaganol decay rate: } \Gamma_{\alpha\beta} = \frac{1}{2}(\Gamma_{\alpha} + \Gamma_{\beta} + \gamma_{\alpha\beta}) + \gamma_{\varphi}$

Upper level population:

$$\rho_{11}(t) = e^{-\Gamma_{10}t} \frac{\Omega_0^2}{|\Omega^2|} \left| \sin\left(\frac{\Omega t}{2}\right) \right|^2, \quad \text{for } \Gamma_1 > \gamma_{10} > \Gamma_0, \gamma_{\varphi}$$

Experimental Setup

Sample and Equivalent Circuit

Escape Time Distribution

Rabi Oscillations with Long Coherence Time

Power Dependence

Superconducting flux qubit (SQUID)

An rf SQUID flux qubit

Two-level approx.

$$H = \frac{1}{2} (\varepsilon \sigma_z + \Delta \sigma_x)$$

Flux bias ϵ

Barrier modulation Δ

Switching magnetometer

Gradiometer qubit

High fidelity, very small back-action, single-shot readout

 $\delta I_s \approx 3 \text{ nA} \ll \Delta I_s \approx 30 \text{ nA}$ $M \approx 0.7 \text{ pH}, \quad L_Q \approx 165 \text{ pH}$ $\frac{M}{L_Q} \approx 4 \times 10^{-3}, \quad \left(\frac{L_Q}{M}\right)^2 \approx 5 \times 10^4$ \square

Back-action: $\phi_{bk} < 10^{-5}$, $R_{eff}(0) > 10 \text{ M}\Omega$.

Coupled SQUID qubits for demonstration of CNOT and two-bit entanglement

Design and measurement: KU Fabrication: Northrop Grumman (TRW)

Experiment status:

High temperature characterizations close to completion.

Qubits: $\beta_{L_{\text{max}}} \approx 4.5$, detectors: $2I_0 \simeq 13.5 \ \mu\text{A}$.

Two-level Approximation:

$$H = \sum_{i=1}^{2} \frac{1}{2} (\varepsilon_i \sigma_{zi} + \Delta_i \sigma_{xi}) + \frac{1}{2} \lambda \sigma_{z1} \sigma_{z2}$$

where, $\lambda \approx \frac{2M}{L} \Phi_m^2$

It is NOT that simple!

Dynamics depends on level structure in a non-trivial way.

Decoherence due to Critical Current Fluctuations

- 1/f power spectrum: $S_I(f) = S_I(1 \text{ Hz})/f$.
- Affects all Josephson qubits.

• Nearly universal
$$\frac{\delta I_c \cdot A^{1/2}}{I_c} \equiv \left[\frac{S_I (1 \text{ Hz}) \cdot A}{I_c^2}\right]^{1/2} \approx 10^{-5} \ \mu \text{m}$$

• Qubit type dependent $\Lambda \equiv \frac{\delta \omega_{01} / \omega_{01}}{\delta I_c / I_c}$ $\frac{\delta \omega}{\omega} = \frac{\Lambda}{A^{1/2}} \left(\frac{\delta I_c A^{1/2}}{I_c} \right)$ $E_J / E_c \propto A^2$

Qubit type	Λ	$\mathrm{A}^{1/2}\left(\mu m ight)$	E_J / E_c
charge	1	0.05 - 0.2	0.01 — 1
flux	~3	0.5 — 2	$10^2 - 10^4$
phase	25-50	5-20	$10^{6} - 10^{8}$

Fractional detuning due to I_c fluctuations

Conclusions

- Phase qubit rotation demonstrated.
- Long coherence time observed.
- Effect of 1/f critical current fluctuation on dephasing is similar to all types of Josephson qubit.
- Superconducting approach to QC is very competitive.

Acknowledgement

- Kansas
 Y. Yu
 X. Chu
 S.-I. Chu
 S. Li
 W. Qiu
 M. Amini
 M. Matheny
- CRL, Japan Z. Wang

- Stony Brook
- W. Chen
- V. Patel
- J. E. Lukens

- TRW J. Luine
- E. Ladizinsky
- A. Smith