Programmable Quantum Circuits:
Controlling quantum states with quantum states

TwoO scenarios

1. Deterministic
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where T' is a trace-preserving, completely pos-
itive map.

2. Probabilistic
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where T = 5y Is a completely positive map.

Example:
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If program state is
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Can implement bit-flip, phase-flip, and depo-
larizing channels, and many other possibilities.



Probabilistic

|¢) is @ one-qubit state. Define
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Uinit|11) = |01)  U;ni|01) = |00)
Program
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Measurement is projection onto

1
(94 + @)+ W),

Then with probability 1/3
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Also have that if
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Deterministic processors - general formalism

|wzn> — |¢>d & |E>P — |wout> — G|W7/n>

pc(iout) — Trp(|wout><wout|)

where G is unitary. We can express G as
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Resources necessary to implement maps deter-
ministically

One-parameter group

To(pin) = U()pinUT(a)  U(a) = €7
where 0 < a < 2.

No-go theorem (Nielsen and Chuang):

For each unitary operator implemented by a
deterministic processor, need an extra dimen-
sion in the program space.

What if maps are not unitary?

A. Phase-damping channel

TH(pin) = O0pin + (1 — 9)azpinaz

where 0 < 0 < 1. Can be programmed with
2-D program space.



B. Amplitude-damping channel

2
Top(pin) = Y. Bj(0)pin BT (0)
j=1
where
B1(0) = 10){(0] + V1 —6[1)(1] By = V6|0)(1]|

Requires infinite program space



Suppose we only want to approximate the one-
parameter group U(a)?

Processor: Controlled-U gate with single qubit
date state as target and program state as con-

trol.

Possible operations {Uq,...Un}.

s

Maximize average fidelity

_ 1
F = [a@@lu!(@)T=(19) @)U (@)]).
Optimal program state is =, «< U, Where Uy,

maximizes Tr(UfnU(a)).

Classical behavior - superpositions do not help.
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Probabilistic programmable circuits
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Suppose we want

1
U= Ay
where A(=) is any linear operator. Can this be
done?
Yes, if H; has dimension D, then a program

space of dimension D2 will work.
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Increasing the probability
Can we systematically increase the success prob-
ability of a probabilistic quantum processor?

Example (Vidal and Cirac, and Preskill):

If
— 1 1 —ix
=a) = —(e"7|0 e 1
Za) = Z5(e10) + e 1))
then
1

Wour) = Z51U()4)|0) + UT()[4)[1)]
Measure program output in computational ba-
sis.  With probability 1/2 the output of the

data register will be U(a)|v).
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To increase the success probability use the cir-

where the second gate is a Toffoli gate. Mea-

sure program output in computational basis.
Get

00,01,10 = |¥) = U(a)|®)

11 = |¢) = UT(Ba)ly)
Success probability is increased to 3/4.

Same procedure works to increase success prob-
ability of nonunitary operation

A = cos 0|0Y(0] + e*®sin§]1)(1].
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Conclusions

e Programmable circuits can be either deter-
ministic or probabilistic.

e Not all sets of maps can be performed de-
terministically.

e Probabilistic circuits can perform a much
wider class of maps.

e [ here are methods to increase the success
probability of probabilistic circuits.
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Future directions

e Further explore approximate deterministic
circuits

e Find methods for increasing the success
probability for more complicated operations

e Find useful examples of programmable cir-
cuits with simple program states
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