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Abstract

We consider one-dimensional quantum spin chain, which is called XX model
(XX0 model or isotropic XY model) in a transverse magnetic field. We are
interested in the case of zero temperature and infinite volume. We study the
entanglement of a block L of neighboring spins with the rest of the system. We
represent the entanglement in terms of a Toeplitz determinant and calculate the

asymptotic analytically . We derive first two terms of asymptotic decomposition.



1 Introduction

The entangled states are regarded as a valuable resource for processing information
in novel ways [1, 2]. The entropy of entanglement is one possible way to quantify
this valuable resource [3]. We consider following physical system. This system can
be separated into two interacting sub-systems A and B and the whole system is in a
pure state |GS). For this case, the entropy of entanglement FE (Later we shall call it
entanglement) between two sub-systems A and B can be measured as the von Neumann

entropy of either sub-system A or B, i.e.,
E(A) = E(B) = —tr(palogy pa) = —tr(pslog; pi). (1)

Here p4 (pg) is the reduced density matrix of sub-system A (B), i.e., pa = Tr5(pas)
(pB = Tra(pag)).- The density matrix of the whole system is pap = |GS){(GS| (since
the system is in state |GS)).
More specifically, let us take the physical system to be XX model in a transverse
magnetic field. The Hamiltonian for this model can be written as
N
Hxx(h) = =Y (o%or , +0loh, +hol), —2<h<2. (2)
n=1
Here o7, 0¥, o2 are Pauli matrix, which describe spin operators on n-th lattice site, h
is the magnetic field and N is the number of total lattice sites of spin chain (or called
length of the lattice). This model has been solved by E. Lieb, T. Schultz and D. Mattis
in zero-magnetic field case [6] and by E. Barouch and B.M. McCoy in the presence of a

constant magnetic field [7]. The ground state and excitation spectrum are well-known.

Following Ref. [6], let us introduce two Majorana operators

-1 -1
Col—1 = (H o2)o;f and cy = (H oZ)o}, (3)
n=1 n=1

on each site of the spin chain. Operators ¢, are hermitian and obey the anti-commutation
relations {cy,, ¢n} = 20mn- In terms of operators c,, Hamiltonian Hxx can be rewritten
as

N
Hxx(h) =1 Z(C2nc2n+1 — Cop—1C2n+2 + h62n7102n)- (4)

n=1



Here different boundary effects can be ignored because we are only interested in cases
with N — oco. This Hamiltonian can be subsequently diagonalized by linearly trans-

forming the operators c,. It has been obtained [6, 7] (also see [5]) that
(GSlem|GS) =0, (GS|emen|GS) = 0mn + i(By)mn- (5)

Here matrix By can be written in a block form as

M, T, ... I »
I, Il
BN - ) (6)
HN—l cee e HO
where block II; (for N — 00) is a 2 x 2 matrix given by
1 2T .
m = — / d0e-1G (0
=5 [ a0 G(0) @
0 0 1, —kr <0 <kp,
6(0) = ) and g(0) - ek ®)
_9(0) 0 —1, kr <0< (27’(’ — kF)

and kp = arccos(h/2). Other correlations such as (GS|c,, - - - ¢,|GS) are obtainable by
Wick theorem. In terms of spin operators, the Hilbert space of the physical states for
first-I. sequential lattice sites can be spanned by [[7,{o; }?/|0)r, where o is Pauli
matrix, p; takes value 0 or 1, and vector |0)r denotes the ferromagnetic state with all
spins up. Besides, we are also able to construct a set of fermionic operators b; and b;"

by defining
2L
dmzzvmncna m:17a2La bl:(d2l+ld2l+1)/2a lzlaaL (9)
n=1

with v = (V)mn. Here matrix V is an orthogonal matrix. It’s easy to verify that d,,

is hermitian operator and
bl+ = (dQl - id?l-l-l)/za {bza bJ} =0, {bj—a b;— =0, {bj—a b]} = 5i7j' (10)

In terms of fermionic operators b; and b;", the Hilbert space can also be spanned by
¥ {b;}7]0)q.. Here p; takes value 0 or 1, 2L fermionic operators b;, b; and vacuum

state |0),q. can be constructed by requiring
bi|0)yee =0, I=1,---,L. (11)

We shall choose a specific matrix V later.



2 Density Matrix of Subsystem

Let {¢;} be a set of orthogonal basis for Hilbert space of any physical system. The

most general form for density matrix of this physical system can be written as

p=2_ (I, T)r) (sl (12)

I,J

Here ¢(I, J) are complex coefficients. We can introduce a set of operators P(I,.J) by

P(I,J) o [¢r) (] (13)
and P(I,J) satisfying

P, J)P(J,K) = dr,x|vr)(¥r], PU,J)P(J,K) =61k

Ur) (] (14)

There is no summation over repeated index in these formula. We shall use an explicit
summation symbol through the whole paper. Then we can write the density matrix as
p=S a1, J)P(I,J), &I,J)=Tr(pP(J]1)). (15)

1,J
Now let us consider quantum spin chain defined in Eq. 2. Define the sub-system A
as spins on first-L sequential lattice sites of chain. The complete set of operators
P(I,J) can be generated by [}~ O;. Here operator O; can be any one of the following

+ +

+ - - - £_1
four operators {o;",0; ,0; 0; ,0; 0; }, where o= = 3

5(0” £ i0Y). Equivalently operators
P(I,J) can also be generated by HZ-L:1 O; where O; can be any one of the four operators
{bf, b;, b b;, b;b; '} (Remember that b; and b are fermionic operators). It’s easy to find
that P(J,I) = ([T, 0y)' if P(I,J) =[I-, O;. Here t means hermitian conjugation.
Therefore, in both descriptions, the reduced density matrix for sub-system A can be
represented as

L

1= 217 (pa(TT00") TT O (16)

i=1
Here the summation is over all possible different terms [];—; O;. One immediately find
that

pa = D Tra (TT’B(PAB)(H Oi)T> I10: (17)

i=1

= Y Tras (pAB(ﬁ O,-)’f) f[oi : (18)

=1



For the whole system to be in pure state |GS) (the ground state), the density matrix

pap can be represented by |GS)(GS|. Then we have the expression for p, as following
L L

pPA = Z<GS|(Z—H1 Oz’)T|GS> i_HlOz' . (19)

This is the expression of density matrix with the coefficients related to multi-point cor-

relation functions. These correlation functions are well studied in the physics literature

[4]. Now let us choose matrix V in Eq. 9 so that the set of fermionic basis {b; } and

{b;} satisfy an equation
(GS[bibj|GS) =0, (GS|bfb;|GS) = 6;,;(GS|b; b;|GS). (20)

Then the reduced density matrix p4 represented as sum of products in Eq. 19 can be
represented as a product of sums
L
pa = [TUGS|bFb:|GS)bfb; + (GS|bib] |GS)biby). (21)
i=1
Here we used the equations (GS|b;|GS) = 0 = (GS|b; |GS) and Wick theorem. This
fermionic basis was suggested by G. Vidal, J.I. Latorre, E. Rico and A. Kitaev in

Ref. [5].

3 Closed Form for The Entanglement

Following Ref. [5], let us find a matrix V in Eq. 9, which will block-diagonalize corre-
lation functions of Majorana operators c¢,. From Egs. 9 and 6, we have the following
expression for correlation function of d,, operators:

2L 2L

<GS|dmdn‘GS> = szmi<GS‘CiC]’|GS>an,

i=1j=1

<GS|Can|GS> = 5mn+i(BL)mn>
(GS|dpdn|GS) = pmn +1(BL)mn. (22)



The last equation is the definition of a matrix ]~3L. Matrix By, can be represented in a

block form as

My T, .. Iy
m :
B.=| . | (23)
HL_1 . . HO

Here block II; is a 2 X 2 matrix and can be expressed as a Fourier transform of 2 x 2

matrix G(6), i.e.

_ Lo —ilg
M=o /0 6 e~ G (0), (24)

Go) - ( 0 ¢(0) ) wd o) — { 1, —kp <0< kp, o
—g(0) O ~1, kp <0< (21— kp)

and kg = arccos(h/2). We also require By, to be block-diagonal [5]

B, =VB.V" = oy, " oa vl
L=VBLV =@, Vm =0 : (26)
~-10 ~-10

Here matrix €2 is a diagonal matrix with elements v, (all v, are real numbers). There-
fore, choosing matrix V satisfying Eq. 26 in Eq. 9, we obtain 2L operators {b;} and
{b} with following expectation values

1
(GS|bp|GS) = 0, (GS|byba|GS) = 0, (GS|bFb,|GS) = Sym +2”’”. (27)

Using the simple expression for reduced density matrix p4 in Eq. 21, we obtain

L
1+ y 1
IOA:H( 9 Zb;—bi'i‘

i=1

i b,-bj) . (28)
2
This form immediately gives us all the eigenvalues \;,,...; of reduced density matrix

PA,

L .
1+ (—1)7y,

i=1

z; =0,1 Vi. (29)

Note that in total we have 2 eigenvalues. Hence, the entanglement (von Neumann

entropy of p4) from Eq. 1 becomes
L
E,= Z e(1, vm) (30)
m=1

6



with

T +v T+ v x T —V

— VvV
e(z,v) = — 2 logy( 9 ) — 5 logs ( 9 )- (31)
More generally, we also can consider Rényi entropy S,(p), which is defined as
1
Sa(p) = logTr(p%),  a#1 (32)

11—«
and becomes von Neumann entropy when o« — 1. Then Rényi entropy becomes

Sa =Y sa(l,Vm) (33)

m=1
with

1
—o

T +v a:—y)a)

tog (F55)7 + (55 (34

Sa(z,v) = :

Since all calculations for von Neumann entropy and Rényi entropy are similiar, we will
show the detail of calculation for von Neumann entropy only and give the result for
Rényi entropy directly. This form of entanglement E, is the main result of paper [5]
and we shall use this result further to obtain analytical asymptotic of the entanglement.
Function e(1,v) in Eq. 30 is equal to the Shannon entropy function H,(1£%), which is
used in Ref. [5]. However, in the following calculation (Eq. 39), we will need the more
general function e(z,v) instead of Hs(v). Let us further notice that matrix By, can

have a direct product form, i.e.

0 1
BL = G’L ® (35)
-1 0
with
g Gg-1 --- g1-L
o= " (36)
gr—1 ... ... 90

where ¢; is defined as

1 27 » 1, —kp<0<kp,
gi=5 [ d9eg(6) and ¢(6) = (37)
T J0 -1, krp <0< (27T - kF)



and kp = arccos(h/2). From Egs. 26 and 35, we know that all v, are just the eigen-
values of real symmetric matrix Gy..
However, to obtain all eigenvalues v, directly from matrix Gp, is a non-trivial task.
Let us introduce function Dy (\) as
L
D) = [T (A~ ) (39)
m=1
to circumvent this difficulty. From the Cauchy residue theorem and analytical property

of e(x,v), the entanglement can be rewritten as

1
E4= lim lim —75( el 6 X)dIn Dy() (39)
c(e,0

=0+ §—0+ 27
Here the contour c(e,0) in Fig 1 encircles all zeros of Dy (), but Both functions

e(l1 +¢€,A) and s,(1 + €, \) are analytic within the contour. It’s easy to find that

R=¢2 A=x+iy

®
™M
L
L[>
2
T
v

-1- -1/ > \ 1 1+
¢ D =5 c ¢

Figure 1: The contour ¢(e, d). Bold lines (—oo, —1—¢) and (1+4¢, 00) are the cuts of integrand
e(l+¢,A). Zeros of D,(\) (Eq. 38) are located on bold line (—1, 1) and this line becomes the
cut of dlog Dr,(\) for L — oo (Eq. 56). The arrow is the direction of the route of integral we

take and R 1is the radius of circles.

Dr(\) = det(Gp, = M, — Gy) . (40)

Here Gy, is a Toeplitz matrix (see [12]) and Iy, is the identity matrix of dimension L.

Just like Toeplitz matrix Gy, is generated by function ¢g(f) in Egs. 36 and 37, Toeplitz

8



matrix Gy, is generated by function §(0), which is defined by

3(0) = A—=1, —kp <0 <kp, (41)
A+1, kp <0< (27— kp).

Notice that §(f) is a piecewise constant function of § on the unit circle, with jumps
at # = +kr. Hence, if one can obtain the determinant of this Toeplitz matrix ana-
lytically, one will be able to get a closed analytical result for the entanglement which
is our new result. Now, the calculation of the entanglement reduces to the calcula-
tion of the determinant of Toeplitz matrix Gy,. Before we calculate the determinant
of Toeplitz matrix EL, we also want to point out two special cases which allow us to
obtain an explicit form for these eigenvalues v, and hence the entanglement. These are
cases with small lattice size of subsystem A and magnetic A close to critical values 42,
more accurately to be said, cases with kplL << 1 or (m — k)L << 1. For the case of
krL << 1, Toeplitz matrix Gp, can be well approximated by a matrix with diagonal el-
ements (2kr/m — 1) and all other matrix elements equal to 2kr /7. Hence, if kpL << 1,

we can obtain all eigenvalues for Toeplitz matrix Gy, as {2Lkp/7 —1,—1,—1,---, -1}

and the approximate entanglement becomes

2LkF ™
= lo

E

0 < krL << 1. (42)

Similarly, we obtain the entanglement for the case of (7 — kp)L << 1 as

. 2L(7T — kp) ] ™
B s 082 2L(m — kp)’

E4 0<(m—kp)L<<l. (43)

Both Eqgs. 42 and 43 can be re-expressed in terms of h as
2L(1 — h2/4)z 7r

= log, T

™ 2L(1 — h2?/4)2

Ey4 , 0< (1—h%/4):L << 1. (44)

4 Determinant of The Toeplitz Matrix

The Toeplitz matrix 71,[¢] is said to be generated by function ¢(f) if

T.[¢] = (#i-j), 4,j=1,---,L—-1 (45)
where
b=y [ 6O) a0 (46)

9



is the [-th Fourier coefficient of generating function ¢(6). The determinant of 77,[¢] is
denoted by Dy,. The asymptotic behavior of the determinant of Toeplitz matrix with
singular generating function was initiated by T.T. Wu [8] in his study of spin correlation
in two-dimensional Ising model and later incorporated into a more general conjecture,

e., the famous Fisher-Hartwig conjecture [9, 10, 11, 12]. For our application, we
will not need the general case of Fisher-Hartwig conjecture. Instead, we only need
the singular generating function ¢(#) with discontinuities only. This case was first

considered in [8] . This function allows a canonical factorization:

R
@) IT tes..00 (47)
=1
Here

b5, (0) = exp(—iBi(m — 0+ 6,)) (48)

is defined on the interval §; < 6 < (27 + 6;). In this way, we factorizes the function ¢(6)
into a product of a smooth function ¢ (6) (with winding number zero) and jump-only

functions t(g; 4,)(#). We also assume that there exists Weiner-Hopf factorization

Y (0) = Flply (exp(i6) ) vo— (exp(—if) ). (49)

Here v, is analytical inside the unit circle, i_ is analytical outside the unit circle
(with ¢4 (0) = ¥_(c0) = 1), and normalization factor F[¢] = exp( JZ" Inap(6)d )
was proved by E.L. Basor in Ref. [10] that if [R(5;)| < 3, then the determinant Dy, of

related Toeplitz matrix has the following asymptotic expression
D= (Tl (TTL ) elv. 6 03] Lo (50
Here E[Y, {5}, {6:}] is a constant defined as

EW, {8}, {0:}] = €Y f[ G +p)G( - pB)

< (o (o) " (v ewi0))
X H (1 — exp(i(ﬁi — @)))ﬁiﬂj. 1)
1<i#£j<R

10



Let us explain notations: G is the Barnes G-function, €[] = exp(3_32; ksks_x), and

sk is the k-th Fourier coefficient of In (). The Barnes G-function is defined as

G(1+2) = (2m)* /e TV 2 TT{(1 4 z/n)re #T27/Cm, (52)
n=1
where g is Euler constant and its numerical value is 0.5772156649---. In our case,

we have [R(5;)| < 3 (see Eqs. 53, 54 and 55) and hence the Fisher-Hartwig conjecture
is PROVEN by E.L. Basor for our case [10]. Therefore, we will call it the theorem

instead of conjecture, which is suitable name for more general cases.

5 Asymptotic Form of The Entanglement

Now, let us come back to the calculation of Toeplitz matrix with generating function
g(0) defined in Eq. 41, which corresponds to XX quantum spin chain. This generating

function g(f) has two jumps at § = +kp and it has the following canonical factorization

§(0) = Y (0)t (5,005 (D)t (8200),—kr) (0) (53)
with
A1\ R/ 1. A+1
W0 =-0+0 () A=A =AM =T 6

The function ¢ was defined in Eq. 48. We fix the branch of the logarithm in the following
way
A+1
_r < 2T )

7r_arg<)\_1><7r (55)
For A ¢ [—1,1], we know that |R(51(A))| < § and |R(B82()))| < 5 and Fisher-Hartwig
conjecture was proved. From the factorization, we also have ¢, (0) = ¢_(0) = 1.
Hence following the theorem in Eq. 50, the determinant Dy, ()\) of A1, — Gy, can be

asymptotically represented as

Dy = (2-2cos2kr)) Y {G (14 800G (1 - )Y
{(/\4— (A +1)/( - 1))’“F/”}LL—252<A>_ (56)

11



Here L is the length of sub-system A and G is the Barnes G-function and

G+ BONG(— ) = e H250) [T { (1 - m))n emw} 6D

2
n=1 n

For later convenience, let us define

T(\) = 2 % (58)

Taking logrithmic derivative of Dy, ()), we obtain
leDL(/\) _ 1—I€F/7T_ kF/ﬂ' L
dA B I+X 1-2X

4 B (
T+ NI =N

InL +In(2| coskp) + (L +78) + T(N)). (59)

Eq. 39 represents the entanglement in terms of the log-determinant

dln Dy(A)

dA
o\ (60)

1
Es = lim lim —?{( )6(1+6,)\)
c(e,d

e—0+ 60+ 271
with contour shown in Fig 1. Let us substitute the asymptotic form Eq. 59 for

dln Dy, (X)/d) into the expression above:

T . 1 l—k'p/ﬂ' ]{IF/ﬂ'
EA_egror}r5l—l>I(§l+2—7ri7£(e,a)e(1+e’)\)( T+ 1-2X L+

. 2 e(1+¢€MN)B(N)
lim lim — i(e,ﬁ) dA CESYCESY

€0+ 650+ T2

(lnL +In(2| coskp|) + (1 4+ v&) + T()\)), (61)

where the contour is taken as shown in Fig. 1. The first integral which is linear in L

term in Eq. 61 vanishes:

. . 1 1—]€F/7T k'F/’]T
lim 1 —74 1+e A _ L
i lim o fpn e >( T i g

= lim (e(l +e,-1)(1 —kp/m)+e(1+e¢, 1)kp/7r)L
e—0t
= 0. (62)
Here, we applied the residue theorem by knowing the analyticity of e(1 4+ €, A) in A
within the contour c(e, §). We also used the fact that lim, o+ e(1 + €, £1) = 0 (Defini-
tion of function e(z, v) in Eq. 31). Hence, there is no linear in L term in the expression

for entanglement £ 4. The second integral can be calculated as follows: First, we notice

that

i(e,é)dA ()= (/A_ﬁJr/FﬁSJF/D_éJF/Cﬂi) dr () (63)

12



Second, we can show that the contribution of the circular arc FED vanishes

lim lim /_[5 dA 11:; )P (;)) (InT+1In(2|coskpl) + (1 +ym) + T(V)) = 0. (64)

e—0t §—0t

Third, we show that the contribution of the circular arc OBA vanishes

lim lim /ﬁ 11:; A8 (;)) (InL +In(2| cosks|) + (1 +7m) + T(A)) = 0. (65)

e—0t §—0t

Let us explain how we obtained these results:

For points A on the circular arc FED, we rewrote \ as

A=—1- e, (66)
2
So, we can show that
1 1 1
—_—~ =, —— ~1 A) ~1
Tx "o 1o~ h AN~ e
e(l+¢e ) ~elne and T(\) ~ 1 (67)
for A = —1 — £€'* and € small enough. Hence,

/—D> {a _:_/\6 )\)ﬁ(;\\)) (lnL +In(2|coskr|) + (1 +vE) + T()\)) ~ eln?e, (68)

which leads to Eq. 64. Similarly we can obtain Eq. 65. Therefore, the entanglement
(Eq. 61) can be written as

1+i0* 1+i0~ e(l+¢€N)B(N)
E, = lim —
4 30+ 72 /1+10+ +/1+10 1 14+XN)(1-2X)
x (In L+ (2| coskr) + (1+75) + T(N). (69)

For further simplification, we shall use the fact that

1 1 1
Bz + 10i) % (ln N i_i Fi(m — 0+)) = —iW(z) F (§ —0%) (70)
for z € (—1,1) and
1 1
W(z) = 27Tl 1 ii (71)

We can now write the entanglement FE4 as

/d 1_36 1L+ln(2|coskp|) (1+78))

oo 2! (5 +iW(x))3 (% —iW(z))3
1 / 1 - 5”2 (”2 — (3 +iW(2))? Tl (3 — iW(x))2> - (72)

13



where e(1,z) is defined in Eq. 31.

This expression for F 4 contains two integrals. The first integral can be done exactly

as
2 rt 142z 142 1—-2 11—z 1
l T _ 1
), 4 le = I
1 1 1 1-— 1
S dz (— ! m—tT_ In x)_
w2 Ja1 l—=z 2 1+ 2 ’'In2
1
= . 73
3In2 (73)
The second integral in Eq. 72 becomes
® 2n~t 1 1+x l+z 1-=x 1—=x
— 1 - 1
2 de( 2 B2 7 108 —5—)
L[ GEE) (-iW)
1—22\n? - (3+iW(2)? n?2- (3 —iW(z))?
x 2pt g1 1 1+x 1 1—=2
= — dx (— | - 1
n;ﬁlnz LAy )
1 iw 3 1 iw 3
(TP WP ) -
n? — (3 +iW(z))?  n? — (5 —iW(z))?

which is hard to treat analytically and is very close to —1/(301n 2) numerically. Hence,

we find that

1 1 h 1 1+~
— “log, L+ ~log, (1 (2)?]) + = T, L
Ey 3 0g, +6 og2< (2)>+3—|— 3102 + 7y, — 00 (75)

for XX model. The constant Ty can be obtained as

0 9p-1 1 1 1+zx 1 -

Y, = ngl dx(_l—xln 5 —1+$ln 5 )

(U G r )
n?— (3 +iW(2))?  n?— (3 —iW(z))?

721n2 J_1

1
30In2°

12

The series here is convergent and we think that Ty = —1/(301n2).

6 Summary

In this paper, we study asymptotic behavior of entanglement of XX model in the trans-

verse magnetic field. We first expressed the entanglement in terms of a determinant

14



of a Toeplitz matrix. Then we used Fisher-Hartwig conjecture [9] (the special case,
which we need, was first considered in [8] and proved in [10] ) to obtain its asymptotic

behavior. We proved that

1 1 h 1 1+")/E

Ey = -log, L+ =1 1—(=)? - Ty, L .

A 5 108 +60g2< (2)>—|—3—|— 2102 + 7Yy, Lo o0 (77)
x op~t 1 1 1 1 1-—

Ty = ), " dz (— In Rk In x)

= m2ln2 /-1 l1—2z 2 1+z 2

(G IV (@) (3 —iW (@)’
( T ErW@)? - - iW()? ) ’ (78)
W(zx) = % In 1 t z, ~e is Euler constant. (79)

The leading term of asymptotic of the entanglement %log2 L coincides what has been

published in Ref. [5] . The next leading term of asymptotic,

1 h 1 1+
5 log, (1 - (—)2> + -+ R Yo, (80)

2 3 3In2
is our new result. It is a constant (in the sense of no L dependence) showing explicit

dependence on magnetic field h and we conjecture the constant just as simple as

1 hol 1 3
“log, [1- (2 . 1
6 °g2< %) ) *3% 33 T 103 (81)

Besides asymptotic case (with very large lattice size of subsystem A), we also obtain
the analytical expression Eq. 44 for the entanglement for the case with small lattice
size of subsystem A and the transverse magnetic field h close to critical values +2.

Similiar to Eq. 72, Rényi entropy can be written as

2 [t 1
S, = —/ dxsa( ’x)<lnL+ln(2\coskp\)+(1+’)/E))

°° 2n~1 ) Sa(l,x (3 +iW(z))? (3 —iW(2))?
[ 302 (e e

_|_

with
1

T +v a:—y)a)

salwv) = = log (5 + (%5 (53)

The lead term of Rényi entropy in this critical model is linear with In L and we have

its coefficient Cr(«) as

1 1+x 1—x)a). (84)

CR(a):ﬁ/_lld%—x?log(( y ST

15



Note:

e When o — 1,i.e. « =1+ and 6 — 0, Rényi entropy becomes von Neumann

entropy and we can show lim,_,; Cg(a) = % as following;:

14z 11—z

Jlog (5 0+ (-50))  (9)
—1 1+x 142 1—=x 11—z

= =/ d 1 1

7r2/—1 x(1—x2)( y g T 5 lee——) (86)

1

= 3 (87)

(lsl_I)I(l)CR(a/) = hm—/ dx

5—0 712§

e We also can show the related results rigorously for XY model. At the critical
point, the leading term is the half of the corresponding term for XX model.
This is related to the number of jumps in generating function for correlation

function.
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