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Overview

- electron spin as qubit in quantum dots
» exchange and transport through double dots

» decoherence of spins in GaAs dots:
1. how to measure spin: ESR and electrical current
2. dominant source of decoherence: nuclear spin (hyperfine
interaction) = non-Markovian behavior (power laws)



Spin qubits in solids

Loss & D. DiVincenzo, 1997

Key Idea: spin-to-charge conversion, 1.e. control
of spin via electrical gates:

1. single qubit: via Zeeman, magnets, QHE edge states, magnetic
semicond., g-factor, ESR,...

2. XOR gate: via double quantum dot & exchange control
=> deterministic entanglement

3. Read-out: - spin filter and charge detection (SET)
- spin-polarized charge current




advantage of spin over charge:

long decoherence times

spin charge
3 y >>T y

i

=» natural choice for qubit: spin %2 of electron



spin qubits 1n solid state:
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Quantum XOR via Heisenberg exchange
U(t) = Texp{—%fH alt’},H;zé()duringfrS
0

‘Heisenberg exchange H = JS;-Ss for U, and U2,
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i.e. swap gate: qubit 1< qubit 2, for ft J(t)/h =~ Jog1s/h = 7 (mod27)

Zeeman Hp =B;-S; + By -Sy for single-qubit operations

"TS 1 I SZ % 1t S% %
> [JXOR—e 1 e 272 Ugy € 1 Usw

Loss+DiVincenzo, PRA 57 (120), 1998



« quantum gate = two coupled dots

() S-S,

/ - quantum dots
2 DEG (e.g. GaAs; Si)

* idea: Hubbard physics: J(f) ~ 4 {,(t)*/U

t, =ty(f): tunable tunneling barrier

+ e.g. square root of swap U,

j J(@)dt'lh~J,r | h=7/2(mod )
’ A /J\(t)

A\

note: 1,= 50 ps << T, = 150 ns (GaAs) \

Yo

Tg Tt



Westervelt et al., 2002



Double dots, GaAs, density =2.9 x 1015 m2

Kouwenhoven & Tarucha et al., 2002
cond-mat/0212489 (PRB03)



Kouwenhoven et al., 2002
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Exchange coupling J(t) in double dot:

H, (t) = J(t) S-S

“deterministic entanglement™

1. theory for artificial atoms and molecules =» exchange J
2. theory for electrical current through system (= measurements)



Heitler-London

* single-dot problem in a magnetic field has exact solution

- p(r)

two-particle trial wavefunction (Heitler-London)

Ve = N

J = (V_[Hy|V_) — (W |Hy|Vy)

o a(FD91a(7) £ o—alFo)p s olF1)]

e results: d = a/ap, B2 = 1-+wsijws, c~ (e?feap) /g, wp = eB/2m

Iho
- 0‘25 H ho=3meV (a; =20nm)
e 0.1t =0.7 c=2.42
Jo= — 0 ev/b(e I (bd? ; o
sinh (24%(2b — 1/b)) (o) o1l 4 6 8 101
T PN (d? (b — 1/5})) (1+bd2)} 0.2
4b —0.3|
_04 long range Coulomb

« Theorem: J > 0 for 2 electrons and B = 0.

(see also numerics by X. Hu et al., PRB "00, include higher orbitals)



Transport through double dots in Coulomb Blockade

Loss & Sukhorkov, Phys. Rev. Lett. 84, 1035 (2000); V. Golovach & D. L., 01, ‘03

via current?
ot = SI: SR
K =E, — Eg

two spins interact via exchange interaction:  H

The relevant states are:

to
1 ¢ t
00) = T (dydl, — gdlidl )]0) ' y
1y =dtdljoy, [1-1)y=dldl o), 2 D

10> \/_(dT dTi + dT LT)‘()) ’ __:__i___

ML
b \/ 4tH2 4tH
H

tunnel coupling:  tgg = g + t¢

KR

e.g. sequential or cotunneling regime



Kouwenhoven et al., 2002
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Calculate / vs V =» peaks (dips)
in d//dV (heating effects)

-) S— 7)
P> e

+)

VA

g2
(0.1)

(0,0)
result for sequential tunneling regime (theory):\\ (1,0)
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O = By = Ej5y + 1

= p+Auf2
e =p—Au/2

2
V. Golovach & D. Loss, ‘03
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Kondo peaks i

B=0.5T

V.N. Golovach and D. Loss, Europhys. Lett. 62, 83 (2003)



Swichting Rate
NO

, ¥ T,/7T,  for GaAs
« calculate J(v) statically and then take J(f) = J(v(t)) for time-
dependent v(f) (where v = V, B, a, or E = control parameter)

- sufficient criterion for this to work [ J = (1/7s) {5dt J(¢) |

1/7s = |o/v| <« J/h adiabaticity condition

« compatible with Jms =mnr7, = =1,3,5,... (needed for XOR)

- self-consistency of calculation of J:  J & Ae
«thus: 1/7s <« J/h <« Ae/h ,7U°/8t, (no double occupancy)

* numbers: J =~ 0.2meV — 75 2 50 ps
» decoherence of spin ca. 100 ns ( )

— NOP ~T, /Z'S ~10"  sufficient for upscaling
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Dynamics of Entanglement for the
square-root-of-swap

A\

time t [h/(2nU,)]

578
| incoming state
o, (B)]° entangled state
| Y[y
o (O]
(double
occupancy) (V) . |
) / (tunneling)
-100 -50 0 50 100

The square-root of a
swap is obtained by
halfing the duration

of the tunneling pulse.
The result is a fully
entangled two-qubit
state having only a
vanishingly small
amplitude for double-
occupancies of one of
the dots.

As before, during the
process the
indistinguishable
character of the
electrons and their
fermionic statistics are
essential.

J. Schliemann, D. Loss, and A. H. MacDonald, Phys. Rev. B 63, 085311 (2001)



‘Quantum transistor’: double dot with
gate control over exchange splitting J(t)

H, () = J() S'Sg

up scaling: connect N quantum transistors =»



Scalable system: quantum dot array

" ——

back gates magnetized or heterostructure
high-g layer quantum well
H =% Jij(t)Si-S;+ > (9:pn8Bi)(t) - S;
(j) U
n.n. exchange local Zeeman

D. Loss & D. DiVincenzo, PRA 57 (1998) 120; cond-mat/9701055



All-electrical control of spin 1s possible:

1. single qubit: via Zeeman, magnets, QHE edge states, magnetic
semicond., g-factor, ESR,...

2. XOR gate: via double quantum dot & exchange control
=» deterministic entanglement

3. Read-out: - spin filter and charge detection (SET)
- spin-polarized charge current
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spin-to-charge
conversion

FIG. 1. a) Schematic top view of two coupled quantum dots labeled 1 and 2, each contain-

ing one single excess electron (e) with spin 1/2. The tunnel barrier between the dots can be

raised or lowered by setting a gate voltage “high” (solid equipotential contour) or “low” (dashed

equipotential contour). In the low state virtual tunneling (dotted line) produces a time-dependent

Heisenberg exchange J(t). Hopping to an auxiliary ferromagnetic dot (FM) provides one method

of performing single-qubit operations. Tunneling (T) to the paramagnetic dot (PM) can be used

as a POV read out with 75% reliability; spin-dependent tunneling (through “spin valve” SV) into

dot 3 can lead to spin measurement via an electrometer £. b) Proposed experimental setup for

initial test of swap-gate operation in an array of many non-interacting quantum-dot pairs. Left

column of dots is initially unpolarized while right one is polarized; this state can be reversed by a

swap operation (see Eq. (31)).



When local control difficult = make your qubit large(r)

magnetic
tip
S e . B-field

50 nm

Local control of QDs? Is it necessary to control
single ion spins for QC?



Collective qubit: spin clusters

F. Meier, J. Levy & D. Loss, Phys. Rev. Lett. 90, 047901 (2003)

e.g. isotropic spin chain with n; sites:

(e.g., neighboring QDs or P atoms)

J

J_J_J
> —0 9o
Sy S, S;3 Sy

H=J 2@. -5, with J>0 (antiferromagnetic)
i=1

Spectrum?
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> qubit
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ground state
singlet
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Dimension d>1

2d and 3d clusters

QC with spin clusters relies on existence of S=1/2 ground state
— scheme extends to
* any bipartite lattice

AR R

(X
« even to lattices with partial
geometrical frustration ‘.—.—.\.

o9

note: dipole interaction between cluster qubits reduced



Central issue for qguantum computing:
decoherence of qubit (spin,...)

» decoherence is unavoidable in realistic systems under realistic conditions

- 1. How to measure decoherence for single spin?

- 2. Quantitative theories of spin decoherence

* hierarchy of decoherence times - eventually need to identify shortest one!



Spin decoherence T, via charge current

H.-A. Engel and D. Loss, Phys. Rev. Lett. 86, 4648 (2001); Phys. Rev. B 65 195321 (2002)

Quantum dot in sequential tunneling regime

ET+ I O ET+ W= Az
s — Is
s | ~
Lg Es

§ S Bz
A - L |

o L " "
— - - -
—— — -~ g

L4 ; _____ [A, . ‘éﬁ‘s la, B:I:ESR

Coulomb blockade regime, Eg—E,>u, > Es—E, >,
£y =00 Eg>py > Eg—4.> ]
dot: Zeeman splitting 4. =gugzB, > kT
leads: Aleads o4 A and Alfads « g
ESR field Hesr = 5A,c08 (wt)o, of frequency w ~ A,
— Rabi flips are produced and current flows through
the dot, involving state |{).




Spin satellite peak in ST current

« Stationary current I(V_ )= 1(u), p=(u+u,)?
I(u) peaked at u = E;and y = E—~A.:

0.15 ¢ Bz =0.5T,
. 13 g = 2,
T =70 mK,
— 0.1! .'f?':’ f‘-.: Ap =6 puV,
) .'f;;,.J \ T = 1 ps,
.E. , " } i T2 = 100 ns,
= 0.05 ! L \ Y1 =95 X 106 5_1, and

A \\ ) \ gray: Ww =0, Bg =0,
- —— = solid: Ww =~1/5, BY =0.75G,
Es—A, Eg dotted:  Ww =177, BY=17G, } (atw = Az)
JU/ dashed: Ww = 9vq, Bg =5GQG,

« Spin satellite peak due to ESR field
« Peak height changes as function of w and/or B,

' - B))?/8T:
since I=[(W ) and W, = ( igfi)élr i/rri?

« Satellite peak increases, main peak decreases for
increasing W,




Spin T, via linewidth of current

- Stationary current 1(w) x We, |

l(w): Lorentzian in w, peaked at o = A,.

0.1
< 0.05 ——
pry 2/Th
0
14.75 A,/2r  14.76

w/2m

(GHz]

for W 4% <max{ Wy, v1}.

kBT < Aﬂ-s

Bﬁ = 0.5 T,

B, = 0.45 G,

g =2,

Ty =1 ps,

T9 = 100 ns,

Y1 = 5 X 100 5_1, and
Yo = 577, i.e.

WX < 41 $1/Ts.

* Linewidth 2V + gives lower bound for intrinsic spin

decoherence time 7.

[e.9. B2=0.08 G, y,= 5x105 57!, thus /(A ) ~ 1.5 fA]

Measurement of charge current I(w) yields lower
bound for single-spin decoherence time 7, on dot.



Sources of spin decoherence in GaAs quantum dots:

* spin-orbit interaction (relativistic band structure effects):
couples lattice vibrations with spin = spin-phonon interaction, but
weak in quantum dots due to 1. low momentum, 2. no 1st order s-o terms
due to symmetry (Khaetskii&Nazarov, '00)

* note: gate errors (XOR) due to s-o can be minimized
(Bonesteel et al., Burkard et al. '02, ‘03)

» dipole-dipole interaction: weak

* hyperfine interaction with nuclear spins: dominant decoherence source
(Burkard, DL, DiVincenzo, PRB '99)



Electron spin decoherence in quantum dot due to nuclei

Khaetskii, Loss, Glazman, Phys. Rev. Lett. 88, 186802 ( 2002); cond-mat/0211678 (PRB)
Schliemann, Khaetskii, Loss, Phys. Rev. B66, 245303 (2002)

Confinement

Envelope electron . .
wave function hyp erfine interaction

4; A-|\P(l‘i) |2

/ Nuclei

i.e. non-uniform hyperfine coupling: A, = A (r;) varies with position r, ,
= power-law decay of spin coherence (S.(t)) oc1/1*7
=» decoherence suppressed when nuclei become polarized




Neglect dipole interaction =» total spin J conserved:

J=S+2.1. =const.

But: each flip-flop process (due to hyperfine interaction) creates a different nuclear
configuration = different hyperfine field Hy seen by the electron spin in time due to
spatial variation of the hyperfine constants A. =» average over different electron spin
precession frequencies w, =¥ electron spin decays !

Result (below): decay is non-exponential and is characterized by time (A/ N) "'~ 1 us
=>» consistency check: T , ~ 100 pus >> (A/N) ! ~ 1 us =» no averaging over nuclear
configurations is needed =2 dipolar interactions can be neglected fort <T _, !

1) [=3/2, and 2 different hyperfine constants A, in GaAs
=» simplify (non-essential):  [=1/2 and only one value for A,
2) consider first a particular and unpolarized nuclear configuration | {I' }>,
withI1 =, %, i.e. tensor product state.
=> typical nuclear magnetic fieldis H (~A / (Ngp 5) << A/ g 5.



Perturbative evaluation of spin correlator C

Consider decay of the electron spin from its initial (t=0) S _-eigenstate [t >
=» evaluate spin correlator (time scale of decay = decoherence time):

)

where 5S8.(0)=8.(1)-S., S.()="S.e™, with H=H,+V

¢, (0= (n

Here H S hNZ 1s the free part, with eigenenergy ¢, and the ‘perturbation’
V=»1/2)(S, hy_+S_hy,)
describes the flip-flop processes, i.e. M;.4,,.. —» U;.,7, ... Vk=1.,N

In leading order in V, we obtain for the spin correlator

Cal Z

IV \2

nk

(cos(wpit) — 1),




Define T = At/2aN [N=a  a?/v,>> 1 nuclei inside dot, and a, a , lateral/transverse dot lengths]
Then, asymptotically for T >> 1 spin correlator becomes (pertub. theory):

C ()= —a+ P sin(h t —¢,),

3/2
T

power law decay
i[ =c.+(h) +A4,/2 (quite unexpected)

Note: for weak Zeeman field, i.e. ¢, =g p; B <oy, we obtain o~ ~ ",
butif gu, B >0y = a~p~(oy/ gugBP<<l.

Thus: spin decay follows power law for times t>> (A/N)! (~ 1 us for GaAs).
The power law 1s universal, and amplitude of precession at end of decay is > 0
note: can suppress decay amplitude by magnetic field!

But: higher order terms diverge due to memory effects



Fully polarized nuclei: exactly solvable case

Envelope electron
wave function

A A A '
/\J‘uclei

The initial nuclear spin configuration is fully polarized. With the initial wave
function ¥, we construct the exact wave function of the system for t> 0 :

Wo =[BT, 1,7 oo >, W(E) = ()0 + > Bel®) 51,1, Lg .. >, “magnon’
3 - entangled

Normalization condition is: |c(?) |2 T Zk, Bk (t) |2 — 1 , and we assume that

a(t =07) =1,a(t < 0) =0. From the Schroedinger equation we obtain:



(1)

where A=%, A,; I=1,...,N° = set of N’+1 coupled differential eqs. (N’>>N)

Y= (1-|a()])/2

Correlation function: C,(t) = - <l// 0

Laplace transform of (1) gives:

alt) — exp( zA’t/4) f’YHOO iexp(wt)

[iw+ e, +7Niw [ dzIn(1 — %J;X&(j) )]

here A" = A + 2e,.

note: sums Z, replaced by integrals over r,3 (valid for 1 < N),
with x,y (Gaussians) integrated out - non-analyticity



da(t) 1 A
=== _ZAa(t) + Zk: Tkﬁk(t) — e a(t)/2, N
O _ (2 20500+ Balt) + e filt)/2,

Laplace transform of (1) gives:

a(t=0) i 5 A, B.(t=0)
D) 2Du) 5 iu—(A+2¢)/4+A, /2

~iu—(A+2¢)/4+A, /2 > < seli-energy

Introducing u=iw+(A+2¢,)/4 , using a(t=0)=1, B, (t=0)=0,

and replacing the sum over k by an integral

2 . 2
> A =2[A-zinNa)jdzlnu—ZA%(Z))]




® — plane

integration contour y and singularities

The singularities are: two branch points (=0, o, =1 Ay,?(0)/ 2nN), and first
order poles which lie on the imaginary axis (one pole for €,> 0, two poles for
¢, <0). For the contribution from the branch cut (decaying part) we obtain:

a(t) — exp(—iA’t/4) /1 dr2zok exp(iT' k)
TN o SRR RO+ (57N — e JAGONE + @nzo)PrE’

here 7' =7y (0) and z, =z,(x), 25(z)) = 2. (0)x.




1) Large Zeeman field |g | >> A.
The asymptotic behavior (t >>1) is determined by « =1 (dot center), and we find

exp(—iA't/4) exp(it’) x3(0) A% (1 —i)ym

a(r>1) = _— ATk

and the correlator C,(t) agrees with the perturbative result for the fully polarized
state, i.e. Cy(t)- Cy(0) ~ 1 /2, i.e. power law (in d-dimensions: ~ 1/ t9/2)

Thus, the decay law depends on the magnetic field strength . However, the
characteristic time scale for the onset of the non-exponential decay 1s the same
for all cases and given by (A/N )! (microseconds in GaAs dot).




Spin Decoherence: unpolarized vs polarized

typical decay law for electron spin:

(S.(t))oc1/1°" (1/In*% 7, for B=0)

valid for t > N/A for unpolarized and polarized nuclear spins (N/A~ 1 us for GaAs dots).
But note: The decaying part ~ 1/N for polarized nuclei, in contrast to the unpolarized

case where decaying part ~ O(1) :

<S,(t)>

_ polarized

unpolarized



Some interesting features of the fully polarized state

1) Resonance regime for negative external Zeeman field |e | =A/2.

Effective gap seen by the electron spin nearly zero (residual gap is of order oy ~ AANN ).
Near this field, |a(t)*=cos? (o, t), o,~ oy 2 <|a(t)?>="2 (time-average) (see Fig.), i.e.
up and down spin of electron strongly coupled. But away from resonance: |a(t)|? = 1.

Note: width of the resonance ~ AWVN << A.

2
<Jou(t)] > 12

A2 <,

<> detect polarized nuclei via abrupt change of oscillation amplitude of < S_(¢) > !

not related to decoherence (the latter is O(1/N) even near the resonance)

The weight of upper pole also drops abruptly from a value ~1 to a value <<I in the same
narrow interval of Zeeman field = experimental check by Fourier analysis.



2) g,=¢,"=b A/2, where b=x3(0)[dzln|l—x5(2)/x5(0)] < -1  isanon-
universal number which depends on the dot shape.

This Zeeman field value €,* corresponds to the case when the upper pole is close to
the upper edge of the branch cut. When approaching the critical Zeeman field ¢ *
there is a slow down of the asymptotics, 1.e.

This slow down is related to a strong modulation of the density of states of one-
magnon excitations near the edge of the continuum band (branch cut).

The DOSis  v(u) =Im [G, (u) + d/duIn D(u)],
u=io, G,(u)=X%, 1/(u+ A ,/2) is the “unperturbed Green’s function” , and a(u) =1/

D(u). When ¢, —¢,*, we get v(u) « 1/ /(w, —u) ,1e. edge singularity of the
continuum



Decay of electron spin due to entanglement with nuclear spins:
Schliemann, Khaetskii, Loss, Phys. Rev. B66, 245303 (2002)

measure of entanglement: von Neumann entropy E of reduced density matrix
(see C.H. Bennett et al., Phys. Rev. A53 2046 (1996))

i.e. trace out pure-state density matrix |¥(¢) )(¥(¢)| of electron-nuclear
spin system over nuclei =

p, )=Tr, .. 1/2+<Sz(t)> <S+(t)> j

(1) ) LP(f)\=[ (S.))  1/2-(S.(0))

with eigenvalues A, :1/2i‘<§(z‘)>‘ — E(‘LP(t)>=— A, logh, —A_logd_

I.e. entanglement reaches max. (E, ., =log 2) for completely decayed
spin of electron, i.e. for ‘<§(z)>‘ =0




Possible choices of 1nitial nuclear spin states:
1a) product-states in |, -basis for all nuclei:

i)=|T) ®|)) of{) ®.8T)
1b) product states in random basis:

‘7>: ‘T +a, ¢>1 ®‘¢ +a, T>2 ®‘¢ +a, T>3 ®...®‘T +a, ¢>N
2) correlated basis (entangled):

l//c>=2 a, i>, where ‘i>= ‘T>1 ®‘¢>2 ®‘~L>3 ®...®‘T>N

=» possible nuclear spin averages for observable S:

1. (i|S]7) single product state

2. Zai<i

3. (v.|S|y.) single correlated state, e.g. with random phases

5*\1} average over product states <=> ensemble average




Numerics:
Schliemann et al.,
Phys. Rev. B66,
245303 (2002)

« Upper panels: time evolution of the electron spin (S%(t)) for a system with
14 nuclear spins being initially in an uncorrelated tensor product state in

<S(t)>

0.1 1§

i

-0.1

-0.3

-0.5

0.1 |

0.1 |

-0.3

-0.5

N=14 J°=4.5

tensor product
initial state

Umwmmmqgﬁigygﬂﬁfﬁﬂmv

initial state

average over
tensor product
initial states

initial nuclear |
state randomly |
correlated

0

100 200 300 0

100 200 300 400

time [h/(27A)]

the subspace with total angular momentum J=9/2.

» Lower left panel: data of the same type as above but averaged overall

possible uncorrelated initial states with J/=9/2.

* Lower right panel: (S%(t)) for the same system being initially in a randomly

chosen correlated state (pure state!)



Averaging over nuclear configurations = dephasing

Since my! =VN /A << N/A, the electron spin undergoes many precessions in a given nuclear field
configuration before decoherence sets in due to the non-uniform hyperfine couplings A | .

This behavior changes dramatically when we average over nuclear configurations.

We demonstrate this for the case when the nuclear field is treated classically, i.e. as a c-number.

The exact calculation of the correlator gives:
h2
4h2 (
_ 2 2
here hy = \/th + hi,  isthenuclear field, A2 = A%+ Wy

C,(t) = 1 — cos hyt),

We average this correlator over a Gaussian distribution for h , 1.e. over
P(hy) o< exp(—3h3/2w%).
With the definition  C,(t) = [ dhyP(hy)C,(t), we obtain

1 wat?

Ca(t) = —=[1+( 5

. 1) 6—%2\,152/6].

Thus, we get rapid decay of the correlator for t >>w, !, giving the
dephasing time ~ JN /A = ®y' (<< decoherence time ~ N /A)



orr—

0 100 200 300 0 100 200 300 400
time [h/(27tA)]

Time evolution of {($7(¢)) for two types of initially random correlated nuclear
spin states. In the left panel the amplitudes a are restricted to have
non-negative real and imaginary part, while in the right panel they have all
the same modulus but completely random phases.



Conclusions

e spin-based quantum computing scheme in quantum dots

* all-electrical spin control via gates acting on electron charge:
1. single qubit: via magnetic semicond./g-factor & ESR
2. XOR gate = double quantum dot & exchange control - deterministic entanglement

) NO

, X Ty /T, = 10* & parallel switching (QEC) = scale up

* detection of single spin decoherence: via transport current and ESR in quantum dot
« spin decoherence of electron due to nuclear spins is non-exponential (power law).

But: amplitude of decayed part ~ 1/N for N polarized nuclear spins

See review in Semiconductor Spintronics and Quantum Computation,
eds. D. D. Awschalom, D. Loss, and N. Samarth, Springer, Berlin, 2002.
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