Quantum Cellular Automata from Lattice Field Theories

Michael McGuigan

Brookhaven National Lab

May 31, 2003

Outline

- Cellular Automata
- Quantum Cellular Automata (QCA)
- Relation to Lattice Field Theories
- Bosonic Quantum Cellular Automata
- Fermionic Quantum Cellular Automata
- Supersymmetric QCA
- Relation to String Bit Models
- Spin and Quantum Dot Cellular Automata
- Relation to Quantum Computing

Classical \rightarrow Quantum

Brookhaven Science Associates U.S. Department of Energy

Cellular Automata

- Deterministic
- Discrete Time I, Space J, Target Space X
- Cell contents X(I,J)
- Update Rule f, reversible (Toffoli and Margolus (1990))
$X(I+1, J)=f(X(I, J-1), X(I, J), X(I, J+1))-X(I-1, J)$
- Applications: Lattice gas, traffic models, classical computation (Wolfram 2003)

Cellular Automata Example

- Choose update function f
$f(X(I, J-1), X(I, J), X(I, J+1)=X(I, J-1)+X(I, J+1)$
- update equation

$$
X(I+1, J)=X(I, J-1)+X(I, J+1)-X(I-1, J)
$$

Quantum Cellular Automata

- General QCA open problem. (Feynman (1982), Grossing and Zeilinger (1988), t’Hooft (1992), Meyer (1996))
- Non-deterministic: Applications quantum fluid, quantum computing
- Discrete time I and Quantum Mechanics (T.D.Lee (1983), Khorrami (1994),Jaroszkiewicz and Norton (1996))
- Discrete space J (spatial lattice).
- Target Space X, cell contents X(I,J) (lattice field)
- Action $\mathrm{S}=\mathrm{S}\{\mathrm{X}(\mathrm{I}, \mathrm{J})\}$
- Transition amplitude from Path Integral

$$
K_{Z_{k}}(X(N, \cdot), N ; X(0, \cdot))=\prod_{I, J=1,0}^{N-1, M} \sum_{X(I, J)=0}^{k-1} e^{i S\{X\}}
$$

Bosonic Quantum Cellular Automata

- Action

$$
S=\sum_{I, J=0}^{N, M} \frac{1}{2}\left((X(I+1, J)-X(I, J))^{2}-(X(I, J+1)-X(I, J))^{2}\right)
$$

- Equation of motion is update equation

$$
X(I+1, J)=X(I, J-1)+X(I, J+1)-X(I-1, J)
$$

- Solve by Fourier transformation

$$
X(I, J)=\frac{1}{\sqrt{M}} \sum_{n=0}^{M-1} X_{n}(I) e^{-2 \pi i n J / M}
$$

Bosonic Quantum Cellular Automata

- Update equation and action become:

$$
X_{n}(I+1)=2 X_{n}(I)-W_{n}^{2} X_{n}(I)-X_{n}(I-1)
$$

$$
S=\sum_{I=0}^{N-1}\left(\frac{1}{2}\left(X_{n}(I+1)-X_{n}(I)\right)^{2}-\frac{1}{2} W_{n}^{2} X_{n}^{2}(I)\right)
$$

- with $W_{n}=2 \sin (\pi n / M)=2 \sin \left(a_{0} \omega_{n} / 2\right)$

$$
K(X(N, \cdot), N ; X(0, \cdot), 0)=\prod_{l, J=1,0}^{N-1 / 0} d X(I, J) e^{i S\{X\}}
$$

- Product of discrete time Harmonic Oscillators of the form:

$$
K\left(X_{N}, N ; X_{0}, 0\right)=\sqrt{\frac{\sin \left(a_{0} \omega_{n}\right)}{2 \pi i \sin \left(a_{0} \omega_{n} N\right)}} \exp \left(\frac{i \sin \left(a_{0} \omega_{n}\right)}{2 \sin \left(a_{0} \omega_{n} N\right)}\left(\left(X_{N}^{2}+X_{0}^{2}\right) \cos \left(a_{0} \omega_{n} N\right)-2 X_{0} X_{N}\right)\right)
$$

Discrete Target Space

- Cells can take k values

$$
X \in \mathbb{Z}_{k}=\{0,1, \ldots, k-1\} \quad X \approx X+k
$$

- Action becomes

$S=\left(\frac{k}{2 \pi}\right)^{2} \sum_{I, J=0}^{N-1, M} \cos (2 \pi(X(I, J+1)-X(I, J)) / k)-\cos (2 \pi(X(I+1, J)-X(I, J)) / k)$

- Path integral

$$
K_{Z_{k}}(X(N, \cdot), N ; X(0, \cdot))=\prod_{I, J=1,0}^{N-1, M} \sum_{X(I, J)=0}^{k-1} e^{i S\{X\}}
$$

Discrete Target Space

- Special interest in $X \in \mathbb{Z}_{2}=\{0,1\}$ Dead or alive
- Action
$A=\left(\frac{1}{\pi}\right)^{2} \sum_{I, J=0}^{N-1, M} \cos (\pi X(I, J+1)) \cos (\pi X(I, J))-\cos (\pi X(I+1, J)) \cos (\pi X(I, J))$
- Define Spin Variables $S_{z}(I, J)=\cos (\pi X(I, J))$

$$
A=\left(\frac{1}{\pi}\right)^{2} \sum_{I, J=0}^{N-1, M} S_{z}(I, J+1) S_{z}(I, J)-S_{z}(I+1, J) S_{z}(I, J)
$$

- Path Integral related to Ising Model

$$
K\left(S_{z}(N, \cdot), N ; S_{z}(0, \cdot)\right)=\prod_{I, J=0}^{N-1, M} \sum_{S_{z}(I, J)= \pm 1} e^{i A\left\{S_{z}\right\}}
$$

Fermionic Quantum Cellular Automata

- Fermionic cell contents $\quad \theta(I, J)$
- Applications to condensed matter, string theory, quark lattice gauge theory
- Update equation

$$
\theta(I+1, J)=f(\theta(I, J-1), \theta(I, J), \theta(I, J+1))+\theta(I-1, J)
$$

Example: Fermionic Cellular Automata

- Simplest update function

$$
f(\theta(I, J-1), \theta(I, J), \theta(I, J+1))=\theta(I, J-1)-\theta(I, J+1)
$$

- Update equation with solution $\theta(I, J)=\theta_{R}(I-J)$

$$
\theta(I+1, J)=\theta(I, J-1)-\theta(I, J+1)+\theta(I-1, J)
$$

- Another simple update function

$$
\tilde{f}(\tilde{\theta}(I, J-1), \tilde{\theta}(I, J), \tilde{\theta}(I, J+1))=-\tilde{\theta}(I, J-1)+\tilde{\theta}(I, J+1)
$$

- Update equation with solution $\tilde{\theta}(I, J)=\tilde{\theta}_{L}(I+J)$

$$
\tilde{\theta}(I+1, J)=-\tilde{\theta}(I, J-1)+\tilde{\theta}(I, J+1)+\tilde{\theta}(I-1, J)
$$

Fermionic Quantum Cellular Automaton

- Action:

$$
\begin{aligned}
& S=\sum_{I, J=0}^{N-1, M-1}-i \frac{1}{2} \theta^{*}(I, J)(\theta(I+1, J)-\theta(I-1, J))-i \frac{1}{2} \theta^{*}(I, J)(\theta(I, J+1)-\theta(I, J-1)) \\
&-i \frac{1}{2} \tilde{\theta}^{*}(I, J)(\tilde{\theta}(I+1, J)-\tilde{\theta}(I-1, J))+i \frac{1}{2} \tilde{\theta}^{*}(I, J)(\tilde{\theta}(I, J+1)-\tilde{\theta}(I, J-1))
\end{aligned}
$$

- Equation of motion yields update equation
- However fermion doubling problem with inverse propagator:

$$
D_{F}\left(p_{0}, p_{1}\right)=\sin \left(p_{0}\right)+\sin \left(p_{1}\right)
$$

- Zeros located
$(0,0),(0, \pi),(\pi, 0),(\pi, \pi)$

Fermionic Quantum Cellular Automata

- Wilson method to remove fermion doubling

$$
\begin{aligned}
S_{r}=\sum_{I, J=0}^{N-1, M-1} & -i \frac{1}{2}\left(\theta^{*}(I, J)(\theta(I+1, J)-\theta(I-1, J)-r \tilde{\theta}(I+1, J)-r \tilde{\theta}(I-1, J)+2 r \tilde{\theta}(I, J))\right. \\
& -i \frac{1}{2}\left(\theta^{*}(I, J)(\theta(I, J+1)-\theta(I, J-1)-r \tilde{\theta}(I, J+1)-r \tilde{\theta}(I, J-1)+2 r \tilde{\theta}(I, J))\right. \\
& -i \frac{1}{2}\left(\tilde{\theta}^{*}(I, J)(\tilde{\theta}(I+1, J)-\tilde{\theta}(I-1, J)+r \theta(I+1, J)+r \theta(I-1, J)-2 r \theta(I, J))\right. \\
+ & i \frac{1}{2}\left(\tilde{\theta}^{*}(I, J)(\tilde{\theta}(I, J+1)-\tilde{\theta}(I, J-1)-r \theta(I, J+1)-r \theta(I, J-1)+2 r \theta(I, J))\right.
\end{aligned}
$$

- Inverse propagator has a single zero at $p_{0}=0$

$$
D_{F}\left(p_{0}\right)=\sin \left(p_{0}\right)+r\left(1-\cos \left(p_{0}\right)\right)=\sin \left(p_{0}\right)+2 r \sin ^{2}\left(p_{0} / 2\right)
$$

Fermionic Quantum Cellular Automata

- Quantize by Grassmann path integral

$$
K(\theta(N, \cdot), \tilde{\theta}(N, \cdot) N ; \theta(0, \cdot), \tilde{\theta}(0, \cdot))=\prod_{l, V=1,0}^{N-1, \omega} \int d \theta(I, J) d \tilde{\theta}(I, J) e^{i S,\{\theta, \tilde{\theta}\}}
$$

- Can Solve by Fourier transform and factor over frequencies

$$
\theta(I, J)=\frac{1}{\sqrt{M}} \sum_{n=0}^{M-1} \theta_{n}(I) e^{-2 \pi i n J / M}
$$

Supersymmetric Quantum Cellular Automata

- Supersymmetry- interchange bosons and fermions.
- Used in String Models, Particle Physics, solvable Condensed Matter Models.
- Fermion doubling and supersymmetry implies boson doubling.
- Use first order formalism for bosons.

$$
\begin{aligned}
S= & \sum_{I, J=0}^{N, M} \frac{1}{2}\left(P(I, J)^{2}-P(I, J)(X(I+1, J)-X(I-1, J))-L(I, J)^{2}+L(I, J)(X(I, J+1)-X(I, J-1))\right) \\
& +\sum_{I, J=0}^{N-1, M-1}-i \frac{1}{2} \theta^{*}(I, J)(\theta(I+1, J)-\theta(I-1, J))-i \frac{1}{2} \theta^{*}(I, J)(\theta(I, J+1)-\theta(I, J-1))
\end{aligned}
$$

Supersymmetric QCA

- Supersymmetry transformations

$$
\begin{aligned}
& \delta X=i(\tilde{\varepsilon} \theta-\varepsilon \tilde{\theta}) \\
& \delta \theta=-\tilde{\varepsilon}\left(\frac{1}{2}(X(I+1, J)-X(I-1, J)-X(I, J+1)+X(I, J-1))\right. \\
& \delta \tilde{\theta}=\varepsilon\left(\frac{1}{2}(X(I+1, J)-X(I-1, J)+X(I, J+1)-X(I, J-1))\right.
\end{aligned}
$$

- To remove doublers replace:

$X(I+1, J)-X(I-1, J) \Rightarrow X(I+1, J)-X(I-1, J)-r(X(I+1, J)+X(I-1, J)-2 X(I, J))$ $X(I, J+1)-X(I, J-1) \Rightarrow X(I, J+1)-X(I, J-1)-r(X(I, J+1)+X(I, J-1)-2 X(I, J))$

Supersymmetric QCA

- Quantize by path integral
$K(X(N, \cdot), \theta(N, \cdot), \tilde{\theta}(N, \cdot) N ; X(0, \cdot), \theta(0, \cdot), \tilde{\theta}(0, \cdot))=$

$$
\prod_{I, J=1,0}^{N-1, M} \int d X(I, J) d \theta(I, J) d \tilde{\theta}(I, J) e^{i S_{r}\{X, \theta, \tilde{\theta}\}}
$$

- Related to string bit models of Thorn and Bergman (1996)

Relation to String Models

- Continuum limit

$$
S=\int d^{2} \sigma\left(\partial_{\alpha} X \partial^{\alpha} X-i \bar{\theta} \rho \rho^{\alpha} \partial_{\alpha} \theta\right)
$$

$2+1$ dimensional IIB superstring in lightcone gauge

- For Heterotic models 2D chiral fermions
- Use domain wall fermions to discretize

$$
X(I, J, K) \rightarrow\langle J| X(I) \mid K>\rightarrow(X(t))_{J K}
$$

- M-atrix theory of Banks, Fischler,Shenker and Susskind (1997)

Spin Cellular Automata

- Spin valued cell contents $S_{a}[I, J] \quad a=x, y, z$
- Spin update equation
$S_{a}(I+1, J)=\varepsilon_{a b c} S_{b}(I, J) B_{c}+\varepsilon_{a b c} S_{b}(I, J) S_{c}(I, J-1)++\varepsilon_{a b c} S_{b}(t, J) S_{c}(t, J+1)+S_{a}(I-1, J)$
- Continuum time limit Bloch equation

$$
a_{0} \rightarrow 0 \quad t=a_{0} I
$$

$\partial_{t} S_{a}(t, J)=\varepsilon_{a b c} S_{b}(t, J) B_{c}+\varepsilon_{a b c} S_{b}(t, J) S_{c}(t, J-1)+\varepsilon_{a b c} S_{b}(t, J) S_{c}(t, J+1)$

Spin Quantum Cellular Automata

- Quantize in Heisenberg picture

$$
\partial_{t} S_{a}(t, J)=i\left[H, S_{a}(t, J)\right]
$$

- Hamiltonian
$H=\sum_{J=1}^{M} S_{a}(t, J) S_{a}(t, J+1)+S_{a}(t, J) S_{a}(t, J-1)+S_{a}(t, J) B_{a}$
- Transition function

$$
K\left(S_{z}(T, \cdot) ; S_{z}(0, \cdot)\right)=<S_{z}(T, \cdot)\left|e^{-i T H}\right| S_{z}(0, \cdot)>
$$

Quantum Dot Cellular Automata

- 4 -site 2-electron quantum dot (Tougaw, Lent, Porod (1993)

Nanoscale lithography in semiconductors

- Quantum Dot Cellular Automata inverter

Quantum Dot Cellular Automata

- Effectively a two state system with Hamiltonian (Adachi and Isawa (1998), Cole and Lusth (2001))

$$
H_{e f f}=\sum_{K=1}^{M} B_{x} S_{K}^{x}+\sum_{K=1}^{M} \gamma S_{K}^{z} S_{K+1}^{z}
$$

- Ising model with transverse magnetic field. Effective exchange γ is negative , antiferromagnetic
- Described by Spin cellular automata

Relation to Quantum Computing

- Standard Spin model of quantum computation. Spin control Hamiltonian for 1 and 2 qubit operations.
- Sufficient to build up any unitary operation (Barenco et al, Di Vincenzo (1995))

$$
H_{q c}=\sum_{K=1}^{M}\left(\alpha_{x}^{K}(t) S_{K}^{x}+\beta_{y}^{K}(t) S_{K}^{y}\right)+\sum_{K, L=1}^{M} \gamma^{K L}(t) S_{K}^{z} S_{L}^{z}
$$

- Standard Fermionic model of quantum computation. (Ortiz, Gubernatis, Knill, Laflamme (2000)

$$
H_{q c}=\sum_{K=1}^{M}\left(\alpha_{K}(t) \theta_{K}+\beta_{K}(t) \theta_{K}^{\dagger}\right)+\sum_{K, L=1}^{M} \gamma_{K L}(t)\left(\theta_{K}^{\dagger} \theta_{L}+\theta_{L}^{\dagger} \theta_{K}\right)
$$

- Related by Jordan-Wigner transformation and described by spin and fermionic cellular automata.

Conclusions

- QCA can form a foundation for Quantum Computing but are poorly understood compared to Classical CA.
- Generalized to several types of Quantum Cellular Automata: Bosonic, Fermionic, Supersymmetric, Spin.
- Applications to Fundamental physics: String Bit Models.
- Application to Quantum Dot Cellular Automata and QC Control Hamiltonians.

