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Fault-Tolerant Quantum Computation
Big Question: is it possible to run an arbitrarily 

long quantum computation in the presence of 
errors?

First Crack: Shor (1996) - yes, provided that 
error rate is polylogarithmically small in circuit 
size; a physically unreasonable assumption!

State-of-the-Art: Kitaev (1997), Knill, Laflamme, 
and Zurek (1998), Preskill (1998), Aharonov 
and Ben-Or (1999) - yes, provided that error 
rate is smaller than some threshold value ηc; 
requires polylogarithmic complexity overhead



The Scoop on Aharonov and  Ben-Or 
Rigorous proofs of the “threshold theorem” for:
• local stochastic noise
• noise with exponentially decaying correlations
• general noise

(including computers with qubits arranged on 
the hypercubic lattice Zd, d=1,2,…, with gates 
applied to nearest neighbors only)

Key technique: hierarchical simulations using 
concatenated quantum error-correcting codes



How to Interpret the Proof of 
Aharonov and Ben-Or

• Local stochastic noise in the computer C = 
defects (disorder) on a suitably constructed 
graph ΓC

• Concatenation = “renormalization” of ΓC; start 
with a subthreshold system, iterate the 
renormalization map to push the system 
away from the threshold and toward the trivial 
(η → 0) behavior

• Threshold error rate ηc = nontrivial fixed point
of the renormalization map



Quantum Circuits, Interaction 
Graphs, and Error Locations

Given a quantum circuit C, we construct the 
interaction graph ΓC
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Concatenated Codes and 
Hierarchical Simulation

• Concatenated code: encode each qubit in a 
block of m qubits, encode each of those in a 
block of m qubits, …
r levels of concatenation → each qubit is 
encoded in mr qubits

• Hierarchical simulation: compute directly on 
encoded states; start with circuit C0, replace 
each gate with a fault-tolerant procedure 
(including error correction) to get C1=M(C0);
continue r times to get Cr=Mr(C0)



Quantum Computation Codes

Ingredients:
• quantum error-correcting code 1-to-m, can 

correct up to d errors
• spread s of the code: one error anywhere 

during a procedure will result in at most s
single-qubit errors at the end of the 
procedure; demand s≤d

• all operations (encoding, decoding, 
computation) are performed using gates from 
some universal set



Local Stochastic Noise and Bernoulli 
Site Percolation on ΓC

Local stochastic noise: each vertex of ΓC  is 
affected by an error with probability η and left 
intact with probability 1−η, independently of 
all other vertices; thus all vertices are 
statistically equivalent

Key feature:
• percolation threshold η∗: no infinite connected 

cluster a.s. for η < η∗, infinite connected 
cluster a.s. for η > η∗

• mean cluster size is finite for η < η∗, 



Estimating the Threshold: 
Renormalization Argument

• One level of concatenation: C0 →C1, Γ0 →Γ1

• Renormalize Γ1 by replacing all of the vertices 
corresponding to a procedure with a single 
vertex, draw edges appropriately - the 
resulting graph R(Γ1) should be isomorphic to 
Γ0 (from local self-similarity)

• New site percolation process on R(Γ1): a 
vertex is occupied if k+1 or more errors 
occurred in the corresponding procedure in 
Γ1, where k = [d/s].



Estimating the Threshold: 
Renormalization Argument (cont’d)

• The renormalized site occupation probability:

A = maximum number of locations in a procedure
• The effective error rate goes down, i.e.,

R(η) < η, for η satisfying the threshold condition
η < ηc = 2-A/k (expect it to be much smaller than the 
percolation threshold η*)

• Iterate r times to get                                        ;
for η < ηc we have 
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Estimating the Threshold: 
Renormalization Argument (cont’d)

What is the required number of concatenation 
levels?

• N = number of locations in the original circuit C0
(including identity gates)

• Given some ε > 0, we want the effective error 
rate per procedure in Cr to be smaller than ε /N, 
so that the total error is less than ε
The required number of concatenation levels is 
polylogarithmic in N : r = O(polylog(N/ε))



Exact Value of the Threshold
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Trade-Off between Complexity 
Overhead and Threshold Error Rate

• From general arguments in percolation theory 
[Chayes, Chayes, Fisher, and Spencer (1986)]:

• The rate at which the effective error rate goes 
down with concatenation in a subthreshold 
computer is controlled by λ=R’(ηc)

Key inequality:
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Trade-Off … (cont’d)

For r concatenation levels to suffice, we must have
λ = 2K/r, where K is some constant
Then

We get the trade-off inequality:
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Summary

• The idea behind the proof of the “threshold 
theorem” for fault-tolerant quantum computation 
can be seen as a renormalization argument for a 
suitably defined site percolation process

• In general, subthreshold quantum computers will 
be well into the subcritical phase of the percolation 
process

• There is a trade-off between the threshold error 
rate and the complexity overhead needed for the 
fault-tolerant circuit
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