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Fault-Tolerant Quantum Computation

Big Question: is it possible to run an arbitrarily
long quantum computation in the presence of

errors”?
First Crack: Shor (1996) - yes, provided that

error rate is polylogarithmically small in circuit
Size; a physically unreasonable assumption!

State-of-the-Art: Kitaev (1997), Knill, Laflamme,
and Zurek (1998), Preskill (1998), Aharonov
and Ben-Or (1999) - yes, provided that error
rate is smaller than some threshold value 1 ;
requires polylogarithmic complexity overhead




The Scoop on Aharonov and Ben-Or

Rigorous proofs of the “threshold theorem” for:

* local stochastic noise
* noise with exponentially decaying correlations

* general noise

(including computers with qubits arranged on
the hypercubic lattice Z¢4, d=1,2,..., with gates
applied to nearest neighbors only)

Key technique: hierarchical simulations using
concatenated quantum error-correcting codes




How to Interpret the Proof of
Aharonov and Ben-Or

» Local stochastic noise in the computer C =
defects (disorder) on a suitably constructed
graph I'-

« Concatenation = “renormalization” of I' ; start
with a subthreshold system, iterate the
renormalization map to push the system
away from the threshold and toward the trivial
(7 — 0) behavior

* Threshold error rate 7, = nontrivial fixed point
of the renormalization map



Quantum Circuits, Interaction
Graphs, and Error Locations

Given a quantum circuit C, we construct the
interaction graph I'-




Concatenated Codes and
Hierarchical Simulation

« Concatenated code: encode each qubitin a

b
b

v

ock of m qubits, encode each of those in a
ock of m qubits, ...

evels of concatenation — each qubit is

encoded Iin m” qubits
« Hierarchical simulation: compute directly on

encoded states; start with circuit C,, replace
each gate with a fault-tolerant procedure
(including error correction) to get C,=M(C,),
continue r times to get C,.=M"(C,)



Quantum Computation Codes

Ingredients:

e quantum error-correcting code 1-to-m, can
correct up to d errors

» spread s of the code: one error anywhere
during a procedure will result in at most s
single-qubit errors at the end of the
procedure; demand s<d

« all operations (encoding, decoding,
computation) are performed using gates from
some universal set




Local Stochastic Noise and Bernoulli
Site Percolationon I '

Local stochastic noise: each vertex of I is
affected by an error with probability 7 and left
intact with probability 1-7, independently of
all other vertices; thus all vertices are

statistically equivalent
Key feature:

 percolation threshold #,: no infinite connected
cluster a.s. for n < n,, infinite connected
cluster a.s. for n> n,

* mean cluster size is finite for n< n,,




Estimating the Threshold:
Renormalization Argument

* One level of concatenation: C, ->C,, I’y -}

* Renormalize T, by replacing all of the vertices
corresponding to a procedure with a single
vertex, draw edges appropriately - the
resulting graph R(I",) should be isomorphic to
[, (from local self-similarity)

* New site percolation process on R(I';): a
vertex is occupied if £+1 or more errors
occurred in the corresponding procedure in
[',, where k= [d/s].



Estimating the Threshold:
Renormalization Argument (cont'd)

* The renormalized site occupation probability:

1 (4
R(m< ) (1}71(1—77)“ <24p*

[=k+1
A = maximum number of locations in a procedure

* The effective error rate goes down, i.e.,
R(n) < n, for n satisfying the threshold condition
n < n, =24k (expect it to be much smaller than the
percolation threshold 7.)
- Iterate r times to get R" () <27 (2" )" .
for n<n,wehave R" (7)< R '(n)<...<R(n)<n



Estimating the Threshold:
Renormalization Argument (cont'd)

What is the required number of concatenation
levels?

« N = number of locations in the original circuit C,
(including identity gates)

« Given some &> 0, we want the effective error
rate per procedure in C. to be smaller than /N,
so that the total error is less than ¢
The required humber of concatenation levels is
polylogarithmic in N . r = O(polylog(N/¢))




Exact Value of the Threshold
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Trade-Off between Complexity
Overhead and Threshold Error Rate

* From general arguments in percolation theory
[Chayes, Chayes, Fisher, and Spencer (1986)]:

RODA=ROD) _ o < \/ 4
n(l-n) n(l—n)
« The rate at which the effective error rate goes

down with concatenation in a subthreshold
computer is controlled by A=R’(7.)

A
n.(1-n.)

Key inequality: 1< A < \/



Trade-Off ... (cont'd)

For » concatenation levels to suffice, we must have
A = 2K where K is some constant

Then
2K/r <\/ A
n.(1-n.)

We get the trade-off inequallity:
—2K/r
n.(1-n.)< A2




Summary

* The idea behind the proof of the “threshold
theorem” for fault-tolerant quantum computation
can be seen as a renormalization argument for a
suitably defined site percolation process

* |In general, subthreshold quantum computers will
be well into the subcritical phase of the percolation
process

 There is a trade-off between the threshold error

rate and the complexity overhead needed for the
fault-tolerant circuit
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