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Claude Shannon, 1948

The fundamental problem of communication is
that of reproducing at one point either exactly
or approximately a message selected at another
point.

Claude E. Shannon, “A Mathematical Theory of Communication,”

The Bell System Technical Journal



John Pierce, 1973

I think that I have never met a physicist who
understood information theory. I wish that
physicists would stop talking about reformu-
lating information theory and would give us a
general expression for the capacity of a chan-
nel with quantum effects taken into account
rather than a number of special cases.

John R. Pierce, “The early days of information theory,”

IEEE Trans. Info. Theory.



Shannon’s theorems
Definition of Entropy:

If a signal takes the value : with probability p;,
its entropy is

H(X) =) _ —p;logp;
;

Source Coding
A source X can be compressed to length H(X).

Channel Coding
A noisy channel N has capacity

max I(X; N(X)),
(X) ( (X))
where

I(X;Y) H(Y) — H(Y|X)

H(X)+ H(Y) - H(X,Y).
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Entropy of a quantum state

Classical Case

Given n photons, each in state |]) or | +), with
probability % Any two of these states are com-
pletely distinguishable. The entropy is n bits.

Quantum Case

Given n photons, each in state |]) or | ), with
probability % If the angle between the polar-
izations is small, any two of these states are
barely distinguishable. Intuitively, the entropy
should be much less than n bits.



By thermodynamic arguments (looking at heat,
work, etc), von Neumann deduced that the en-
tropy of a quantum system with density matrix
p IS

Hyn(p) = —Tr(plogp)

Recall p was positive semidefinite, so plogp is
defined.

If p is diagonal with eigenvalues )\;, then plogp
iIs diagonal with eigenvalues \;log A;.

Thus, Hyn(p) = Hghan(X;) so the von Neu-
mann entropy is the Shannon entropy of the
eigenvalues.

(Recall Tro=1=>;X;.)

You can ask: is this the right definition for
information theory?



Accessible Information

Suppose that we have a source that outputs
signal p; with probability p,. How much Shan-
non information can we extract about the se-
quence of ¢'s?

Let X be the random variable telling which
signal p; was sent.

Answer (from classical information theory):
Optimize over all possible measurements M on
the signals (with outcomes My, M5, ...).

Tacc = maxI(X, M)
M



Example 1: Two states in ensemble
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We see that Iacc < Hyn(p)-
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A plot of H,N and Iacc for the ensemble of two
pure quantum states with equal probabilities
that differ by an angle of 6, 0 <0 < =n/2.

The top curve is the von Neumann entropy
Hyn = H(5+ %Y%) and the bottom the acces-
sible information Iacc = 1 — H(5 + 95%).




Example 2:
Three signal states differing by 60°.

o I ™ (prob 1)

_ (1 _ [ —1/2 .
a=(8) = (B3) w=( )

Optimal Measurement:
POVM corresponding to vectors w; L v;.
E;, = %win

1

wit '/ \ (prob 1)

Each outcome rules out one state, leaves other
two equally likely

Iacc = |Og 3 —1 = .585 bits
Hyny =1

Again, we have Iacc < Hyy-
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Holevo Bound yx

Suppose we have a source emitting p; with
probability p;.

X = HVN(Z Pip;) — ZpiHvN (pi)

Theorem (Holevo, 1973)
Tacc < x

If all the p; commute, the situation is essen-
tially classical, and we get Iacc = x. Otherwise

Tace < x.
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How can we use an ensemble of quantum states
to send classical information?

Once we have chosen the measurement, we
have essentially determined a classical channel.
Shannon’s classical coding theorem says that
Alice can find a codebook using states from
the ensemble such that she can asymptotically
send Bob Ijcc bits per state.
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Example 2, Continued:
Suppose we use just two of the three signal
states differing by 60°.

v;: I i (prob 3)

(1 [ —1/2
=(2) (3

Optimal Measurement for two vectors:

Tacc = 1 — H(& +¥2) = .6454 bits

This is larger than the accessible information
for the ensemble containing all three states
with equal probability, showing that the acces-
sible information is not concave.
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Let us go back to the situation where Alice is
sending to Bob the states of the ensemble in
Example 2 with equal probabilities.

Can Alice use this non-concavity of accessible
information to let Bob extract more informa-
tion from her ensemble?

She can give him hints. For the three-vector
ensemble above, Alice can first narrow Bob’s
possibilities down to two vectors, and then he
can use the optimal measurement to distin-
guish between these. This lets him extract
more information from the reduced state.
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This situation does not occur for classical prob-
ability distributions. Suppose Alice has three
labels, each corresponding to a probability dis-
tribution on Bob’'s classically correlated infor-
mation. If Alice sends Bob more information
about the label, he can now necessarily extract
less information from the reduced state.

Proof: Let the A be Alice's label, and B be
Bob's state. Let C be the extra information
(clue) sent from Alice to Bob.

I(A; B) I(C,A; B)

1(C; B) + I(A; B|C) > I(A: B|C)
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The accessible information for probability dis-
tributions over the three states at 120° angles
IS maximized when just two of them are used.

Is the most information we can send (channel
capacity) using the three states of example 27

Answer: No!

We can use tensor products of the states as
codewords.
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How to do better: use three codewords vqvq,
VU2V, V3V3.

The optimal measurement for these three states

gives 1.369 bits,
which is larger than 2 -0.6545 = 1.309 bits.

What about still longer codewords?
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T heorem (Holevo, Schumacher-Westmoreland)

The classical-information capacity obtainable
using codewords composed of signal states p;,
where p; has marginal probability p;, is

x({pi}: {p:i}) = HVN(Z Pip;) — ZpiHvN(Pi)

We will give sketch of the proof of this formula
in the special case of pure states p;.

Does this give the capacity of a quantum chan-
nel N/ 7?

Possible capacity formula:

Maximize x({N(p;)}; {p;}) over all output states
N (p) of the channel.
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Schumacher Compression
(Quantum noiseless coding theorem)

Given a memoryless source producing pure states
v1, v, v3, ... With probabilities p1, po, p3, - ...

Want to send them to a receiver using as few
qubits as possible.

Theorem (Schumacher, 1994):
You can send n symbols using

nHyn(p) + o(n)

qubits, with fidelity approaching 1 as n — oo,
where p = >, pivivg is the density matrix of the
source.
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Typical Sequences

These are used extensively in classical coding
theory.

Suppose that we have a source emitting sym-
bol s; with probability p;

Then a typical sequence has close to the right
number (np;) of each symbol s;.

Here, ‘“close to the right number’” can be de-
fined as being anywhere within ¢y/n and en of
it, depending on which definition is appropriate
for the context.

With high probability, a sequence emitted by a
source is typical.
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Proof of Classical Source Coding The-
orem

Assume we have a source X emitting symbols
s1, So, ... with probabilities p1, po, .... Con-
sider a sequence of n symbols from this source.

Theorem: Almost all the time, the source emits
a typical sequence. There are 2nHshan(X)+o(n)
typical sequences.
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Typical Subspaces

Have states vy, vp, ..., v with probabilities pq,
p2, . .y pk

Look at the eigenvectors of the density matrix
p.

Assign to each of eigenvector a probability equal
to the corresponding eigenvalue.

Let the eigenvectors be vy, vp, ..., vg with
probabilities p1, p2, ..., Dg-

Any two eigenvectors are orthogonal, so these
eigenvectors behave classically.

Suppose we have n of these states.
The typical subspace S is the subspace gener-
ated by typical sequences of eigenvectors.

S has dimension 2Hvn(p)nto(n)
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How to do Schumacher compression.

Have states vy, vo, ..., v with probabilities pq,
P2, -.., Pr- 1 hese give density matrix p. Let S
be the typical subspace of p®m.

To compress:

Measure whether output of source lies in S.
If yes, get the state projected onto S. Can
send using logdim S =~ nH,N(p) qubits.

If no, this is a low probability event; send any-
thing.
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Why does this work?

Recall that the density matrix determines the
outcomes of any experiment.

Using the eigenvectors vy, vy, ... vg With prob-
abilities p1, po, ... pg gives same probability of
the outcomes as using states vy, vo, ... v With

probabilities p1, p2, ... Pg-

Now, we know from the classical theory of typ-
ical sequences that the probability of a no out-
come is very small with v; and p;. Thus, the
probability of a no outcome is also very small
with v; and p;.

This implies that the original state is almost
surely very close to the typical subspace S.
Sending the state projected into S gives the
right outcomes with high fidelity.
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Theorem (pure state capacity)

We are given pure quantum states vq, vo, ...,
v, for use as signals. Let p = ZipivivT. There

i
are codes such that we send state v; with prob-
ability p; having asymptotic capacity x = Hyn(p)

How do we prove this?
e random coding
e typical subspace

e square root measurement
also called “pretty good measurement”
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Square root measurement

We have N vectors u; € S, which occur with
equal probability +. Given one of these, we
want to distinguish between them.

Let ¢ = X, @)

Measure using the POVM with elements
E, = ¢ 1/25 Jr(b 1/2
This is a POVM since
ZE_Z¢ 1/2 ~ ch 1/2 _ g

The probablllty of error if the state u; is sent
is 1 —ale1/2q,
The overall probability of error is

1—%%3&}&1/2&

This can be shown to be small for N <dim§S
and u; a random code.
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Random Coding

We choose codewords

U; = Vi Q U, ...V,
where v; is picked with probability p; for each
signal.

Then u; will be close to the typical subspace
of p®n.

To decode, we

e project into the typical subspace,

e apply the square root measurement.
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We now discuss communication over quantum
channels.

Formula for arbitrary memoryless quantum chan-
nel N.

N must be trace-preserving completely posi-
tive operator.

p— N(p) — ZAz-pAl-L

where

S Ala; =1
i
Positive: takes positive semi-definite matrices

to positive semi-definite matrices.

Completely positive: is positive even when ten-
sored with the identity channel.
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Unentangled Inputs, Separate Measure-
ments

Noisy
Channel
P 1 - El
p2 > E2
p3 > E3
P 4 » E 4
Message Receive(
° Message
o
o
pn = En

Maximize over probability distributions on in-
puts to the channel p;, p;:

Tacc({N (pi) }; {pi})
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Unentangled Inputs, Adaptive Separate

Measurements
Noisy
Channel
Py - § B B
o, - E, E, E,
P3 - & By B
Py > E4 EA E4 Receive
Message Message
Ph > En . En . En
Classical Logic
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Unentangled Inputs, Joint Measurements

Joint

_ M easurement
Noisy
Channdl
pl >
p2 =
p3 =
p4 =
Message Receivex
° M essage
o
o
pn >

Maximize over probability distributions on in-
puts to the channel p;, p;:

X{UN(pi)}i {p:i})
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Entangled Inputs, Joint Measurements

Entangled Joint
I nput Noisy M easurement
Channel
Message | Receivex
® M essage
[
[

Maximize over probability distributions on in-
puts to the channel p;, p; where p; is in the
tensor product space of n inputs:

lim x({N®"(p,)}: {p;})

n—oo
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Open Question
Is channel capacity additive?
Is max x(N1®N>5) = max x(N71)+max x(N>)7?

If it is, then x gives the classical-information
capacity of a quantum channel.
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Progress on additivity conjecture.

Using ideas of Audenaert, Braunstein, Mat-
sumoto, Shimono, and Winter, I can show that
the following four questions are equivalent:

e Additivity of the minimum entropy output
of a quantum channel.

e Additivity of the Cp o, capacity of a quan-
tum channel.

e Additivity of the entanglement of forma-
tion of a quantum state.

e Strong superadditivity of entanglement of
formation of a quantum state.
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First idea: Stinespring representation

A quantum channel
can be represented as a unitary transformation

followed by a partial trace

Trg: HAQHB — Hy
Then if U(p) = o, we get
C1,00(N) = maxH(N (p)) — Er(0)

Epr(o) = pmr_\) ZPiTrB | $i)( @l
Zipir%')(z bil=0
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Second idea: linear programming duality

Let
Y= min > pHWN(|v){v])

Pi>| vi)
> i Pil vi)vi|=p
This is the second term in the Cj o, Capacity
formula. By linear programming duality, we

also have

Y = mTaxTer:
7 such that (v|7|v) < HWN(|v){v|)) V]|v)
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What things might increase the capacity of a
quantum channel which don’'t affect the ca-
pacity of a classical channel?

a) Entanglement between different channel uses?
Unknown.

b) A classical feedback channel from the re-
ceiver to the sender? Not without a).

c) Prior entanglement shared between the sender
and the receiver. This helps!
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The phenomenon called superdense coding lets
you send two Dbits per qubit over a noiseless
quantum channel if the sender and receiver
share entanglement.

Two classical
bits

Receiver

One qubit

Two classical
bits

EPR Pair
of qubits

By Holevo’'s theorem, the bound without prior
shared entanglement is one bit per qubit.
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Teleportation is the converse to superdense
coding. This lets a sender communicate a
quantum bit to a receiver using two classical
bits if the sender and receiver share entangle-
ment.

state

Sender
Two classical

» bits

Qubitin
unknown
state

EPR Pair
of qubits

This seems paradoxical, since there are an in-
finite number of quantum states a qubit can
be in. But only one bit of information is ex-
tractable from a qubit, so it's not really a para-
dox.
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Suppose that we have a quantum channel N.
From superdense coding, if N is a noiseless
quantum channel, the sender could communi-
cate twice as much classical information to a
receiver if they share EPR pairs than if they
don’'t. How does this generalize to noisy chan-
nels? We call this quantity the entanglement-
assisted capacity and denote it by Cpg.
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Formula for entanglement-assisted
capacity

Theorem (Bennett, Shor, Smolin, Thapliyal)

Cp = qu)axH(TrB (NQRI)D)+ H(Trg (N QI)P)
—H(N QI)P)

The sender is A; the receiver B; & is a pure
state on the tensor product of the input space
of the channel and a quantum space that the
sender keeps. When the channel is classical,
this formula turns into the entropy of the input
plus the entropy of the output less the entropy
of the joint system.
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Generalization

Suppose that the sender and the receiver have
a limited amount of entanglement (E ebits)
they share. How much can capacity can they
obtain from a quantum channel?

If the sender is not allowed to use entangle-
ment between different channel uses, the an-
SWer is:

max H(p;) + HN(p)) — HI(N @ I)Py,;)
piiH(p;)<E

Here H means average over the entropy, and p;
means average over the state; ®,, is the pure
entangled state (shared between sender and
receiver) whose partial traces are p;. This for-
mula interpolates between the Holevo-Schumacher-
Westmoreland capacity and the entanglement-
assisted capacity.
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Quantum Information Capacity

We can also look at how much quantum infor-
mation a channel can transmit. To say we have
transmitted d bits of quantum information re-
liably, the sender needs to be able to take any
state he is given in a 2%-dimensional Hilbert
space, encode it in quantum states, and send
it over the quantum channel to the receiver,
who then must decode it with high fidelity.

A classical feedback channel from the receiver
to the sender, or a classical two-way side chan-
nel, will increase the quantum channel capac-

ity.

This gives at least three capacities,

Q1 < Qrp < Q2
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Coherent Information

Ic(N) = max HynN (p)) = HiIN(INV @ T)P))

where ®, is a purification of p, so Tro®, = p.

QL) = lim_ ~Io(NE™)
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