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Theoretical Motivation:

• Current-biased Josephson junctions are 
seemingly macroscopic objects obeying 
quantum mechanics.

• Fabrication and interactions allow for 
directed design of scalable circuits.

• Electrical properties are easily measured.



Experimental Motivation: 

• Coherence: Martinis et al., Yu et al. (2002) 
demonstrated Rabi oscillations in single qubit 
dynamics.

• Coupling: Berkley et al. (2003) demonstrated 
tunable coupling through spectroscopy.

• Experimental control of coherent two-qubit 
dynamics of current-biased  junctions should be 
possible—quantum logic gate design is necessary.



Current-Biased Josephson Junction
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Capacitively Coupled Josephson 
Junctions



•Energy states are 
unentangled away from 
avoided level crossings.

•Entanglement is 
maximized at the 
avoided level crossings.
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Gate Design

• Control: Interactions controllable (tuned on and 
off) through bias currents for small coupling.  

(e.g. ζ = 0.01)

• Dynamical conditions: Characteristic ramp time 
must satisfy

• Leakage: Both tunneling and evolution into the 
auxiliary states |02〉 and |20〉 must be taken into 
account.
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Gate Operation

• Start from detuned 
junctions. 

• Ramp bias currents, in 
time τR, from εA to εB. 

• Wait for time τI.

• Detune the junctions.
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Phase Gate Operation
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This avoided level crossing is isolated, 
so the other two-qubit states |00〉, |01〉
and |10〉 are unaffected.
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Swap-Like Operation
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Energy Spectrum 01.0,4 == ζsN
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Fidelity and Leakage

10.70.0060.972Swap

14.850.0030.996Phase

Time(ns)LeakageFidelity

ω0/2π= 6 GHz

Fidelity is the probability that the gate operation is 
successful.

Leakage is the probability that the gate drives 
transitions out of the two-qubit basis.



Experimental Demonstration

• The nanosecond pulse times can be generated with 
conventional electronics.

• Energy levels can be determined 
spectroscopically.

• Coherence requires characteristic (“RC”) 
dissipation times ≥ 1 µs:

• C=6pF ⇒ R ≥ 160 kΩ at GHz frequencies.

• BUT, bias lines typically have R ≈ 50 Ω!



Achieving Coherence:
Impedance Transformers

Resistor (Gubrud 2001) LC isolator (Berkley 2002)

Junction (inductor) (Martinis 2002) Inductor (tunable T1) (Martinis 2003)

Flux Detector



Properties and Optimizations

• Fixed coupling requires undesirably large 
detuning of junctions.

• Non-identical qubit energy levels.
• Possibly large tunneling rates.

• Swap gate uses delicate energy level structure.
• Sensitive to bias current noise.
• Difficult with non-identical junctions.

• Gate times are close to time scales for high-
fidelity single-qubit operations.



Three-Junction Scheme

•Junction B is used  to 
entangle junctions A1 and A2. 

•Before and after the 
operation, junction B is in its 
ground state.

Cf. Blais, Maassen van den Brink, Zagoskin PRL (2003)



Conclusion
• Designed and numerically simulated two 

fundamental quantum logic operations, each 
with fidelity F>0.97. 

• Explored multiple junction schemes for 
controlled coupling.

• Experimental demonstration of these logic 
gates is possible.

Strauchet al., quant-ph/0303002


