Operator-Schmidt Decompositions And the Fourier Transform:

Jon E. Tyson
Research Assistant
Physics Department, Harvard University jonetyson@post.harvard.edu

Simons Foundation Conference on Quantum and Reversible Computation
May 31, 2003

The following transparancies (except for this one) are just as given in my talk to facilitate web-surfers listening to the talk audio. My paper of the same title, will appear on the Archive within one day from the time these transparancies are posted. The construction of a two-qutrit unitary with Schmidt number 4 has since been carried out. (It was trivial, but I left it as an open problem.)

Note however, that if I were giving this talk again today, I would include material from the following paper, (as is explained in the arXiv version):
W. Dür, G. Vidal, J. I. Cirac, "Optimal conversion of nonlocal unitary operations," Phys. Rev. Lett. 89 (2002), 057901.

Their paper connects the study of operator-Schmidt numbers with probabilistic interconversion of unitary operators aided by (S)LOCC. Furthermore, they first discovered the fact that two-qubit unitaries have Schmidt numbers 1,2 , or 4 . (I attributed this to Nielsen et. al, who rediscovered this subsequently, but didn't explain the significance of this fact in terms of (S)LOCC.)
1.Motivation of the operator-Schmidt decomposition: Nielsen's coherent communication complexity bound (and a slight generalization).
Nielsen et. al, "Quantum Dynamics as a Physical Resource,"
(To appear in Phys Rev A; quant-ph/0208077) \& other work of Nielsen
2. Apply (1) to show the communication complexity of the quantum Fourier transform is maximal, generalizing previous special cases of Nielsen and Nielsen et al. (See quant-ph/0210100)
3. Operator-Schmidt decompositions computed using the Fourier transform:
A. Application to operator-Schmidt number of unitaries. B. Construction of maximally-entangled unitaries on $\mathbb{C}^{n} \otimes \mathbb{C}^{n}$.
4. Remarks on the "magic basis" of Hill and Wootters.
(Time permitting)

Communication Complexity

alice, bob, eve.jpg

Strength measures $S(V)$ of linear operations V :

Desirable properties:
Nonnegativity: $S(V) \geq 0$,
Chaining: $\quad S(V W) \leq S(V)+S(W), \quad \mathcal{H} \xrightarrow{W} \mathcal{K} \xrightarrow{V} \mathcal{L}$
Locality: $\quad S\left(U_{1} \otimes U_{2} \otimes \ldots \otimes U_{M}\right)=0, \quad\left(U_{\alpha}\right.$ local unitaries $)$
Nielsen et. al, "Quantum Dynamics as a Physical Resource,"
(To appear in Phys Rev A; quant-ph/0208077)

Ancilla Reduction

alice, bob, charlie.jpg

$$
\begin{gathered}
U|\psi\rangle_{\mathcal{A} \otimes \mathcal{B} \otimes \mathcal{C}}=\left\langle 0,0,\left.0\right|_{\mathcal{A}_{1} \mathcal{B}_{1} \mathcal{C}_{1}} \times V \times \mid \psi\right\rangle_{\mathcal{A} \otimes \mathcal{B} \otimes \mathcal{C}}|0,0,0\rangle_{\mathcal{A}_{0} \mathcal{B}_{0} \mathcal{C}_{0}} \\
\Longrightarrow S(U) \leq S(V)
\end{gathered}
$$

Nielsen et al also consider other properties...

Complexity Bounds using Strength Measures

If V is the implementation of U using ancilla, and V is decomposed into gates and local unitaries

$$
V=\left(C_{0} \otimes D_{0}\right) G_{1}\left(C_{1} \otimes D_{1}\right) G_{2} \ldots G_{n}\left(C_{n} \otimes D_{n}\right)
$$

then

$$
\begin{array}{r}
S(U) \leq S(V) \leq \sum_{k=1}^{n} S\left(G_{k}\right) \\
\quad \text { (Nielsen et al, 2002) }
\end{array}
$$

Strength from the Minimal

Definition 1 Let $W: \mathcal{A} \otimes \mathcal{B} \otimes \mathcal{C} \rightarrow \mathcal{A}^{\prime} \otimes \mathcal{B}^{\prime} \otimes \mathcal{C}^{\prime}$ be nonzero. An expression

$$
W=\sum_{j=1}^{\ell} A_{j} \otimes B_{j} \otimes C_{j}, \quad A_{j}: \mathcal{A} \rightarrow \mathcal{A}^{\prime}, \text { ect } .
$$

is called a minimal decomposition if there is no other such expression with a fewer than ℓ terms. The smallest such ℓ is called the minimal length of W, and denoted $\mathrm{ML}(W)$. The minimal strength is

$$
S_{\min }(W)=\log _{2} \mathrm{ML}(W) .
$$

Properties of Minimal Strength: Chaining

 Suppose V and W have minimal depositions$$
\begin{gathered}
V=A_{1} \otimes B_{1}+A_{2} \otimes B_{2} \\
W=C_{1} \otimes D_{1}+C_{2} \otimes D_{2} \\
\text { where } \\
\mathcal{H} \otimes \mathcal{K} \stackrel{V}{\longrightarrow} \mathcal{L} \otimes \mathcal{M} \xrightarrow{W} \mathcal{Q} \otimes \mathcal{R} \\
\text { Then } \\
V W=A_{1} C_{1} \otimes B_{1} D_{1}+A_{1} C_{2} \otimes B_{1} D_{2} \\
+A_{2} C_{1} \otimes B_{2} D_{1}+A_{2} C_{2} \otimes B_{2} D_{2} . \\
\operatorname{ML}(V W) \leq \operatorname{ML}(V) \operatorname{ML}(W) \\
\text { Taking logs, } \\
S_{\min (V W) \leq S_{\min (V)+S_{\min (W)}}}
\end{gathered}
$$

Two tensor products

Let

$$
\begin{aligned}
W: \mathcal{A} & \rightarrow \mathcal{A}^{\prime} \\
X: \mathcal{B} & \rightarrow \mathcal{B}^{\prime}
\end{aligned}
$$

$$
\begin{gathered}
W \otimes X: \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{A}^{\prime} \otimes \mathcal{B}^{\prime} \\
\phi \otimes \psi \mapsto(W \phi) \otimes(X \psi)
\end{gathered}
$$

$$
\begin{array}{r}
W \tilde{\otimes} X \in B\left(\mathcal{A} \rightarrow \mathcal{A}^{\prime}\right) \otimes B\left(\mathcal{B} \rightarrow \mathcal{B}^{\prime}\right) \\
\left\langle W_{1}, W_{2}\right\rangle_{B\left(\mathcal{H} \rightarrow \mathcal{H}^{\prime}\right)}=\operatorname{Tr} W_{1}^{\dagger} W_{2}
\end{array}
$$

Since

$$
\begin{aligned}
& \left\langle\sum_{i} A_{i} \tilde{\otimes} B_{i}, \sum_{j} C_{j} \tilde{\otimes} D_{j}\right\rangle_{B\left(\mathcal{A} \rightarrow \mathcal{A}^{\prime}\right) \otimes B\left(\mathcal{B} \rightarrow \mathcal{B}^{\prime}\right)} \\
& \quad=\sum_{i, j}\left\langle A_{i}, C_{j}\right\rangle_{B\left(\mathcal{A} \rightarrow \mathcal{A}^{\prime}\right)}\left\langle B_{i}, D_{j}\right\rangle_{B\left(\mathcal{B} \rightarrow \mathcal{B}^{\prime}\right)} \\
& \quad=\left\langle\sum_{i} A_{i} \otimes B_{i}, \sum_{j} C_{j} \otimes D_{j}\right\rangle_{B\left(\mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{A}^{\prime} \otimes \mathcal{B}^{\prime}\right)}
\end{aligned}
$$

There exists a natural isomorphism

$$
\begin{aligned}
\Omega: B\left(\mathcal{A} \rightarrow \mathcal{A}^{\prime}\right) \otimes B\left(\mathcal{B} \rightarrow \mathcal{B}^{\prime}\right) & \rightarrow B\left(\mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{A}^{\prime} \otimes \mathcal{B}^{\prime}\right) \\
C \tilde{\otimes} D & \rightarrow C \otimes D \\
\tilde{\otimes} & \rightarrow \otimes
\end{aligned}
$$

Properties of Minimal Strength: General Reduction

$$
\begin{gathered}
V \stackrel{\min }{=} A_{1} \otimes B_{1}+A_{2} \otimes B_{2}+\ldots \\
\left(\mathbb{P}_{1} \otimes \mathbb{P}_{2}\right) V=\mathbb{P}_{1}\left(A_{1}\right) \otimes \mathbb{P}_{2}\left(B_{1}\right)+\mathbb{P}_{1}\left(A_{2}\right) \otimes \mathbb{P}_{2}\left(B_{2}\right)+\ldots
\end{gathered}
$$

$S_{\min }$ satisfies the General reduction property:

$$
\begin{aligned}
& S_{\min }\left(\left(\mathbb{P}_{1} \otimes \ldots \otimes \mathbb{P}_{M}\right) V\right) \leq S_{\min }(V) \\
& \text { for } V: \mathcal{H}_{1} \otimes \ldots \otimes \mathcal{H}_{M} \rightarrow \mathcal{H}_{1}^{\prime} \otimes \ldots \otimes \mathcal{H}_{M}^{\prime} \\
& \text { and } \mathbb{P}_{k}: B\left(\mathcal{H}_{k} \rightarrow \mathcal{H}_{k}^{\prime}\right) \rightarrow B\left(\mathcal{H}_{k} \rightarrow \mathcal{H}_{k}^{\prime}\right)
\end{aligned}
$$

General Reduction \Longrightarrow Ancilla Reduction

Suppose U is implemented using ancilla:

$$
U|\psi\rangle_{\mathcal{A} \otimes \mathcal{B}}=\left\langle\left. 0\right|_{\mathcal{A}_{1} \mathcal{B}_{1}} \times V \times \mid \psi\right\rangle_{\mathcal{A} \otimes \mathcal{B}}|0\rangle_{\mathcal{A}_{0} \mathcal{B}_{0}}
$$

Define

$$
\mathbb{P}_{A}: B\left(\mathcal{A} \otimes \mathcal{A}_{0} \rightarrow \mathcal{A} \otimes \mathcal{A}_{1}\right) \rightarrow B(\mathcal{A} \rightarrow \mathcal{A})
$$

by

$$
\mathbb{P}_{A}\left(W_{A}\right)|\psi\rangle_{\mathcal{A}}=\left\langle\left. 0\right|_{\mathcal{A}_{1}} W_{A} \times \mid \psi\right\rangle_{\mathcal{A}}|0\rangle_{\mathcal{A}_{0}}
$$

Then

$$
U=\left(\mathbb{P}_{A} \otimes \mathbb{P}_{B} \otimes \mathbb{P}_{C}\right) V
$$

and ancilla reduction follows:

$$
S_{\min }(U) \leq S_{\min }(V)
$$

We have proved the minimal strength satisfies the desired properties, but

How can one compute it?

The Generalized operator-Schmidt decomposition

$$
\begin{gathered}
W: \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{A}^{\prime} \otimes \mathcal{B}^{\prime} \\
W=\sum_{i=1}^{\operatorname{Sch}(W)} \lambda_{i} A_{i} \otimes B_{i}, \quad \lambda_{i}>0
\end{gathered}
$$

where $A_{i}: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ and $B_{i}: \mathcal{B} \rightarrow \mathcal{B}^{\prime}$ are orthonormal:

$$
\operatorname{Tr} A_{i}^{\dagger} A_{j}=\operatorname{Tr} B_{i}^{\dagger} B_{j}=\delta_{i j} .
$$

and define the Generalized Hartley Strength

$$
S_{\text {har }}(W) \equiv \log _{2} \operatorname{Sch}(W)
$$

Operator-Schmidt decomposition

 is just (vector)-Schmidt decomposition$$
\begin{aligned}
W & \in B\left(\mathcal{H} \otimes \mathcal{K} \rightarrow \mathcal{H}^{\prime} \otimes \mathcal{K}^{\prime}\right) \\
\Omega^{\dagger} W & \in B\left(\mathcal{H} \rightarrow \mathcal{H}^{\prime}\right) \otimes B\left(\mathcal{K} \rightarrow \mathcal{K}^{\prime}\right) \\
\Omega^{\dagger} W & =\sum \lambda_{i} A_{i} \tilde{\otimes} B_{i} \\
W & =\sum \lambda_{i} A_{i} \otimes B_{i}
\end{aligned}
$$

$U, W \in B\left(\mathcal{H} \otimes \mathcal{K} \rightarrow \mathcal{H}^{\prime} \otimes \mathcal{K}^{\prime}\right)$ have the same Schmidt coefficients \Longleftrightarrow

$$
U=(\mathbb{A} \otimes \mathbb{B}) V \text { for unitary "operator-operators" }
$$

$\mathbb{A}: B\left(\mathcal{H} \rightarrow \mathcal{H}^{\prime}\right) \rightarrow B\left(\mathcal{H} \rightarrow \mathcal{H}^{\prime}\right), B: B\left(\mathcal{K} \rightarrow \mathcal{K}^{\prime}\right) \rightarrow B\left(\mathcal{K} \rightarrow \mathcal{K}^{\prime}\right)$
One would like invariants which determine much more:

Open Problem (except for qubits):
When does $U=(C \otimes D) V(E \otimes F)$ for local unitaries C, D, E, F ??

Theorem (Nielsen): $S_{\text {har }}(U)=S_{\text {min }}(U)$ for bipartite U.
Proof. $U: \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{A}^{\prime} \otimes \mathcal{B}^{\prime}$

$$
U=\sum_{k=1}^{\operatorname{Sch}(U)} \lambda_{k} C_{k} \otimes D_{k} \Longrightarrow S_{\min }(U) \leq S_{\mathrm{har}}(U) .
$$

Note that

$$
\operatorname{Span}\left(\left\{D_{k}\right\}\right)=\left\{\left\langle\left. E\right|_{B(\mathcal{H})} \mid U\right\rangle_{B(\mathcal{H} \otimes \mathcal{K})} \mid E: \mathcal{H} \rightarrow \mathcal{H}^{\prime}\right\}
$$

Taking a minimal decomposition

$$
U=\sum_{k=1}^{\operatorname{ML}(U)} G_{k} \otimes H_{k}
$$

then

$$
\begin{aligned}
&\left\{\left\langle\left. E\right|_{B\left(\mathcal{H} \rightarrow \mathcal{H}^{\prime}\right)} \mid U\right\rangle_{B\left(\mathcal{H} \otimes \mathcal{K} \rightarrow \mathcal{H}^{\prime} \otimes \mathcal{K}^{\prime}\right)} \mid E: \mathcal{H} \rightarrow \mathcal{H}^{\prime}\right\} \subseteq \operatorname{Span}\left(\left\{H_{k}\right\}\right) \\
& S_{\text {har }}(U) \leq S_{\text {min }}
\end{aligned}
$$

The Communication Operator

The communication operator :

$$
\begin{gathered}
C:\left(\mathbb{C}^{n_{1}} \otimes \mathbb{C}^{n_{2}}\right) \otimes \mathbb{C}^{n_{3}} \rightarrow \mathbb{C}^{n_{1}} \otimes\left(\mathbb{C}^{n_{2}} \otimes \mathbb{C}^{n_{3}}\right) \\
(a \otimes b) \otimes c \quad \mapsto a \otimes(b \otimes c)
\end{gathered}
$$

C has generalized Schmidt decomposition

$$
\left.C=\sum_{j=1}^{n_{2}} A_{j} \otimes B_{j}, \quad \text { (Normalization ignored }\right)
$$

where

$$
\begin{gathered}
A_{j}=\sum_{i=1}^{n_{1}}|i\rangle\langle i j| \quad \text { and } \quad B_{j}=\sum_{k=1}^{n_{3}}|j k\rangle\langle k| . \\
A_{j} \otimes B_{j}|\ell m\rangle \otimes|n\rangle=\delta_{j m}|\ell\rangle \otimes|m n\rangle
\end{gathered}
$$

In particular $\operatorname{Sch}(C)=n_{2}$.

Nielsen's Coherent Communication Bound
(slight generalization to qudits and to allow net data transfer)
Theorem If $U: \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{A}^{\prime} \otimes \mathcal{B}^{\prime}$ is implemented using ancilla, local operations, and quantum communication (NO CC!) then

$$
\sum_{d=2}^{\infty} N_{d} \log _{2}(d) \geq S_{\mathrm{har}}(U),
$$

where

$$
N_{d}=\text { The number of qudits of dimension } d \text { communicated }
$$

Nielsen's complexity bound is:

$$
\begin{aligned}
S_{\text {har }}\left(U_{\mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{A}^{\prime} \otimes \mathcal{B}^{\prime}}\right) & \leq S_{\text {har }}\left(V_{\mathcal{A}_{0} \otimes \mathcal{A} \otimes \mathcal{B} \otimes \mathcal{B}_{0} \rightarrow \mathcal{A}_{1} \otimes \mathcal{A}^{\prime} \otimes \mathcal{B}^{\prime} \otimes \mathcal{B}_{1}}\right) \\
& \leq \sum_{k=1}^{n} S_{\text {har }}\left(G_{k}\right)
\end{aligned}
$$

where V is the implementation of U using ancilla.

References for Nielsen's Communication Bound (all take $U: \mathcal{H} \otimes \mathcal{K} \rightarrow \mathcal{H} \otimes \mathcal{K}$ and consider qubits.)

1. M. A. Nielsen, Ph.D. Thesis, University of New Mexico, 1998, Chapter 6; quant-ph/0011036.

$$
\sum_{d=2}^{2} N_{d} \log _{2}(d) \geq \frac{1}{2} S_{\mathrm{har}}(U),
$$

2. M. A. Nielsen, "Entanglement and distributed quantum computation," Talk at the Benasque Center for Physics, July 19, 2000; URL: http://www.qinfo.org/talks/index.html. Proved

$$
\sum_{d=2}^{2} N_{d} \log _{2}(d) \geq S_{\mathrm{har}}(U)
$$

using a clever argument using reference states, working on the level of vectors.
3. M. A. Nielsen et al, "Quantum dynamics as a physical resource", (accepted for publication in Phys. Rev. A); quant-ph/0208077. Used (ungeneralized) Hartley strength + SWAP to prove

$$
\sum_{d=2}^{2} N_{d} \log _{2}(d) \geq \frac{1}{2} S_{\mathrm{har}}(U)
$$

Application: Communication complexity of the QFT

$$
\begin{aligned}
& \mathcal{F}: \mathbb{C}^{M_{1}} \otimes \mathbb{C}^{M_{2}} \rightarrow \mathbb{C}^{N_{1}} \otimes \mathbb{C}^{N_{2}}, \quad N=M_{1} M_{2}=N_{1} N_{2} \\
& \text { Alice Bob } \\
& \text { Before } \underbrace{\bullet \bullet \bullet \bullet}_{\operatorname{dim} M_{1}} \underbrace{\bullet \bullet \bullet \bullet}_{\text {dim } M_{2}} \\
& \text { After } \underbrace{\bullet \bullet}_{\operatorname{dim} N_{1}} \underbrace{\bullet \bullet \bullet \bullet \bullet \bullet}_{\operatorname{dim} N_{2}}
\end{aligned}
$$

What is maximal communication complexity?

Maximal Communication Complexity

$$
\begin{aligned}
& \mathcal{F}: \mathbb{C}^{M_{1}} \otimes \mathbb{C}^{M_{2}} \rightarrow \mathbb{C}^{N_{1}} \otimes \mathbb{C}^{N_{2}}, \quad N=M_{1} M_{2}=N_{1} N_{2}
\end{aligned}
$$

Trivial upper bound:

$$
Q_{0}\left(\mathcal{F}_{\mathbb{C}^{M_{1}} \otimes \mathbb{C}^{M_{2}} \rightarrow \mathbb{C}^{N_{1} \otimes \mathbb{C}^{N_{2}}}}\right) \leq \log _{2} \min \left(N_{1} M_{1}, N_{2} M_{2}\right)
$$

The QFT using Mixed-Decimals

$$
N=M_{1} M_{2}=N_{1} N_{2}
$$

$$
\mathcal{F}_{M 1} M_{2} \rightarrow N_{1} N_{2}: \mathbb{C}^{M_{1}} \otimes \mathbb{C}^{M_{2}} \rightarrow \mathbb{C}^{N} \xrightarrow{\mathcal{F}_{N}} \mathbb{C}^{N} \rightarrow \mathbb{C}^{N_{1}} \otimes \mathbb{C}^{N_{2}}
$$

$\left|k_{1}\right\rangle_{M_{1}}\left|k_{2}\right\rangle_{M_{2}}$
$\rightarrow\left|k_{1} M_{2}+k_{2}\right\rangle_{N}$
$\rightarrow \frac{1}{N} \sum_{s=0}^{N-1} \exp \left(\frac{2 \pi i}{N}\left(k_{1} M_{2}+k_{2}\right) s\right)|s\rangle_{N}$
$\rightarrow \frac{1}{N} \sum_{p_{1}=0}^{N_{1}-1} \sum_{p_{2}=0}^{N_{2}-1} \exp \left(\frac{2 \pi i}{N}\left(k_{1} M_{2}+k_{2}\right)\left(p_{1} N_{2}+p_{2}\right)\right)\left|p_{1}\right\rangle_{N_{1}}\left|p_{2}\right\rangle_{N_{2}}$

Warning

$\mathcal{F}_{N_{1} N_{2} \rightarrow M_{1} M_{2}}$ does NOT in general have Schmidt coefficients related in any way to that of
to $\mathcal{F}_{N_{2} N_{1} \rightarrow M_{1} M_{2}}, \mathcal{F}_{N_{1} N_{2} \rightarrow M_{2} M_{1}}$ or $\mathcal{F}_{N_{2} N_{1} \rightarrow M_{2} M_{1}}$.

The Fourier transform knows which digit in the mixed-decimal expansion is the high-order qudit.

$$
\left.\begin{array}{rl}
\text { let } \omega=\exp (2 \pi i / 10) & \\
\sqrt{10} \mathcal{F}_{\mathbb{C}^{2} \otimes \mathbb{C}^{5} \rightarrow \mathbb{C}^{2} \otimes \mathbb{C}^{5}} & =\left[\begin{array}{cc}
1 & 1 \\
1 & \omega^{25}
\end{array}\right] \otimes\left[\begin{array}{cccc}
\omega^{0} & \cdot & \omega^{0} & \cdot \\
\cdot & \omega^{0} \\
\cdot & \cdot & \cdot & \cdot \\
\omega^{0} & \cdot & \omega^{4} & \cdot \\
\cdot & \omega^{8} \\
\cdot & \cdot & \cdot & \cdot \\
\omega^{0} & \cdot & \omega^{8} & \cdot \\
\omega^{16}
\end{array}\right] \\
& +\left[\begin{array}{cc}
1 & 1 \\
\omega^{5} & \omega^{30}
\end{array}\right] \otimes\left[\begin{array}{cccc}
\cdot & \omega^{0} & \cdot & \omega^{0} \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \omega^{2} & \cdot & \omega^{6} \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \omega^{4} & \cdot & \omega^{12}
\end{array}\right]
\end{array}\right] .
$$

Example: $\mathcal{F}: \mathbb{C}^{2} \otimes \mathbb{C}^{6} \rightarrow \mathbb{C}^{4} \otimes \mathbb{C}^{3}$ $\omega=\exp \left(\frac{2 \pi i}{12}\right)$

$$
\begin{aligned}
\sqrt{12} \mathcal{F} & =\left[\begin{array}{cc}
1 & 1 \\
1 & \omega^{15} \\
1 & \omega^{30} \\
1 & \omega^{45}
\end{array}\right] \otimes\left[\begin{array}{cccccc}
1 & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot & \omega^{8} & \cdot
\end{array}\right] \\
& +\left[\begin{array}{cc}
1 & 1 \\
\omega^{5} & \omega^{20} \\
\omega^{10} & \omega^{40} \\
\omega^{15} & \omega^{60}
\end{array}\right] \otimes\left[\begin{array}{cccccc}
\cdot & 1 & \cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \omega^{2} & \cdot & \cdot & \cdot & \omega^{10}
\end{array}\right] \\
& +\ldots \\
& +\left[\begin{array}{cc}
1 & \omega^{3} \\
1 & \omega^{18} \\
1 & \omega^{33} \\
1 & \omega^{48}
\end{array}\right] \otimes\left[\begin{array}{cccccc}
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot & \omega^{4} & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right] \\
& +\ldots
\end{aligned}
$$

Theorem: (Operator-Schmidt decomposition of the QFT)

$$
\mathcal{F}_{M_{1} M_{2} \rightarrow N_{1} N_{2}}=\sum_{C} \lambda_{c} A_{C} \otimes B_{C}
$$

where $N=N_{1} N_{2}=M_{1} M_{2}$, and C is a red equivalence class of $\mathbb{Z}_{N_{2}} \times \mathbb{Z}_{M_{2}} \bmod M_{1}, N_{1}:$

$\lambda_{C}=\sqrt{\frac{N_{1} M_{1} \operatorname{Card}(C)}{N}}$
$\left(A_{C}\right)_{j k}=\frac{1}{\sqrt{N_{1} M_{1}}} \exp \left[\frac{2 \pi i}{N}\left(N_{2} M_{2} j k+M_{2} k \hat{s}+N_{2} j \hat{t}\right)\right],(\hat{s}, \hat{t}) \in C$
$\left(B_{C}\right)_{j k}=\frac{1}{\sqrt{\operatorname{Card}(C)}} \times\left\{\begin{array}{cc}\exp \left(\frac{2 \pi i}{N} j k\right) & \text { if }(j, k) \in C \\ 0 & \text { otherwise }\end{array}\right.$

Corollary: The Communiciation Complexity of the QFT is Maximal in all cases.

Problems (Some open):

1. How much quantum communication is required to implement $U^{\otimes n}$, if one allows a small error which is negligible (in some appropriate sense) for large n ? (open)
(Warning: Nielsen et al show that the entanglement of $U: \mathcal{H} \times \mathcal{K} \rightarrow \mathcal{H}^{\prime} \otimes \mathcal{K}^{\prime}$ as an element of $B\left(\mathcal{H} \rightarrow \mathcal{H}^{\prime}\right) \otimes B\left(\mathcal{K} \rightarrow \mathcal{K}^{\prime}\right)$ does NOT satisfy chaining.)
2. Does the answer to (1) depend only on the operator-Schmidt coefficients of U ?
3. Is there a nice canonical decomposition of the maximally-entangled unitaries? (Open) Can we at least construct infinitely many inequivalent maximal unitaries? (Maybe)
4. What operator-Schmidt numbers exist for unitaries on $\mathbb{C}^{n} \otimes \mathbb{C}^{m}$? (We'll consider $\mathbb{C}^{3} \otimes \mathbb{C}^{3}$.)

Schmidt number of two qubit unitaries

Theorem (Makhlin 2000; Khaneja, Brockett, Glaser 2001)

Let U be a two-qubit unitary. Then \exists one-qubit unitaries A, B, C, D and $\theta_{\alpha} \in(-\pi / 4, \pi / 4]$ such that

$$
U=(A \otimes B) e^{i\left(\theta_{x} X \otimes X+\theta_{y} Y \otimes Y+\theta_{z} Z \otimes Z\right)}(C \otimes D) .
$$

Furthermore, V has the same invariants θ_{α} iff

$$
V=(E \otimes F) U(G \otimes H)
$$

for some local unitaries E, F, G, and H.
Corollary (Nielsen et al 2002): A two-qubit unitary may have Schmidt-number 1, 2, or 4, but not 3 .

Conjecture (Nielsen et al 2002): There exist unitary operators on $\mathbb{C}^{N_{1}} \otimes \mathbb{C}^{N_{2}}$ of Schmidt number S iff S divides $N_{1} N_{2}$. An alternative conjecture is that unitary operators with Schmidt number S exist iff S and $N_{1} N_{2}$ have a common factor.

References for the Canonical Decomposition

1. Y. Makhlin, LANL e-print quant-ph/0002045 (2000).

Gives the invariants θ_{α}.
2. N. Khaneja, R. Brockett, and S. J. Glaser, "Time optimal control of spin systems", Phys. Rev. A 63, 032308 (2001); LANL e-print quant-ph quant-ph/0006114.

Gives the decomposition.
3. B. Kraus and J. I. Cirac, "Optimal creation of entanglement using a two-qubit gate", Phys. Rev. A 63, 062309 (2001); LANL e-print quant-ph/0011050.

An elegant proof of the decomposition.

Operator-Schmidt Decompositions given by the Discrete Fourier Transform

Theorem: There exists a basis $\phi_{\alpha \beta}$ of $\mathbb{C}^{N} \otimes \mathbb{C}^{N}$ such that the operator-Schmidt coefficients of the diagonal operator

$$
D=\sum_{\alpha, \beta=0}^{N-1} \lambda(\alpha, \beta)\left|\phi_{\alpha \beta}\right\rangle\left\langle\phi_{\alpha \beta}\right|
$$

are the nonzero values of $|\hat{\lambda}(\alpha, \beta)|$, where ${ }^{\wedge}$ is the discrete Fourier transform

$$
\hat{\lambda}(\alpha, \beta)=\frac{1}{N} \sum_{\alpha^{\prime}, \beta^{\prime}=0}^{N-1} \exp \left(\frac{2 \pi i}{N}\left(\alpha \alpha^{\prime}+\beta \beta^{\prime}\right)\right) \lambda\left(\alpha^{\prime}, \beta^{\prime}\right) .
$$

Technical Remark: We will work on $\mathcal{H} \otimes \mathcal{H}^{*}$, with $\operatorname{dim} \mathcal{H}=N$, rather than on $\mathbb{C}^{N} \otimes \mathbb{C}^{N}$, to employ operator-theory techniques to this problem.

The Discrete Fourier Transform

Definition Let \mathcal{H} be an N-dimensional Hilbert space. Define the Twist $T: \mathcal{H} \rightarrow \mathcal{H}$ and Discrete Rotation $R: \mathcal{H} \rightarrow \mathcal{H}$ and by

$$
\begin{aligned}
& T|j\rangle=\exp \left(\frac{2 \pi i j}{N}\right)|j\rangle, \quad j \in\{0, \ldots, N-1\} \\
& R|j\rangle=|j+1 \bmod N\rangle
\end{aligned}
$$

Products of the form $R^{\alpha} T^{\beta}$ are called Twisted Rotations.

$$
\begin{aligned}
T^{k} & \longleftrightarrow e^{i t X} \\
R^{m} & \longleftrightarrow e^{i s P}
\end{aligned}
$$

The Discrete Fourier Transform and Twisted Rotations

Theorem 2 (Weyl 1930) R and T satisfy the discrete Weyl relations

$$
\begin{align*}
R^{\alpha} & =I \text { iff } \alpha \in N \mathbb{Z} \tag{1}\\
T^{\alpha} & =I \text { iff } \alpha \in N \mathbb{Z} \tag{2}\\
R T & =\exp (-2 \pi i / N) T R \tag{3}
\end{align*}
$$

and the associated Fourier relations

$$
\begin{align*}
\mathcal{F} R \mathcal{F}^{\dagger} & =T \tag{4}\\
\mathcal{F} T \mathcal{F}^{\dagger} & =R^{\dagger} . \tag{5}
\end{align*}
$$

Furthermore, any irreducible representation of (1) - (3) is unitarily equivalent to the defined rotations and twists, and in such a representation an F satisfying (4) - (5) is represented up to a phase as the discrete Fourier transform.

Observation (J. Schwinger 1960): The set of twisted rotations

$$
\left\{\frac{1}{\sqrt{N}} R^{\alpha} T^{\beta}\right\}_{\alpha, \beta \in\{0, \ldots, N-1\}} \text { forms an orthonormal basis of } B(\mathcal{H})
$$

The Space $\mathcal{H} \otimes \mathcal{H}^{*}$

$$
\begin{gathered}
\psi=\sum a_{i j}|i\rangle \otimes\langle j| \in \mathcal{H} \otimes \mathcal{H}^{*} \\
A_{\psi}=\sum a_{i j}|i\rangle\langle j|: \mathcal{H} \rightarrow \mathcal{H}
\end{gathered}
$$

The Hilbert Space of Bras

Definition: The Dual space \mathcal{H}^{*} is the space of (continuous) linear functionals on \mathcal{H}. In Dirac notation, \mathcal{H}^{*} is the space of bras.

What is the inner product on \mathcal{H}^{*} ?

$$
\begin{aligned}
& \text { Define the map } \psi \rightarrow \bar{\psi}: \mathcal{H} \rightarrow \mathcal{H}^{*} \text { by } \\
& \qquad \overline{|\psi\rangle}=\langle\psi|
\end{aligned}
$$

The inner product on H^{*} is given by

$$
\langle\bar{f}, \bar{g}\rangle_{\mathcal{H}^{*}}=\langle g, f\rangle_{\mathcal{H}} .
$$

Unfortunately, Dirac notation would become confusing in what follows. Equivalently,

$$
\left\langle\langle\psi|,\langle\phi \mid\rangle_{\mathcal{H}^{*}}=\langle\phi, \psi\rangle_{\mathcal{H}}\right.
$$

The Conjugate Operator

Let $A: \mathcal{H} \rightarrow \mathcal{H}$. The conjugate operator $\bar{A}: \mathcal{H}^{*} \rightarrow \mathcal{H}^{*}$ is given by

$$
\bar{A} \bar{f}=\overline{A f}
$$

$$
\begin{gathered}
\text { Why the Bar? } \\
f=\sum_{k} a_{k}|k\rangle \Longrightarrow \bar{f}=\sum_{k} \bar{a}_{k}\langle k|=\sum_{k} \bar{a}_{k} \overline{|k\rangle} \\
A|j\rangle=\sum_{k} a_{j k}|k\rangle \Longrightarrow \bar{A} \overline{|j\rangle}=\sum_{k} \bar{a}_{j k} \overline{|k\rangle}
\end{gathered}
$$

The Natural Isomorphism

Theorem: The linear map $\Xi: B(\mathcal{H}) \rightarrow \mathcal{H} \otimes \mathcal{H}^{*}$ satisfying

$$
\Xi(|f\rangle\langle g|)=f \otimes \bar{g}
$$

is a unitary equivalence. Furthermore, for

$$
A, B, C \in B(\mathcal{H})
$$

one has

$$
(A \otimes \bar{B}) \Xi C=\Xi\left(A C B^{\dagger}\right) .
$$

Furthermore, ΞC is maximally entangled iff C is a nonzero scalar multiple of a unitary.
C is unitary $\Longleftrightarrow C=\sum\left|e_{j}\right\rangle\left\langle f_{j}\right| \Longleftrightarrow \Xi C=\sum e_{j} \tilde{\otimes} \bar{f}_{j}$

Schmidt Decompositions given by the Fourier Transform
Theorem: Define

$$
\Phi_{\alpha \beta}=\Xi\left(T^{\alpha} R^{-\beta}\right) \in \mathcal{H} \otimes \mathcal{H}^{*}, \quad \alpha, \beta \in\{0, \ldots, N-1\}
$$

Then the $\left\{\Phi_{\alpha \beta}\right\}$ form a maximally entangled orthonormal basis. Furthermore, the diagonal operator D

$$
D=\sum_{\alpha, \beta=0}^{N-1} \lambda(\alpha, \beta)\left|\Phi_{\alpha \beta}\right\rangle\left\langle\Phi_{\alpha \beta}\right|: \mathcal{H} \otimes \mathcal{H}^{*} \rightarrow \mathcal{H} \otimes \mathcal{H}^{*}
$$

with arbitrary $\lambda(\alpha, \beta) \in \mathbb{C}$, satisfies

$$
D=\sum_{a, b=0}^{N-1} \hat{\lambda}(a, b) \times\left(\frac{1}{\sqrt{N}} R^{a} T^{b}\right) \otimes \overline{\left(\frac{1}{\sqrt{N}} R^{a} T^{b}\right)}
$$

In particular, the Schmidt coefficients of D are the nonzero values of $|\hat{\lambda}(a, b)|$.

Proof. $\Phi_{\alpha \beta}$ is an eigenvector of each $\left(R^{a} T^{b}\right) \otimes \overline{\left(R^{a} T^{b}\right)}$:

$$
\begin{align*}
\left(R^{a} T^{b}\right) \otimes \overline{\left(R^{a} T^{b}\right)} \Phi_{\alpha \beta} & =\left(R^{a} T^{b}\right) \otimes \overline{\left(R^{a} T^{b}\right)} \Xi\left(T^{\alpha} R^{-\beta}\right) \\
& =\Xi\left(R^{a} T^{b} T^{\alpha} R^{-\beta}\left(R^{a} T^{b}\right)^{\dagger}\right) \\
& =\exp \left(-\frac{2 \pi i}{N}(a \alpha+b \beta)\right) \Xi\left(T^{\alpha} R^{-\beta}\right) \\
& =\exp \left(-\frac{2 \pi i}{N}(a \alpha+b \beta)\right) \Phi_{\alpha \beta} \tag{6}
\end{align*}
$$

Since the $\left\{\Phi_{\alpha \beta}\right\}$ form an orthonormal basis,

$$
\left(R^{a} T^{b}\right) \otimes \overline{\left(R^{a} T^{b}\right)}=\sum_{\alpha \beta=0}^{N-1} \exp \left(-\frac{2 \pi i}{N}(a \alpha+b \beta)\right)\left|\Phi_{\alpha \beta}\right\rangle\left\langle\Phi_{\alpha \beta}\right| .
$$

By the Fourier inversion theorem,

$$
\left|\Phi_{\alpha \beta}\right\rangle\left\langle\Phi_{\alpha \beta}\right|=\frac{1}{N^{2}} \sum_{a, b=0}^{N-1} \exp \left(\frac{2 \pi i}{N}(a \alpha+b \beta)\right)\left(R^{a} T^{b}\right) \otimes \overline{\left(R^{a} T^{b}\right)}
$$

Hence

$$
\begin{aligned}
D & =\sum_{\alpha, \beta=0}^{N-1} \lambda(\alpha, \beta)\left|\Phi_{\alpha \beta}\right\rangle\left\langle\Phi_{\alpha \beta}\right| \\
& =\sum_{\alpha, \beta=0}^{N-1} \lambda(\alpha, \beta) \frac{1}{N^{2}} \sum_{a, b=0}^{N-1} \exp \left(\frac{2 \pi i}{N}(a \alpha+b \beta)\right)\left(R^{a} T^{b}\right) \otimes \overline{\left(R^{a} T^{b}\right)} \\
& =\frac{1}{N} \sum_{a, b=0}^{N-1} \hat{\lambda}(a, b)\left(R^{a} T^{b}\right) \otimes \overline{\left(R^{a} T^{b}\right)} .
\end{aligned}
$$

Application: Operator-Schmidt numbers on $\mathbb{C}^{3} \otimes \mathbb{C}^{3}$
Question: How many zeros may the discrete Fourier transform of a phase-valued function have?
Theorem: There exists a phase-valued function λ on \mathbb{Z}_{3}^{2} such that the support of $\hat{\lambda}$ has cardinality S iff $S \in\{1,3,5,6,7,8,9\}$.

Proof.

S	f	\hat{f}
3	$\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ \omega & \omega & \omega\end{array}\right]$	$\left[\begin{array}{ccc}\omega+2 & 0 & 0 \\ \omega+2 & 0 & 0 \\ i \sqrt{3} & 0 & 0\end{array}\right]$
5	$\left[\begin{array}{ccc}1 & -1 & 1 \\ \omega & -\omega & \omega^{2} \\ \omega^{2} & -\omega^{2} & \omega\end{array}\right]$	$\left[\begin{array}{ccc}0 & 0 & 0 \\ 1 & \omega^{2} & \omega \\ 0 & 1-\omega & 1-\omega^{2}\end{array}\right]$
6	$\left[\begin{array}{ccc}1 & 1 & 1 \\ \omega & \omega & \omega^{2} \\ \omega^{2} & \omega^{2} & \omega\end{array}\right]$	$\left[\begin{array}{ccc}0 & 0 & 0 \\ 1 & \omega^{2} & \omega \\ 2 & 1+\omega & 1+\omega^{2}\end{array}\right]$

S	f	\hat{f}
7	$\left[\begin{array}{rrr}1 & \omega & \omega^{2} \\ 1 & -\omega^{2} & \omega \\ -1 & \omega^{2} & -\omega\end{array}\right]$	$\frac{1}{3}\left[\begin{array}{cc}0 & 0 \\ -2+2 \omega & 1+2 \omega \\ 2-2 \omega & -1-2 \omega \\ -1+2 \omega\end{array}\right]$ 8 $\left[\begin{array}{rrr}\omega & \omega & \omega^{2} \\ 1 & -\omega^{2} & \omega^{2} \\ -1 & 1 & -\omega\end{array}\right]$$\frac{1}{3}\left[\begin{array}{rrr}0 & -3+3 \omega & 3 \\ -2+2 \omega & 1+2 \omega & 4+5 \omega \\ -1+\omega & -1-2 \omega & -1-2 \omega\end{array}\right]$ 9$S=9$ is generic

Now take $S=2$ or 4 and assume there exists a phase-valued function f on \mathbb{Z}_{3}^{2} so that the cardinality of the support of \hat{f} is S. Then since $\bar{f} f=1$ identically, then

$$
\begin{aligned}
\delta_{\vec{v}, 0} & =\widehat{(\bar{f} f)}(-\vec{v}) \\
& =\frac{1}{3} \sum_{w \in\{0, \ldots, 2\}^{2}} \overline{\hat{f}}\left(\vec{v}+\vec{w} \bmod 3 \mathbb{Z}^{2}\right) \hat{f}(\vec{w})
\end{aligned}
$$

But it is not hard to see that for any subset of \mathbb{Z}_{3}^{2} of cardinality 2 or 4 there exists a nonzero $\vec{v} \in \mathbb{Z}_{3}^{2}$ such that $f(\vec{w}) \neq 0$ and $f\left(\vec{v}+\vec{w} \bmod 3 \mathbb{Z}^{2}\right) \neq 0$ for exactly one value of \vec{w}, yielding a contradiction.

The Fourier transform doesn't give everything for $\mathbb{C}^{3} \otimes \mathbb{C}^{3}$
Theorem (the commutative case): There exists a unitary U on $\mathbb{C}^{N} \otimes \mathbb{C}^{N}$ with $\operatorname{Sch}(U)=S$ for any $S \in\{1, \ldots, N\}$.
Proof. Fix S and set $\psi^{S}=\sum_{i j=1}^{N} \psi_{i j}^{S}|i j\rangle$ with

$$
\psi_{i j}^{S}= \begin{cases}-1 & \text { if } i=j \text { and } i<S \\ 1 & \text { otherwise }\end{cases}
$$

Then Sch $\left(\psi^{S}\right)=S$, since the matrix $\left[\psi_{i j}^{S}\right]$ is rank S. Schmidtdecompose

$$
\psi=\sum_{i=1}^{S} \lambda_{i} v_{i} \otimes w_{i}, \quad \lambda_{i}>0
$$

A diagonal unitary operator U_{ψ} with $\operatorname{Sch}\left(U_{\psi}\right)=S$ is constructed by changing the vectors v_{i} and w_{i} in this decomposition into diagonal matrices.

Construction of Maximally Entangled Unitaries on $\mathbb{C}^{N} \otimes \mathbb{C}^{N}$
Recall that

$$
D=\sum_{\alpha, \beta=0}^{N-1} \lambda(\alpha, \beta)\left|\Phi_{\alpha \beta}\right\rangle\left\langle\Phi_{\alpha \beta}\right|: \mathcal{H} \otimes \mathcal{H}^{*} \rightarrow \mathcal{H} \otimes \mathcal{H}^{*},
$$

satisfies

$$
D=\sum_{a, b=0}^{N-1} \hat{\lambda}(a, b) \times\left(\frac{1}{\sqrt{N}} R^{a} T^{b}\right) \otimes \overline{\left(\frac{1}{\sqrt{N}} R^{a} T^{b}\right)} .
$$

Hence

D is maximally entangled $\Longleftrightarrow \lambda$ and $\hat{\lambda}$ are phase-valued functions.

Biunimodular Functions and Maximally Entangled Unitaries

Definition: A function f is biunimodular iff both f and \hat{f} are phase-valued functions.

The problem of characterizing biunimodular functions on \mathbb{Z}_{N}^{2} proper has not been studied. Note however, that if f and g are biunimodular on \mathbb{Z}_{N} then $f \otimes g$ is biunimodular on $\mathbb{Z}_{N}^{2}=\mathbb{Z}_{n} \times \mathbb{Z}_{n}$.

Known results on biunimodular functions on \mathbb{Z}_{N}

- Guassian biunimodulars were known to Guass:

$$
\begin{array}{cc}
g_{N, a, b}(k)=\exp \left(\frac{2 \pi i}{N}\left(a k^{2}+b k\right)\right), & N \text { odd, } a \text { coprime to } N \\
g_{N}(k)=\exp \left(\frac{2 \pi i}{N} k^{2}\right), & N \text { even }
\end{array}
$$

- For N divisible by a square, Björck and Saffari (1995) have constructed an uncountably infinite family of biunimodulars on \mathbb{Z}_{N}. Furthermore, they conjecture that there exist an infinite number (up to phases) iff N is divisible by a square. Interestingly, their examples use mixed-decimals.
- The conjecture of Björck and Saffari was already known to be valid for $N \leq 9$, as all such biunimodulars had already been found. (G Björck, 1990, J. Backelin and R. Fröberg 1991, G Björck and R Fröberg 1991 and 1994)

Remarks on Hill \& Wootters's Magic Basis and the Gradient of the Determinant
The gradient of the determinant is defined by

$$
\frac{d}{d t} \operatorname{det}(A)=\left\langle\nabla \operatorname{det}(A), \frac{d A}{d t}\right\rangle_{B(\mathcal{H})}
$$

In particular

$$
\nabla \operatorname{det}(A)=\left\{\begin{array}{l}
\left(\operatorname{det}(A) A^{-1}\right)^{\dagger} \text { if } \operatorname{det}(A) \neq 0 \\
\text { the continuous extension, otherwise }
\end{array}\right.
$$

What is the meaning of ∇ det in the $B(\mathcal{H})=\mathcal{H} \otimes \mathcal{H}^{*}$ formalism?

Theorem Let $\mathfrak{C}: B(\mathcal{H}) \rightarrow B(\mathcal{H})$ be the continuous extension of

$$
\mathfrak{C}(A)=\left((\operatorname{det} A) A^{-1}\right)^{*}
$$

Define the corresponding map $\mathfrak{D}: \mathcal{H} \otimes \mathcal{H}^{*} \rightarrow \mathcal{H} \otimes \mathcal{H}^{*}$ by

$$
\mathfrak{D}(\psi)=\Xi \mathfrak{C}\left(\Xi^{*} \psi\right)
$$

Then
Theorem 3 1. $\mathfrak{C}(A B)=\mathfrak{C}(A) \mathfrak{C}(B)$ and $\mathfrak{C}\left(A^{*}\right)=(\mathfrak{C}(A))^{*}$. In particular, \mathfrak{C} acts independently on the factors of the polar decomposition.
2. $\mathfrak{D}((A \otimes \bar{B}) \psi)=(\mathfrak{C}(A) \otimes \overline{\mathfrak{C}(B)}) \mathfrak{D}(\psi)$. In particular, if A and B are unitary then $\mathfrak{D}((A \otimes \bar{B}) \psi)=\left(\operatorname{det} A^{*} B\right)(A \otimes \bar{B}) \mathfrak{D}(\psi$
3. $\mathfrak{D}(\psi)=\alpha \psi$ for some $\alpha \in \mathbb{C}$ iff ψ is maximally entangled or zero.
4. Temporarily allowing Schmidt coefficients to vanish, the product of the Schmidt coefficients of ψ is given by $N^{-1}\left|\langle\psi, \mathfrak{D} \psi\rangle_{\mathcal{H} \otimes \mathcal{H}^{*}}\right|$
5. Furthermore, if $N=2$ then
(a) \mathfrak{C} and \mathfrak{D} are conjugations, i.e. antiunitary maps squaring to the identity, and

$$
\mathfrak{C}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{rr}
\bar{d} & -\bar{c} \\
-\bar{b} & \bar{a}
\end{array}\right]
$$

(b) ψ is separable iff $\langle\psi, \mathfrak{D} \psi\rangle=0$.
(c) Denote $|i \bar{j}\rangle \equiv|i\rangle \otimes \overline{|j\rangle} \in \mathcal{H} \otimes \mathcal{H}^{*}$. Then each of the following basis vectors are invariant under \mathfrak{D} :

$$
\{|0 \overline{0}\rangle+|1 \overline{1}\rangle, i|0 \overline{0}\rangle-i|1 \overline{1}\rangle, i|0 \overline{1}\rangle+i|1 \overline{0}\rangle,|0 \overline{1}\rangle-|1 \overline{0}\rangle\}
$$

(d) If $A=e^{i \theta} U P$, where $U \in S U(2)$ and $P=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)$ is positive, then $\mathfrak{C}(A)=e^{-i \theta} U \operatorname{diag}\left(\lambda_{2}, \lambda_{1}\right)$. In particular, \mathfrak{D} preserves Schmidt coefficients.

Vollbrecht and Werner make the following point in "Why two qubits are special":

The remarkable properties of the [magic] basis...are in some sense not so much a property of that basis, but of the antiunitary operation of complex conjugation in [that] basis.

In particular, one may canonically translate the results and the magicbasis or magic-conjugation proofs of Wooters and Makhlin on $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$ into basis-free results and proofs on $\mathcal{H} \otimes \mathcal{H}^{*}$.

