Entanglement, quantum critical phenomena and efficient simulation of quantum dynamics

Simons Conference on Reversible and Quantum Computation
Stony Brook, May 28-31 2003

Guifre Vidal

Institute for Quantum Information, Caltech
Quantum Information

Entanglement
in quantum phase transitions

- Scaling of entanglement in critical and non-critical spin chains.
- Emergence of universality at a quantum critical point.
- Connection to conformal field theory, irreversibility of RG flow.
- Entanglement in spin lattices.
- Failure of the DMRG method.

Efficient classical simulation of quantum dynamics

- Critical and non-critical spin chains.
- Non-critical spin lattices in 2D, 3D.
Entanglement in quantum phase transitions

Latorre, Rico, Vidal, quant-ph/0304098

Measures of entanglement in a quantum spin chain

T=0, ground state

concurrence (entanglement between two spins)

Osterloh, Amico, Falci and Fazio, Nature 2002
Osborne and Nielsen, Phys. Rev. A 2002

Our approach:

entropy S_L of a block of L spins
(Entanglement between block of spins and rest of the chain)
Entanglement in quantum phase transitions

XY model with magnetic field

[including **XX model** and **Ising model**]

\[
H_{XY} = \sum_{l=0}^{N-1} \left(\frac{(1+\gamma)}{2} \sigma^x_l \sigma^x_{l+1} + \frac{(1-\gamma)}{2} \sigma^y_l \sigma^y_{l+1} + \lambda \sigma^z_l \right)
\]

Ground state:

- **XY model with magnetic field**: Barouch and McCoy, Phys. Rev. A (1971)

Gaussian in fermionic modes (efficient description)
Entanglement in quantum phase transitions
Scaling of entanglement in critical and non-critical spin chains

Ising model for different values of the magnetic field λ
Entanglement in quantum phase transitions

Emergence of Universality

\[S_L \approx \frac{1}{3} \log L \]

\[S_L \approx \frac{1}{6} \log L \]

Critical XX

Critical XXZ

Critical Ising

Critical XY

ASYMPTOTICS
Jin and Korepin, quant-ph
Entanglement in quantum phase transitions

Extra bonus!

- **Connection to conformal field theory**

 \[S_L \approx \frac{c + c}{6} \log L \]

 - geometric entropy

 - central charge

 - Srednicki, PRL 71 (1993)

- **C-theorem**

 - Entanglement decreases under RG flow

- **Spin lattices in D>1 dimensions**

 \[S_L \approx L^{D-1} \]

 - "Area" law

 - Zamolodchikov, JETP Lett (1986)

- **Failure of White’s DMRG numerical method in 2D,3D**

 - # of eigenvectors of \(\rho_L \)

 \[m \approx 2^{S_L} \]

 - non-critical | critical

 | 1D | ✔ | ✔ | ✗ |

 | 2D, 3D | ✗ | ✗ | ✗ |
Efficient classical simulation of quantum dynamics

Measure of multipartite entanglement

Schmidt decomposition

\[|\Psi\rangle = \sum_{\alpha=1}^{\chi_A} \lambda_{\alpha} |\Phi_{\alpha}^{[A]}\rangle |\Phi_{\alpha}^{[B]}\rangle \]

Schmidt rank

\[\chi = \max_A \chi_A \]

\[E_{\chi} \equiv \log_2 \chi \]

- Only vanishes for product (i.e. unentangled) states
- Additive under tensor product
- Non-increasing under LOCC (even under SLO)
Efficient classical simulation of quantum dynamics

Decomposition of N-qubit states

Standard decomposition

\[|\Psi\rangle \]

\[\Gamma^{[1]} \Lambda \Gamma^{[2]} \Lambda \cdots \Gamma^{[N]} \Lambda \]

\[C_{i_1 i_2 \Lambda i_l \Lambda i_N} \]

\[2^N \text{ coefficients} \]

New decomposition

\[l = 1, \Lambda, N \]

\[i = 0, 1 \]

\[\alpha = 1, \Lambda, \chi \]

\[\beta = 1, \Lambda, \chi \]

\[N \exp E_{\chi} \text{ coefficients} \]
Efficient classical simulation of quantum dynamics

Non-critical spin chain

\[\chi \equiv \max_L \chi_L \]

saturation of \(\chi_L \) \(\rightarrow \) \(O(N) \) parameters to describe \(N \) spins
Efficient classical simulation of quantum dynamics

<table>
<thead>
<tr>
<th>N spins</th>
<th>cost of simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-critical 1D system</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>Critical 1D system</td>
<td>$O(N^q)$, $q > 1$</td>
</tr>
<tr>
<td>Non-critical 2D system</td>
<td>$O(N \exp \sqrt{N})$</td>
</tr>
<tr>
<td>Critical 2D system</td>
<td>$O(N \exp N^{2/3})$</td>
</tr>
<tr>
<td>Non-critical 3D system</td>
<td></td>
</tr>
<tr>
<td>Critical 3D system</td>
<td></td>
</tr>
</tbody>
</table>

Alternative method for non-critical systems: $O(N)$
Classical simulation of quantum dynamics
- Critical and non-critical spin chains.
- Non-critical spin lattices in 2D, 3D.

Entanglement in Quantum Many-Body Physics

Entanglement in quantum phase transitions
- Scaling of entanglement in critical and non-critical spin chains.
- Emergence of universality at a quantum critical point.
 - Conformal field theory
 - Monotonicity under RG flow
 - 2D, 3D systems
 - Failure DMRG method