Universal control of quantum subspaces and subsystems

Paolo Zanardi

Massachusetts Institute of Technology,
Institute for Scientific Interchange (ISI) Foundation

- <u>Arbitrary</u> manipulation of information:: key requirement for classical and Q IP
 When this goal is realized universality is achieved.
- QIP case set of N qubits: State-space H ≅ (C²)^{⊗N}
 1) Almost any two-qubit gate is universal [Lloyd, Barenco et al, Di Vincenzo (95)]
 2) single-qubit gates with one of arbitrary entangling two-qubit gate are universal [Brylinski's, Bremner et (2002)]
- Operational constraints ⇒ NO full state space Universality

The Question

 \exists ? a subspace \mathcal{C} of \mathcal{H} over which the set of naturally available interactions are universal?

 \Rightarrow encoded universality [Di Vincenzo, Bacon et al (2000), Kempe et al (2001), Lidar et al , Viola (2002)]

The Control Group

• Set of "naturally" available interactions $\mathcal{I}_A := \{H(\lambda)\}_{\lambda \in \mathcal{M}} \subset \mathsf{End}(\mathcal{H})$

 $\mathcal{M} = Set$ of control parameters.

• Allowed paths $\mathcal{P}_A = \text{set physically realizable control processes } \gamma : \mathbb{R} \to \mathcal{M}$

NB $\mathcal{P}_A \subset \mathcal{F}(\mathbb{R}, \mathcal{M})$ *e.g., In* **HQC** $\mathcal{P}_A =$ adiabatic loops

Allowed evolutions

$$\mathcal{U}_A := \left\{ T \exp\left[-i \int dt H(\gamma(t))\right] / \gamma \in \mathcal{P}_A \right\}$$
 (1)

Tech Assumption: \mathcal{U}_A is a sub-GROUP of $\mathcal{U}(\mathcal{H})$

• Definition: Set of \mathcal{U}_A invariant subspaces (codes) $\mathcal{C}_i \subset \mathcal{H} \ (i=1,\ldots,M)$ of \mathcal{U}_A , such that

$$\mathcal{U}_A|_{\mathcal{C}_i} = \mathcal{U}(\mathcal{C}_i), \quad (i = 1, \dots, M).$$
 (2)

 \mathcal{U}_A is \mathcal{C}_i -universal.

Quantum control theory

(i)
$$\mathcal{P}_A = \mathcal{F}(\mathbb{R}, \mathcal{M})$$
 (ii) $\mathcal{I}_A = \{\sum_i \lambda_i H_i\}$

$$(i)\&(ii) \Rightarrow \mathcal{U}_A = e^{\mathcal{L}_A} \tag{3}$$

where by \mathcal{L}_A = Lie algebra generated by the set of operators \mathcal{I}_A

Restricted set of paths $\mathcal{P}_A \Rightarrow \mathcal{U}_A \subset e^{\mathcal{L}_A}$.

- Example HQC \mathcal{I}_A =set of iso-degenerate Hamiltonian
 - \mathcal{P}_A is given by adiabatic loops around a $\lambda_0 \in \mathcal{M}$.
- Adiabatic theorem: state space splits according to the eigenprojectors of $H(\lambda_0)$. \Rightarrow NO universality
- Irreducible connection $\Rightarrow \mathcal{U}_A = \oplus_r \mathcal{U}(\mathcal{H}_r), \ \mathcal{H}_r$ the r-th n_r dimensional eigenspace of $H(\lambda_0)$
- $\sum_r n_r^2 < (\sum_r n_r)^2 \mathcal{U}_A$ is strictly contained in $\mathcal{U}(\mathcal{H})$. \mathcal{U}_A allows only for \mathcal{H}_r -universality

• XY-interactions (Lidar et al (2002)

$$\mathcal{H} = \mathbb{C}^2 \otimes \mathbb{C}^2 = two\text{-qubit space}$$

$$\mathcal{I}_A = \{\sigma^x \otimes \sigma^x + \sigma^y \otimes \sigma^y, \sigma^x \otimes \sigma^y - \sigma^y \otimes \sigma^x, \sigma^z \otimes Id - Id \otimes \sigma^z\}$$

$$(4)$$
is $\mathcal{H}_1\text{-universal }\mathcal{H}_1 = linear \ span \ of \ |01\rangle \ and \ |10\rangle$

$$(\mathcal{H}_0 = linear \ span \ of \ |00\rangle \ and \ |11\rangle)$$

$$(\mathcal{L}_A) \cong su(2) \Rightarrow \mathcal{H} \ splits \ in \ a \ triplet \ (\mathcal{H}_1) \ and \ two \ singlets \ (\mathcal{H}_0).$$

$$\mathcal{I}'_{A} = \{ \sigma^{x} \otimes \sigma^{x} - \sigma^{y} \otimes \sigma^{y}, \sigma^{x} \otimes \sigma^{y} + \sigma^{y} \otimes \sigma^{x}, \sigma^{z} \otimes \mathbf{Id} + \mathbf{Id} \otimes \sigma^{z} \}$$

$$(5)$$

$$\mathcal{H}_{0}\text{-universal}$$

Remark The codes do not have to be \mathcal{I}_A -invariant subspaces: auxiliary intermediate states ARE allowed

Topological quantum computation [Kitaev, Freedman et al] Code= degenerate ground-state
 protected by a broken topological symmetry Manipulations creating anyon-like excitations, braiding in global, fashion returning into the ground-state.

Again The QUESTION

Given the available set U_A of operations, can some encoded universality be achieved?

An Answer: GO to IRREPS!

• Group representation theory \Rightarrow decomposition of \mathcal{H} according the \mathcal{U}_A -irreps

$$\mathcal{H} = \bigoplus_{J} \mathbb{C}^{n_J} \otimes \mathcal{H}_J \tag{6}$$

the J-th irrep \mathcal{H}_J , with dimension d_J , and multiplicity n_J : symmetries for \mathcal{U}_A e.g., permutational in DFS theory, with n_J -dim irreps

• The group \mathcal{U}_A acts irreducibly over the subspaces $\mathcal{C}_J = |\phi\rangle \otimes \mathcal{H}_J$.

NOTICE: irreducibility does not imply $U_A|_{\mathcal{C}} \cong U(\mathcal{C})$

 \mathcal{U}_A Lie-Group \Rightarrow

If dim $\mathcal{U}_A|_{\mathcal{H}_J}=d_J^2-1$ then \mathcal{U}_A is \mathcal{C}_J -universal where \mathcal{C}_J is any d_J -dimensional subspace of the form $|\phi\rangle\otimes\mathcal{H}_J,$ $(|\phi\rangle\in\mathbb{C}^{n_J}).$

RECIPE

- (0) Determine the group \mathcal{U}_A
- (1) Split \mathcal{H} according the \mathcal{U}_A irreps
- (2) Check $\forall J,\ d_J^2 \dim \mathcal{U}_A|_{\mathcal{H}_J} \geq 0$: If YES $\Rightarrow n_J$ -parameters family of codes for \mathcal{I}_A
- Back to the Two-qubit Example Stabilizer Group $\mathcal{G} = \{ \mathrm{Id}, \sigma^{z \otimes 2} \} \cong \mathbf{Z}_2. \ \mathcal{G}|_{\mathcal{H}_{\alpha}} = (-1)^{\alpha} \mathrm{Id}$ $\mathcal{U}_A = \text{Commutant (of the group algebra } \mathbb{C}\mathcal{G})$ $span\{ \mathrm{Id}, \sigma^z \otimes \mathrm{Id}, \mathrm{Id} \otimes \sigma^z, \sigma^{z \otimes 2}, \sigma^{\alpha} \otimes \sigma^{\beta} \ (\alpha, \beta = x, y) \}.$ (7)

This algebra is universal <u>simultaneously</u> over \mathcal{H}_0 and \mathcal{H}_1 .

Lattice Bosons

- L bosonic modes, $[b_i, b_j^{\dagger}] = \delta_{ij}, \ (i, j = 1, \dots, L).$
- $\mathcal{I}_A = \{b_j^{\dagger}b_i/i, j=1,\ldots,L\}$. The bilinears $b_j^{\dagger}b_i$ span a algebra \mathcal{L}_A isomorphic to u(L).
- The Fock space $\mathcal{H}_F = h_\infty^{\otimes L}$ $(h_\infty$ is the state-space of a single quantum oscillator) splits in su(L)-invariant subspaces \mathcal{H}_N with dimensions $d_{N,L} := \begin{pmatrix} N+L-1 \\ L-1 \end{pmatrix}$ corresponding to the eigenvalues N of the total number operator $\sum_{j=1} b_j^\dagger b_j$.
- Typically $d_{N,L}^2 > L^2 = \dim u(L) \Rightarrow \mathcal{L}_A$ is not \mathcal{H}_{N} -universal. When N=1, with L-arbitrary, one obtains the fundamental irrep for which $d_{1,L}=L$.

Group algebra universality

The group of unitaries over C is given by the restriction to C of the unitary part of the group algebra of U_A i.e., $U(C) = U \mathbb{C} \mathcal{U}_A|_{C}$.

Allowed interactions are completely controllable and belong to the group algebra of a non-abelian group \mathcal{K} i.e., $\mathcal{I}_A \subset \mathbb{C}\mathcal{K}$.

Then the group \mathcal{U}_A is generically \mathcal{C} -universal for all $\mathcal{C} = |\phi\rangle \otimes \mathcal{H}_J$, where \mathcal{H}_J is a \mathcal{K} -irrep space and $|\phi\rangle \in \mathbb{C}^{n_J}$ (n_J is the multiplicity of the J-th irrep)

NOTICE

Tracing out the $|\phi\rangle \Rightarrow$ universal control over the \mathcal{H}_J [Virtual Subystems, Zanardi (2001)]

- One-qubit universality: (one irrep with multiplicity one). A generic Hamiltonian in $\mathbb{C}SU(2)$: $H = \sum_{\alpha=x,yz} \lambda_{\alpha} \sigma^{\alpha}$. This latter is universal over \mathcal{H} .
- N spin 1/2 systems coupled by exchange interactions: $\mathcal{I}_A \subset \mathcal{S}_N$ generic universality in any \mathcal{S}_N -irrep.
- $N = 3 \Rightarrow (\mathbb{C}^2)^{\otimes 3} = 4$ totally symmetric irrep $(J = 3/2) \bigoplus 2$ two-dimensional S_3 irrep (two J = 1/2 SU(2)-irreps).
 - \Rightarrow Two-parameter family of S_3 -codes [Di Vincenzo et al (2000)]

Tensor product structure

State space $\mathcal{H}_N = \mathcal{H}^{\otimes N}$

We assume that $\mathcal{U}_A \subset \mathcal{U}(\mathcal{H}_N) \supset \mathcal{U}(\mathcal{H})^{\otimes N}$ is locally universal i.e., is \mathcal{C} -universal for some $\mathcal{C} \subset \mathcal{H}^{\otimes M}$ $(n := N/M \in \mathbb{N})$.

• Let \mathcal{U}_A be locally universal and $\exists X \in \mathcal{U}_A$ such that $\forall i,j=1,\ldots,M$: i) X acts trivially in all the clusters but the i-th and the j-th; ii) $\mathcal{C}^{(i)} \otimes \mathcal{C}^{(j)}$ is an X-invariant subspace and X is entangling $\Rightarrow \mathcal{U}_A$ is $\mathcal{C}^{\otimes N}$ -universal.

Singlet Coding

- $\rho: \mathcal{K} \to \mathcal{U}(\mathcal{H})$ Group Representation SINGLET SECTOR (Trivial Irrep) $\mathcal{C}_{\rho} := \{ |\psi\rangle \in \mathcal{H} \Rightarrow \rho(\mathcal{K}) |\psi\rangle = |\psi\rangle \}$
- Transformations over C_{ρ} are elements of the commutant $\rho(\mathcal{K})'$ i.e., the singlet is an irrep of that algebra.
- Crucial Fact: $\mathcal{C}_{
 ho^{\otimes N}} \supset \mathcal{C}_{
 ho}^{\otimes N}$

DFS and Exchange Interaction

- $\mathcal{H} \cong \mathbb{C}^d$ and $\mathcal{I}_A =$ exchange Hamiltonians between the different factors in $\mathcal{H}^{\otimes M}$. $\mathcal{I}_A \subset \mathbb{C}\mathcal{S}_M$.
- $(\mathbb{C}S_M)' = M$ -fold tensor representation of SU(d).
- QI is encoded in the SU(d)-singlets: decoherence-free (for collective errors) [Zanardi & Rasetti (1997)]
- For M=2d the state-space contains a two-dimensional SU(2)-singlet sector $\mathcal{C} (= S_N irrep)$
- n = N/M clusters coupled together by Hamiltonians in $\mathbb{C}S_N$ the SU(d)-singlet sector of $\mathcal{H}^{\otimes N}$ strictly includes $\mathcal{C}^{\otimes n} \Rightarrow$
 - exchange Hamiltonians allow generically for universality on the former $\Rightarrow \mathcal{C}^{\otimes n}$ -universality. [Lidar et al]

Conclusions

- General framework for universal quantum control and QIP on subspaces/subsystems
- All physical examples known so far in QIP fit in
- General conditions for obtaining encoded-universality.
- Tool: Algebraic formalism describing error correction/avoidance schemes

DUALITY: between the task of "not allowing many bad things to happen" in error correction and "making as many as good things happen as possible" in quantum control.

DO YOU WANNA KNOW MORE?

P. Zanardi, S. Lloyd, quant-ph/0305013!