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The problem of formulating a quantum self-dual field is an important part of the formulation of
string theory and supergravity. It is very subtle. It was pointed out some time ago by Marcus and
Schwarz [2] that there is no simple Poincaré invariant action principle for the self-dual gauge field.
Since then, much has been written about the action and the quantization of the self-dual field.
Nevertheless, we believe the last word has not yet been said on this problem. The main point of
my talk is to describe a new approach to the formulation of an action principle for self-dual fields.

What is ... a self-dual field? Consider a (4ℓ + 2)-dimensional space-time manifold M equipped
with a Lorentzian metric of signature − + · · ·+. The Hodge ∗ squares to +1 on the middle
dimensional forms Ω2ℓ+1(M), making it possible to impose a self-duality constraint on a field
strength F ∈ Ω2ℓ+1(M):

∗gF
+ = F+. (1)

When we impose (1) the Bianchi identity and equation of motion coincide

dF+ = 0. (2)

A classical field theory describing the self-dual particle is completely specified by these two equa-
tions. The quantum theory, however, is problematic:

• As we have noted, folklore states there is no straightforward Lorentz covariant action.

• An important aspect of the quantum theory is Dirac quantization. In the string theory
literature many authors attempt to impose a Dirac quantization condition of the form

F+ ∈ Ω2ℓ+1
Z

(M), (3)
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i.e. F+ is a closed form with integral periods. However this quantization condition is incom-

patible with the self-duality constraint (1) since the self-duality condition (1) varies continu-
ously with the metric g.

As we will see, both of these difficulties are nicely overcome by the holographic approach.

Holographic approach. To formulate the holographic approach one has to work in Eucledean
field theory. Let (X, gE) be a compact Riemannian (4ℓ + 2)-dimensional manifold. Now the Hodge
star operator ∗E squares to −1 on the space of (2ℓ + 1)-forms. So the self-dual form becomes
imaginary anti-self-dual (IASD):

∗EF
+ = −iF+. (4)

The holographic approach is based on the work by Edward Witten [3, 4], who stressed that the best
way to formulate a self-dual theory is to rely on a Chern-Simons theory in one higher dimension.
The partition function of IASD field on (4ℓ+2)-manifold X as a function of an external current is a
wave function of abelian spin Chern-Simons theory on (4ℓ + 3)-manifold Y where X is a boundary
component of Y .

One advantage of the holographic approach is that it takes proper account of topological aspects
ignored in other discussions. These are not — as is often stated — minor topological subtleties,
but can lead to qualitative physical effects. Even in the simplest example of a chiral scalar in
1 +1 dimensions, that chiral scalar is equivalent to a chiral Weyl fermion. Accordingly, one cannot
formulate the theory without making a choice of spin structure. A higher dimensional analog of
the spin structure we called QRIF (Quadratic Refinement of Intersection Form). QRIF is map Ω
from the integral cohomology H2ℓ+1(X; Z) to U(1) satisfying the equation

Ω(a1 + a2) = Ω(a1)Ω(a2)(−1)(a1∪a2)[X] (5)

for all a1, a2 ∈ H2ℓ+1(X; Z). A choice of solution of this equation is the choice of the theory of
self-dual field.

What are the possible choices of Ω? Two solutions of (5) differ by a homomorphism from H2ℓ+1(X; Z)
to R/Z. By Poincaré duality it follows that any two solutions Ω1 and Ω2 are related by Ω2(a) =
Ω1(a) eiπ(a∪ε)[X] where ε ∈ H2ℓ+1(X, R/Z). If we want Ω to take values ±1 then ε is

2-torsion, i.e. 2ε = 0.

Now, associated to Ω is an important invariant. Note that since the bi-
linear form (a ∪ b)[X] vanishes on torsion classes, Ω is a homomorphism
from Tor H2ℓ+1(X; Z) to R/Z. Since there is a perfect pairing on torsion
classes it follows that there is a µ ∈ Tor H2ℓ+2(X; Z) such that

Ω(aT ) = e2πiT (aT ,µ) = e2πi(α∪µ)[X] (6)
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for all torsion classes aT . In the second equality we have written out the
definition of the torsion pairing T (a, µ), namely, if aT = β(α) where β is the Bockstein map then
we can express it as a cup product. If we choose Ω to be Z2-valued then µ is 2-torsion. Note that
if Ω2(a) = Ω1(a)eiπ(a∪ε)[X] then µ2 = µ1 + β(ε).

Thus, the set of Z2-valued solutions Ω is a torsor for the group of 2-torsion points G = (H2ℓ+1(X, R/Z))2.
The set of solutions with a fixed value of µ is a torsor for the 2-torsion points in the identify
component G0 = W2ℓ+1

2 (X). The group G0 is isomorphic to H̄2ℓ+1(X; Z)/2H̄2ℓ+1(X; Z) where
H̄2ℓ+1(X; Z) denotes the reduction of the cohomology group modulo torsion.

Partition function. The main result of the paper [1] is that the partition function for IASD field
can be written in the form of functional integral:

ZΩ(a+, a−; Σ) = eiπω(ε1,ε2)eiπω(a−,a+)ϑε+σ(Ǎ•,Σ)(a+) (7)

where ε ∈ Ω2ℓ+1
d (X) is defined by Ω and a choice Lagrangian decomposition of the field space (will

be explained below) and

ϑη(a+) = exp
[

iπ(η,F−(η)) +
π

2
B(a+, a+) + 2πiω((a,F−(η))

]

×

∫

V̄1/V12

DR exp
[

iπω(R,F−(R)) − 2πiω(a + η,F−(R))
]

. (8)

All notations will be explained in details in the next section. Let’s briefly go through the equation
(8): R is a closed (2ℓ + 1)-form, F− is a linear operator, ω is a symplectic form. So ω(R,F−(R))
is the quadratic action — a Eucledean action for the self-dual field. The functional integral is
Gaussian and thus can be calculated exactly:

ZΩ(a+, a−)eiπω(ε1,ε2)eiπω(a− ,a+)Ng ϑε
Γ1⊕Γ2

(a+) (9)

where ϑε
Γ1⊕Γ2

(a+) is a classical theta function and Ng is a metric dependent factor coming from
integration over topologically trivial fields. For example, for X = T 2 with the metric ds2 =
1
τ2
|dσ1 − τdσ2|

2 Ng = 1/η(τ) where η(τ) is Dedekind eta function. Not much is known about this
metric dependent factor Ng on general manifold X. Equation (8) is the first equation appeared in
the literature which allows to calculate Ng.

The partition function (7) satisfies quantum Gauss law. In the infinitesimal form it yields quantum

equation of motion (compare with (2)):

d〈F−(R − ε − σ)〉Ǎ,Σ = δ(Σ) − F (Ǎ). (10)

Phase space. The phase space of CS theory can be identified with VR = Ω2ℓ+1(X). The symplectic
form is defined by

ω(v,w) =

∫

X
v ∧ w. (11)

- 3 -



Fourth Simons Workshop in Mathematics and Physics - Stony Brook University, July 24 - August 25, 2006

Note that ω is integral valued on Ω2ℓ+1
Z

(X). To quantize CS theory we need to choose a polarization
of VR. A choice of Riemannian metric gE on X defines a compatible complex structure on VR,
J = −∗E .

Using J we decompose the complexification of VR as

Any vector R± of the complex vector space V ± can be uniquely written as

R± =
1

2
(R ± i ∗E R) (12)

for some real vector R ∈ VR. A symplectic form ω defines a Hermitian form H on V + × V +:

H(v+, w+) := 2i ω(v+, w+) = g(v,w) + iω(v,w) (13)

where g(v,w) =
∫

X v ∧ ∗w. In our notation H is C-linear in the first argument and C-antilinear in

the second: H(u, v) = H(v, u).

To solve the quantum Gauss law we need in addition a C-bilinear form B on V + × V +. However,
there is no natural C-bilinear form on V + × V +. Thus we have to make a choice — this is the
source of all difficulties we had with the SD form.

C-bilinear forms on V + × V + are in one-to-one correspondence with
Lagrangian subspaces of VR. A choice of Lagrangian subspace V2 ⊂ VR

defines an orthogonal coordinate system on VR: R = V2 ⊕ V ⊥
2 where

V ⊥
2 = ∗EV2. Any vector v ∈ VR can be uniquely written as v = v2+v⊥2 .

Actually in the solution of the Gauss law appears only the combina-
tion (H − B) which is defined by

(H − B)(v+, w+) = −2iω(v,F−(w)) (14)

where F−(w) = w⊥
2 + i ∗E w⊥

2 . (H − B) restricted to the diagonal is almost the classical action.
The problem is that (H −B) is not a symmetric form. Note however that if v,w are elements of a
Lagrangian subspace V1 then (H − B)|V +

1
×V +

1

defines a symmetric form. So the Eucledean action
is

SE(R) = −iπω(R,F−(R)) = π

∫

X
(R⊥

2 ∧ ∗R⊥
2 − iR2 ∧ R⊥

2 ) for R ∈ V1. (15)

What is V1? A Lagrangian subspace V1 is defined by the following procedure:
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1. A choice of V2 defines a Lagrangian subspace Γ2 ⊂ Γ = H2ℓ+1
dR (X). We assume that V2 is

such that Γ2 contains a lattice Γ̄2 ⊂ Γ̄ where Γ̄ is the image of integral cohomology under the
natural projection onto de Rham cohomology.

2. Choose a complementary Lagrangian subspace Γ1 ⊂ Γ such that Γ1⊕Γ2 = Γ and Γ̄1⊕Γ̄2 = Γ̄.

3. Define V̄1 = {R ∈ Ω2ℓ+1
d,Z (X) | [R]dR ∈ Γ̄1}. V1 is a Lagrangian subspace, V̄1 is an isotropic

subspace.

Note that by construction SE(R) vanishes on R ∈ V12 where

V12 = V1 ∩ V2 = { exact forms in V2 }. (16)

The transformation R 7→ R + v12 should be considered as a gauge transformation.

Lorentzian action and its properties. Let (M,g) be a Lorentzian manifold. The action in the
Lorentzian signature can obtained from (15) by Wick rotation:

SL(R) := π

∫

X
R ∧ F+(R) = π

∫

M

(
R⊥

2 ∧ ∗R⊥
2 + R2 ∧ R⊥

2

)
(17)

where F+(R) = R⊥
2 + ∗R⊥

2 . This action depends on a choice of Lagrangian subspace V2. For
a Riemannian manifold a choice of V2 automatically defines the Lagrangian decomposition VR =
V2 ⊕ ∗EV2. For a Lorentzian manifold this is not true, and we need to constrain the choice of V2

by the requirement1

V2 ∩ ∗V2 = {0}. (18)

The action (17) has the following properties

1. Variation of the action with respect to R 7→ R + dδc for δc ∈ Ω2ℓ
cpt(M) is

δSL(R) = −2π

∫

M
δc ∧ F+(R) (19)

where F+(R) = R⊥
2 + ∗R⊥

2 . This yields equations of motion: R ∈ V1 and dF+(R) = 0.

2. Metric dependence

δgSL(R) = π

∫

M
(δg−1g)µν F

+ ∧ (dxν ∧ i( ∂
∂xµ )F+) =

∫

M
δgµνTµν(F+) (20)

where Tµν(F+) is the standard stress-energy tensor for self-dual field.

1In principle, V2 can be an arbitrary Lagrangian subspace satisfying the constraint (18). Recall that on any
Lorentzian manifold M there exists a nowhere vanishing timelike vector field ξ. It can be used to define a Lagrangian
subspace V2 ⊂ Ω2ℓ+1(M):

V2(ξ) := {ω ∈ Ω2ℓ+1(M) | iξω = 0}.
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3. (Classical) diffeomorphism invariance. Note that a diffeomorphism from a connected compo-
nent of the identity f ∈ Diff+

0 (M) preserves the Lagrnagian subspace V1: f∗V1 = V1. For
vectorfield ξ with a compact support one finds

δξSL = −2π

∫

M
iξR ∧ dF+(R) +

∫

M
∇µξνTµν(F+). (21)

Thus on equations of motion we have (classical) conservation of the stress-energy tensor.

Dirac quantization. Let us now return to the second conundrum surrounding (3). We see from
(17) that we should distinguish between R and the self-dual flux F+(R). Thus the way out is to
understand the quantization condition in a broader sense: there is an abelian group F+(g, V1, V2)
with nontrivial connected components inside the space of closed self-dual forms Ω2ℓ+1

SD (M), and

the classical self-dual field F+(R) takes values only in this group: F+(R) := R⊥
2 + ∗R⊥

2 where
R = R⊥

2 + R2 and [R]dR ∈ Γ1 − [ε1]. Here ε1 ∈ V1 and ε2 ∈ V2 are characteristics. They are
determined by Ω and Lagrangian subspaces V1 and V2 in the following way.

A choice of Ω0 with µ = 0 is naturally determined by a Lagrangian decomposition of H̄2ℓ+1(X; Z) =
Γ̄1⊕ Γ̄2. Any R ∈ Ω2ℓ+1

Z
(X) can be written as R = R1 +R2 where R1 ∈ V̄1 and R2 ∈ V2∩Ω2ℓ+1

Z
(X).

Since V1 ∩ V2 6= {0} this decomposition is not unique and two different decompositions are related
by adding exact forms in V2. Now define

ΩΓ1⊕Γ2
(R) := eiπω(R1,R2). (22)

Since R1 and R2 are closed it follows that ΩΓ1⊕Γ2
(R) does not depend on a particular choice of

decomposition R = R1 + R2. Moreover ΩΓ1⊕Γ2
takes values in {±1}.
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Given ΩΓ1⊕Γ2
we can parameterize all solutions with µ = 0 by [ε] ∈ Ω2ℓ+1

d (X)/Ω2ℓ+1
Z

(X). So Ω0

can be written as
Ω0(R) = eiπω(R1,R2)+2πiω(ε,R). (23)

If we want Ω0(R) to take values in {±1} then ε is quantized [ε] ∈ Ω2ℓ+1
1

2
Z

(X)/Ω2ℓ+1
Z

(X). In this case

a simple calculation shows that only even solutions (arf(Ω) = +1) can be obtained by a choice of
Lagrangian decomposition.

Example: Chiral scalar on R
2. Consider a Lorentzian manifold M = R

2 equipped with the
metric ds2 = e2ϕ(x,t)(−dt2 + dx2). Choose the Lagrangian subspace V2 as

V2 = {dt ωt(x, t)} ⇒ V ⊥
2 = {dxωx(x, t)}. (24)

The Lagrangian subspace V1 is just the space of all exact 1-forms Ω1
exact(M). So R ∈ V1 decomposes

as
R = dxRx

︸ ︷︷ ︸

R⊥

2

+ dt Rt
︸ ︷︷ ︸

R2

. (25)

The action (17) takes the form

SL(R) = π

∫

R2

dtdxRx(Rx + Rt).

Now for R = dφ the action becomes

SL(φ) = π

∫

R2

dtdx
[

(∂xφ)2 + (∂xφ)(∂tφ)
]

. (26)

This action for the chiral scalar has been proposed before [6]. The equation of motion is

(∂x + ∂t)∂xφ = 0. (27)

Thus the general solution is φ(x, t) = f(t) + φL(x − t). It seems that we get an extra degree of
freedom represented by an arbitrary function of time f(t). However the self-dual field F+ depends
only on φL(x − t). Indeed, substituting the solution to the definition of F+ one finds

F+(φ) = (dx − dt)φ′
L(x − t) (28)

where φ′
L denotes the derivative of φL with respect to the argument.

The extra degree of freedom f(t) is the gauge degree of freedom (16), and it can be removed by
the gauge transformation R 7→ R − df(t) where −df(t) ∈ V1 ∩ V2.

RR fields of type IIA/IIB supergravity. In paper [8] we show that action for Ramond-Ramond
fields of type IIA/IIB supergravity can be obtained from Chern-Simons theory in 11 dimensions.
There are two Chern-Simons theories in 11-dimensions: Chern-Simons-A and Chern-Simons-B
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whose quantization on 11-manifold with boundary yields partition function of RR fields of type IIA
and type IIB supergravity respectively.

For RR fields of type IIA the phase space is VR = Ωev(M). So any element v ∈ Ωev(M) can be
written as a sum of forms of even degree: v = v0 + v2 + v4 + · · · + v10. The symplectic form is

ω0(v,w) =

∫

X
(−v0w10 + v2w8 − v4w6 + v6w4 − v8w2 + v10w0); (29)

In the large volume limit there is a natural choice of lagrangian subspace V2 consisting of forms of
higher degree:

V2 = (Ω6 ⊕ Ω8 ⊕ Ω10)(M). (30)

It defines a lagrangian subspace Γ2 ⊂ Hev

dH
(M) inside the twisted cohomology. Let Γ1 be an

arbitrary complementary subspace. V1 is defined by

V1 = {R ∈ Ω(M)evdH
| [R]dH

∈ Γ1}. (31)

R ∈ V1 decomposes as
R = R0 + R2 + R4

︸ ︷︷ ︸

R⊥

2

+ R6 + R8 + R10
︸ ︷︷ ︸

R2

. (32)

Thus the self-dual flux F+(R) is

F+(R) = R0 + R2 + R4 + ℓ−2
s ∗ R4 − ℓ−6

s ∗ R2 + ℓ−10
s ∗ R0 (33)

The equation of motion dHF+(R) = 0 yields the following system of equations:

dR0 = 0, dR2 − H ∧ R0 = 0, dR4 − H ∧ R2 = 0; (34a)

d(ℓ−2
s ∗ R4) − H ∧ R4 = 0, d(ℓ−4

s ∗ R2) + H ∧ ∗R4 = 0 (34b)

These are the equations of motion for RR fields of type IIA supergravity in the string frame.

The action (17) takes the following form

SIIA(R) = −
π

ℓ10
s

∫

M
R0 ∧ ∗R0 −

π

ℓ6
s

∫

M
R2 ∧ ∗R2 −

π

ℓ2
s

∫

M
R4 ∧ ∗R4

− π

∫

M
(R10 ∧ R0 − R8 ∧ R2 + R6 ∧ R4). (35)

The kinetic terms coincide with the kinetic terms of the RR fields in the string frame. The topo-
logical term looks differently as compared to the usual one. Suppose that M is a boundary of 11

manifold Y and K differential character Č extends to a character ˇ̃C over Y , then

eiπ
R
∂Y

(R10∧R0−R8∧R2+R6∧R4) = eiπ
R

Y
d(R̃10∧R̃0−R̃8∧R̃2+R̃6∧R̃4) = eiπ

R
Y

H̃∧R̃4∧R̃4 . (36)

Notice that in the presence of sources the right hand side is not well defined while the left hand
side is.
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