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In the past year I have worked with a number of colleagues on some ideas which aim to delineate
what is the universality class of the space of effective theories that can be consistently coupled to
quantum gravity [1, 2, 3].

It has become evident that there are many vacua in string theory, some might say too many.
Clearly the attitude that just one single vacuum exists is mistaken. But this was known from the
early days of string theory. Some people had the delusion that by restricting to, say, 4D with N=1
supersymmetry, there might be only one solution. But that is wishful thinking reflecting misguided
theoretical questions. It is usual that physical systems have more than one solution, and string
theory is no exception - even though it is quite a rigid structure. On the other hand, one might
then think that for any apparently consistent effective theory one can produce a string vacuum
compatible with it. This would imply that string theory has no predictive power, being demoted
to a mere custodian of the UV completion of the effective Lagrangian. Of course, it would still
take care of conceptual issues such as black holes, unitarity, etc., but would have no dealing with
experimental and pragmatic questions.

So it seems we should reorient our questions to string theory, so we can benefit from what string
theory can teach us. A natural question is: which theories can appear in string theory and which
cannot? The point I wish to make is that not every consistent-looking garden variety of an effective
Lagrangian appears in string theory. In fact, those that do appear in string theory, despite their
variety, are a relatively rare subset. In some sense they have measure zero in the space of effective
theories. They are very special, for reasons we still do not fully understand. I do not mean by
special that they are anomaly-free, renormalizable, etc. ( in fact, they need not be renormalizable
because gravity might fix their divergencies). How they are special is still a mystery.
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Given an effective matter Lagrangian, we should ask: can it be successfully coupled to quantum
gravity? The theories that allow us to do that belong to the Landscape, those outside the Landscape
belong to the Swampland. We have found three kinds of conjectural criteria distinguishing the
Swampland from the Landscape. These criteria can be checked in the huge amount of examples
provided by string theory, which is the only known consistent theory of quantum gravity. In all the
cases it can be shown that the criteria are violated when gravity is decoupled. By this we mean
that the volume of the internal manifold is taken to infinite, so that the Planck mass in the physical
space becomes infinite.

1. Criteria on the number of fields and their types

For a given spacetime dimension, the number of massless fields is bounded. Also the gauge
groups that can appear are restricted.

As an example, consider U(N) N =4 SYM. From the point of view of effective field theory,
there is no upper limit to N. Note that this is not in contradiction with the fact that for any
N the theory can be realized in a stack of N D3 branes, since in this case gravity exists in
10 dimension, not in 4. As a second example, consider type II theory compactified to six
dimensions. If we compactify to K3, we get gauge groups with finite rank. If the inner theory
is an ALE space C2?/Zy, we do obtain an U(N) gauge theory with any N, but then the inner
theory is non-compact, so gravity is decoupled. A way for mathematicians to disprove this
conjecture (namely, that there are only a finite number of massless particles), would be to
find a sequence of compact Calabi-Yau’s with ever increasing Hodge numbers. But nobody
has found such a sequence.

This conjecture is very strange from an effective theory point of view. A way to justify this
criteria might come from an holographic bound. If we restrict to a finite volume, we could
not possible have arbitrary many fields without violating the amount of information allowed
to that volume.

2. Criteria on the strength of the coupling constants
Gravity is always the weakest force.

Given two equal massive objects charged under a U(1), their electrical repulsion should be
stronger than their gravitational attraction. The statement can be made sharper by saying
that the particle with minimum relation between mass and charge satisfies
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in appropriate units. Note that had we had the opposite relation, the gravitational attraction
would form bound states of charged objects with unbounded charge, which is strange. Now,
for large g, we know that there are extremal black holes which saturate the bound. So we are
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claiming that this bound is saturated from below as ¢ increases. Examples of how this bound
is indeed saturated from below can be obtained from any heterotic string compactification.

Moreover the conjecture states that in a U(1) theory with coupling constant g, there is a new
scale A = gMpjaner, beyond which the theory breaks down. These kind of scales are familiar
from GUT models.

Note that when Mpjunc = 00, gravity is decoupled and there is no restriction. The existence
of this scale is surprising, because in an effective theory, one expects that the theory behaves
better as one makes the coupling g weaker. But here this has the effect of making A smaller,
so the theory is defined for lower ranges of energy. Note that if this were not the case, one
could make the U(1) weaker than gravity by taking ¢ small enough, thus contradicting the
original criterion. This is a very predictive criterion. For example, it predicts that the LHC
will not find U(1) interactions with very weak coupling constants.

3. Criteria on the geometry of the field space

In this case we have the most detailed set of conjectures. Suppouse in our Lagrangian we
have a set of scalar fields ¢,

Leps = 9(¢")ij0u0' 0" ¢ + - --

The fields ¢’ live in a manifold M with metric g(¢%);;. The conjectures about these fields
and the manifold M are:

e All the coupling constants of the theory come from expectation values of these scalar
fields, and can be varied at a finite cost in energy.

e The volume of M, when suitable defined, is finite.
In the string theory examples, this follows from U dualities.

e The possible distances between pairs of points in M are unbounded. In other words, M
has infinite diameter.
This property taken together with the previous one implies that M has directions of
negative curvature.

e Let p,p, € M, and call d(p,pg) their distance in M. As d(p,po) > 1, there appear in
the effective Lagrangian light states with masses

my ~ Ae”Bdppo)

as we keep py fixed and vary p. Since d(p, p,) can grow without bound, there are direc-
tions on M where the theory is singular and is typically described by a dual description
which takes over.
® Hl(./\/l) =0.

One can argue that this is related to the fact that duality symmetries are realized as
discrete gauge symmetries in different points of M. A field theory counter-example for
this is an axion which lives in a circle. So when an axion is coupled to quantum gravity,
it should have a radial direction where the circle shrinks.
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Our examples are all for supersymmetric theories, but we believe the criteria will survive if stable
non-supersymmetric vacua are found in string theory. Clearly there should be many more criteria
and the above three are just the tip of the iceberg.
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