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1 Confining strings: expectations

Many Yang-Mills theories are strongly coupled at low energy

E � Λ ⇒ gY M � 1 . (1)

There are various interesting phenomena associated with the strong coupling regime. One
is ‘confinement’. This means confinement of chromoelectric flux

Unconfined Confined

1/L

Gauss’s law implies that V ∼ 1/r for unconfined theories but V ∼ r for confined
theories. In particular, there is a strong attractive force between sources due to the flux
tube or confining string between them:

q q

These are important objects in the low-energy regime. What are their charges? The
claim is that confining strings are charged under the centre of the gauge group CG. For
G = SU(N), this implies that the confining strings are charged under ZN.

Consider the massless gluons in the theory. Gluon number is not conserved because
there are interactions in the Lagrangian: A3 and A4. The gluons transform in the ad-
joint of the gauge group. Now consider a confining string between sources in a general
representation R of SU(N):

RR

This can be dynamically transformed into another representation by combining the
sources with gluons, which may be created at negligible energy cost R → R⊗A. Dynami-
cally the string will minimise its energy in some representation that can be obtained from
R by tensoring with the adjoint representation. Thus one should not associate a given
representation with the string at all but rather the equivalence class of representations
under adjoint tensoring.
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Such an equivalence class is specified by its N-ality. Representations of SU(N) may
be specified by tensors that transform as follows under Ua

b ∈ SU(N):

Ra1···an

b1···bm

→ Ua1

α1
· · ·Uan

αn
Rα1···αn

β1···βm

U †
b1

β1 · · ·U †
bm

βm . (2)

The N-ality of such a representation is n − m mod N . The adjoint representation has
one upper and one lower index, so tensoring with the adjoint does not change the N-ality.
Therefore N-ality is a well-defined label for confining strings.

The centre of the group are matrices of the form Ua
b = ei2πk/N δa

b for k = 0 . . .N −1.
Under the centre of the group, the tensors transform as

Ra1···an

b1···bm

→ ei2πk(n−m)/NRa1···an

b1···bm

. (3)

Thus, the charge under the centre of the group is the N-ality. Confining strings are
labelled by the N-ality of representations and therefore by their charge under the centre
of the gauge group.

A natural question is: what is the tension, Tk, of the k-th confining string when
the sources are infinitely separated? It is clear from symmetry that Tk = TN−k, but
otherwise this is a nontrivial question about the strongly coupled dynamics of the theory.
This question can be addressed in various ways via dualities for N = 1 SYM

L =
1

2g
tr

[

FabF
ab + iλ̄D/λ

]

. (4)

Note that the fermion is also in the adjoint of the gauge group, with N-ality zero, so pair
creation of fermions will not be able to break confining strings.

After reviewing the results for infinite strings, we will obtain an expression for the
energy of finite confining strings, Eq(r), where the sources are separated by a distance r.
This will be achieved by finding solutions representing the deformation of baryon vertices
into confining strings by pulling q quarks away from the remaining N − q

Deform

q
N−q

N

2 Digression: analogy with superconductors

Type II superconductors can expel magnetic fields by creating Cooper pair currents. These
currents reduce the energy of the superconductor by generating an opposing magnetic field
to cancel the external field. Small vortices of current, Abrikosov vortices, can confine the
magnetic flux into tubes. The dots and crosses in the picture below indicate an azimuthal
current.

B
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The vortices carry a topological Z charge. This is because the Cooper pairs are
described by a scalar field φ which at infinity transverse to the flux tube, S1

∞, must take
values in a U(1) space of vacua. Therefore the vortex corresponds to a map S1 → U(1).
Such maps are topologically classified by π1(U(1)) = Z.

There are non-Abelian versions of these magnetic flux strings. In this case there
may be non-Abelian scalars Φ which often have potentials constructed from commutators
[Φ,Φ] which break SU(N) to its centre ZN. The topological charge of the vortices is now
π1(SU(N)/ZN) = ZN. The similarity of these magnetic strings with the confining electric
strings suggests that confining strings can be studied using electromagnetic duality.

3 Two ways of engineering N = 1 SYM

Start with a Calabi-Yau spacetime, M1,3 × CY, preserving N = 2 supersymmetry and
halve the supersymmetry by adding a wrapped brane.

• IIA: Wrap N D6-branes on the supersymmetric (calibrated) S3 of the deformed
conifold T ∗S3.

• IIB: Wrap N D5-branes on the supersymmetric S2 of the resolved conifold O(−1)⊕
O(−1) → P

1.

In both these setups, the theory on the four noncompact directions of the brane at low
energies is N = 1 SYM. There are no Killing spinors on S3 and S2 with the standard spin
connection. Therefore in order to preserve supersymmetry, the theory in the compact
directions must be twisted, so that the fields are charged under a combination of the
SO(3) or SO(2) structure group of the wrapped cycle and the SO(3) or SO(4) group of
the transverse directions to the D-brane. The combination is such that the connections
cancel, so the Killing spinor equation is

(∂ + ω +A)η = ∂η = 0 , (5)

which does have solutions.
To decouple1 the brane from bulk, one takes the near horizon limit. In this limit the

geometry undergoes a geometric (conifold) transition. We obtain two backgrounds with
RR flux instead of branes.

• IIA: Resolved conifold with
∫

S2 G
RR
2 = N . This background may be lifted to M

theory to give a manifold with G2 holonomy.

• IIB: Deformed conifold with
∫

S3 G
RR
3 = N .

Explicit metrics for these backgrounds are known, but we are only interested in the
low energy theory. The far infrared of the field theory is described by the r → 0 region of
the backgrounds, where r is the noncompact radial direction of the conifolds. In this limit,
the backgrounds become M1,3 ×S2 and M1,3 ×S3 in the IIA and IIB cases respectively,
with N units of RR flux through the spheres:

• IIA infrared background

ds2IIA = e2Φ0

(

dx2
1,3 +N2 1

4

[

dθ2 + sin2 θ dφ2
])

CRR
1 = N 1

2 cos θdφ . (6)

1The decoupling is not complete for these nonconformal theories. The theory is contaminated by both
KK modes and by gravitational (IIA) or little string theory (IIB) modes at the same scale as the scale
dynamically generated by the theory.
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The RR two-form flux is

GRR
2 = dCRR

1 = −N 1
2 sin θ dθ ∧ dφ = −N 1

2volS2 . (7)

• IIB infrared background

ds2IIB = eΦ0

[

dx2
1,3 +N

(

dψ2 + sin2 ψ[dθ2 + sin2 θ dφ2]
)]

CRR
2 = −N

(

ψ −
1

2
sin 2ψ

)

sin θ dθ ∧ dφ , (8)

The RR field strength is thus

GRR
3 = dCRR

2 = −2N sin2 ψ sin θdψ ∧ dθ ∧ dφ = −2NvolS3 . (9)

The ranges of the angles are 0 ≤ ψ ≤ π, 0 ≤ θ ≤ π, 0 ≤ φ < 2π. We are working in
the string frame and Φ0 is the value of the dilaton at the origin.

We will study the deformation of baryons into confining strings in these backgrounds.

4 Baryons (Witten)

Suppose we have an Sp with flux
∫ p

S
GRR

p = N . Can we wrap a Dp-brane on this cycle?
The relevant part of the Dirac-Born-Infeld action for a probe Dp-brane is

SDBI =

∫

dp+1ξL = −Tp

∫

dp+1ξ e−Φ
√

− det(?G+ F) + Tp

∫

F ∧? CRR
p−1 , (10)

where as usual Tp = 1/[(2π)p] and here F = 2πF , the field strength of the worldvolume
gauge field, A. We use ?G and ?CRR

p−1 to denote the pullback onto the worldvolume of the
metric and the RR potential.

If we try to wrap the D-brane on the cycle, then the Wess-Zumino term in the brane
action becomes a source term for the worldvolulme gauge field

Tp

∫

Sp×R

F ∧? CRR
p−1 = −Tp

∫

Sp×R

2πA ∧? GRR
p = N

∫

R

A . (11)

However, the compact spatial section cannot carry a total charge. This follows from the
equations of motion for F which will be off the form

d ? F̃ = ?j = NvolSp . (12)

Although this equation is fine locally, globally it does not make sense because the left
hand side is exact but the right hand side is not. We use F̃ to denote some function of F
following from the DBI action.

Therefore the source term (11) must be cancelled by fundamental strings ending on
the brane. The string contribution to the action is

∫

R
A and therefore we will have N

fundamental strings ending on the Dp-brane.

F1s
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Thus the Dp-brane can only wrap the sphere if it has N fundamental strings ending on
it. Such fundamental strings, which go off to infinity, have the gauge theory interpretation
of external quark sources. A state of N quarks is known to exist in gauge theory and is
called a baryon.

In the IIA background, baryons are D2-branes wrapping the S2, in the IIB background,
they are D3-branes wrapping the S3.

5 Confining strings in IIB (Klebanov-Herzog)

Consider infinite F1 strings in Minkowski space. These are at a point in the S3. The
Myers effect implies that the strings are blown up into a D3 brane wrapping an S2 at
each point. This is a version of the dielectric effect, where charged matter aligns itself to
create a dipole moment that reduces the external electric field.

F1s

D3
S

S x R
R

3

2

The S2 that the branes wrap is at some polar angle ψ0 in the S3. The solution for the
D3-branes with worldvolume coordinates (ξ0, ξ1, ξ2, ξ3) is

t = ξ0 , x = ξ1 , ψ = ψ0 , (θ, φ) = (ξ2, ξ3) ,

F = qdξ0 ∧ dξ1 . (13)

The electric flux on the D-brane, F, interacts with the background RR field through the
Wess-Zumino term. This interaction supports the D-brane from collapsing due to its
tension.

What is the value of ψ0? We can calculate the energy per unit length of the D-brane
configuration

T [ψ0] ∝

[

sin4 ψ0 +

(

ψ0 −
sin(2ψ0)

2
−
πq

N

)1/2
]1/2

. (14)

The energy is minimised by

ψ0 =
πq

N
. (15)

The tension of the resulting minimum-energy D3-brane is

Tq =
eΦ0N

2π2
sin

πq

N
. (16)

Which is a very clean expression for the confining string tension. It has the required
symmetry q → N − q. It is also very similar to the expression for the energy of domain
walls of the theory. Unlike the domain walls, however, the confining strings are not BPS
objects.

6 Finite length confining strings in IIB

The idea is to find D-brane solutions describing confining strings at finite length. This
can be thought of as deformed baryons, in which q of the external quarks are pulled apart
in spacetime from the remaining N − q.
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∆ x

Q 0 Q π
N − qq

To find the solutions, generalise the ansatz of the previous section so that the wrapping
angle and the flux depend on position in spacetime

ψ = ψ(x) , F = k(x)dt ∧ dx . (17)

The nontrivial fact is that one can solve the full second order DBI equations of motion
for this ansatz. One finds a two parameter family of solutions of the form

k(ψ) = −
qπ

N
+ ψ − sinψ cosψ ,

dψ

dx
= Fq,C(ψ) , (18)

where Fq,C(ψ) is an explicitly given function of ψ and two constants q and C. The first
of these parameters corresponds to the fraction of quarks separated and the second is
related to the distance of separation.

From the solution, one can derive the following expression for the energy as a function
of q and C

Eq(C) =
N3/2eΦ0

2π2

∫ π

0

sin2 ψ − (ψ − πq/N)(2 sinψ cosψ − ψ + πq/N)
√

−e2Φ0/C4 + sin4 ψ + (sinψ cosψ − ψ + πq/N)2
dψ. (19)

The separation between the quarks is given by

∆x =

∫ π

0

dψ

Fq,C(ψ)
=

∫ π

0

N1/2eΦ0dψ
√

−e2Φ0 + C4 sin4 ψ + C4(sinψ cosψ − ψ + πq/N)2
. (20)

An infinite length limit in (q, C) arises whenever Fq,C(ψ) has a zero at some point ψ0 ∈

[0, π]. This can be at one end of the string:

or in the middle

In the former case the energy becomes

Eq(∆x) =
eΦ0

2π
q∆x+ · · · as ∆x → ∞ , (21)
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which is just the energy of q F1s, as we should expect.
In the latter case the energy tends to

Eq(∆x) =
eΦ0N

2π2
sin

πq

N
∆x+ · · · as ∆x → ∞ , (22)

recovering the previous result for infinite confining strings.
More interestingly, we can plot the energy as a function of length for different values

of q
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Mass against length for confining strings with q = 4, 6, 8, 10. The background has N = 30
and Φ0 = 1.

As the length goes to infinity, the tension becomes the linear result for infinite confining
strings. It is curious that the curves almost intersect at a single point, call it (L0,M0),
although they do not seem to go through precisely the same point. It seems plausible
that the intersection is exact to subleading order at large ∆x. Mathematically, this fact
requires that the subleading correction to the energy takes the following form

Eq(∆x) ∼
eΦ0N

2π2α′
sin

πq

N
[∆x− L0] +M0 + · · · , as ∆x → ∞ . (23)

This is an interesting result that completely determines the q dependence of the subleading
term. It seems difficult to derive (23) directly from the integral for the mass.

The other limit, ∆x → 0, should not be trusted within the the DBI approximation
because ∂F becomes large.

The main result is the expression for the energy (19) and in particular the subleading
term in the expansion at large separation (23). It would be nice to see whether the
subleading dependence on q/N is generic in other dualities or not, it is curious that it is
precisely such that the expressions for the energy intersect at some separation.

In the IIA/G2 geometry, the only long length limits are of the type when one end
collapses rather than there being a zero of Fq,C(ψ) in the interior of the string.
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