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1 Twistor Spaces

Twistor spaces are certain complex 3-manifolds which are associated with
special conformal Riemannian geometries on 4-manifolds. This correspon-
dence between complex 3-manifolds and real 4-manifolds is called the Penrose
twistor correspondence.

1.1 Complex Curves and Conformal Geometry

To motivate the construction, let us begin by looking at the much simpler
situation that arises in real dimension 2. First of all, we all know that
a complex curve (or Riemann surface) is the same thing as an oriented 2-
manifold M2 equipped with a conformal class [g] of Riemannian (i.e. positive-
definite) metrics.

If g is any Riemannian metric on M , and if u : M → R+ is any smooth
positive function, the new metric g′ = ug is said to be conformally equivalent
to g, and we will convey this relationship here by writing ug ∼ g. An
equivalence class of metrics

[g] = {g′ | g′ ∼ g}

is called a conformal structure on M . Now if an orientation 	 of M is
specified, then (M2, [g], 	) is naturally a complex curve. Why is this true?
Well, rotation by +90◦ defines a certain tensor field J : TM → TM with
J2 = −1. Such a tensor field is called an almost-complex structure. If M
were of higher dimension, we might not be able to find coordinate systems in
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which the components of J are all constant; see section 2.1 below. However,
the relevant obstruction always vanishes in real dimension 2; indeed, Hilbert’s
theorem on the existence of isothermal coordinates asserts that we can always
find local coordinates on M2 in which J takes the standard form

∂

∂y
⊗ dx− ∂

∂x
⊗ dy .

This is of course the same as saying that z = x + iy is a local complex coor-
dinate system with respect to which the given metric g becomes Hermitian.

1.2 Unoriented Surfaces

Now, to motivate the twistor construction, imagine that we are instead given
an unoriented or even a non-orientable surface M2, together with a conformal
structure [g] on M . Can we construct a complex curve from these data
in a canonical way? Certainly! The trick is just to consider the bundle
$ : Z → M defined by

Z =
⋃

p∈M

{
j : TpM → TpM | j2 = −1, j∗g = g

}
.

Then Z is a double-covering of M ; that is, the inverse image of each point
consists of two points j and j′ = −j. Indeed, the 2-manifold Z can be
identified with the set of local orientations of our surface M , and there are
two such orientations at each point:
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Since the tangent space of Z is naturally identified with the tangent space of
M by the derivative of $, there is a natural almost-complex structure J on
Z whose value at j is just $∗j.

Now (Z, J) becomes a (possibly disconnected) complex curve which is
naturally associated with (M, [g]). The natural map

σ : Z → Z

gotten by interchanging the sheets of $ : Z → M satisfies

σ∗J = −J

and
σ2 = identity,

and so is an anti-holomorphic involution of the Riemann surface (Z, J).
The moral of this little parable is that it is a good idea to consider all the

bundle of almost-complex structures compatible with a given metric. In the
next section we will see where this leads in dimension 4.

1.3 Dimension Four

Now let us instead consider an oriented 4-manifold M4, equipped with a con-
formal class [g]. For reasons of technical convenience, let us also temporarily
fix some particular metric g ∈ [g]. We then define a bundle $ : Z → M
define by setting

Z =
⋃

p∈M

{
j : TpZ → TpZ | j∗g = g, j2 = −1, j orientation compatible

}
.

Here the notion of orientation compatibility is liable to cause some con-
fusion. An almost complex structure on a 4-dimensional oriented vector
space is called orientation compatible if there is an oriented basis of the form
(e1, je1, e3, je3). Thus the almost-complex structure

−1
1

−1
1
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is compatible with the standard orientation of R4, whereas
−1

1
1

−1


is instead compatible with the non-standard orientation of R4. Moreover,
any metric-compatible almost-complex structure on the vector space R4 is
represented by one of these two matrices relative to a suitable choice of
oriented orthonormal basis.

What is the fiber of $ : Z → M? To find out, notice that if (M, g) is an
oriented Riemannian 4-manifold, the Hodge star operator

? : Λ2 → Λ2

satisfies ?2 = 1, and so yields a decomposition

Λ2 = Λ+ ⊕ Λ−,

where Λ+ is the (+1)-eigenspace of ?, and Λ− is the (−1)-eigenspace. Both
Λ+ and Λ− are rank-3 vector bundles over M . Reversing the orientation of
M interchanges these two bundles.

Now notice that the matrix
−1

1
−1

1


corresponds (by index lowering) to the self-dual 2-form dx ∧ dy + dz ∧ dt on
R4, whereas the matrix 

−1
1

1
−1


corresponds to the anti-self-dual 2-form dx ∧ dy − dz ∧ dt. Since SO(4) acts
transitively on both the unit sphere in Λ+ and on the set of orientation-
compatible orthogonal complex structures, it follows that the bundle $ :
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Z → M can be naturally identified with the bundle S(Λ+) of unit vectors in
the rank-3 vector bundle Λ+. In particular, we see that every fiber of Z is
diffeomorphic to S2. Moreover, every fiber comes with a natural conformal
class of metrics and an obvious orientation.

Now, in the spirit of the previous section, we want to make Z into an
almost-complex manifold; that is, we want to define a tensor field

J : TZ → TZ, J2 = −1.

Since we have fixed a metric g in our conformal class [g], there seem to be
two obvious choices of this J . Indeed, since the Levi-Civita connection ∇
of g allows us to parallel transport elements j of Z, there is an associated
decomposition TZ = V ⊕ H of the tangent space of Z into vertical and
horizontal parts. The derivative of $ gives us an isomorphism between H
and TM , so we may define a bundle endomorphism

JH : H → H, J2
H = −1

by letting JH act at j ∈ Z by $∗j.
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On the other hand, V is just the tangent space to the fibers, and we have
already indicated that there is a natural way of thinking of every fiber as a
Riemann surface once we choose one of the two possible ways of orienting it.
Thus, we have two natural choices for the fiberwise almost-complex structure,
say

JV : V → V, J2
V = −1,

and −JV . This gives us two natural-looking choices of almost-complex struc-
ture on Z, namely JH ⊕ JV and JH ⊕ (−JV ). However, exactly one of these
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is conformally invariant! That is, if we replace our metric g ∈ [g] with a
conformally related metric ĝ = ug, H will be changed in a manner involving
the first derivative of u, and it is hardly obvious that one of the discussed
choices of almost-complex structure is conformally invariant. In fact, the
conformally invariant choice is

J = JH ⊕ JV

where JV has been chosen to correspond to the “in-pointing” orientation of
the fibers of Z = S(Λ+).

This may seem interesting, but it may not suffice to convince you that
this constitutes the “right” choice of J . However, if you just consider the
example of M = flat Euclidean R4, so that Z = R4 × S2, you will find that
the above (conformally invariant) choice of J turns out to be integrable, in
the sense that it makes (Z, J) into a complex manifold, whereas the other
choice is definitely not. To make this precise, a few words on the integrability
of complex manifolds are now in order.

2 Integrability of Almost-Complex Structures

2.1 Complex and Almost-Complex Manifolds

Suppose we have a manifold X2n with an almost-complex structure

J : TX → TX, J2 = −1.

Then
C ⊗ TX = T 0,1X ⊕ T 1,0X,

where T 1,0 is the −i eigenspace of J , and T 0,1 is the +i eigenspace. Notice
that

T 1,0 = T 0,1,

so that these two eigenspaces are interchanged by complex conjugation.
Moreover,

T 0,1 ∩ T 0,1 = 0.

One says that (X, J) is integrable if there exist coordinates (x1, y1, . . . , xn, yn)
near any point of X in which J becomes the standard, constant-coefficient
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almost-complex structure

J0 =
n∑

j=1

(
∂

∂yj
⊗ dxj − ∂

∂xj
⊗ dyj

)
on R2n = Cn; when this happens, the various choices of such coordinates
systems are interrelated by biholomorphic transformations of Cn, thereby
endowing X with a complex-manifold structure. Since J0 has

T 1,0 = span { ∂

∂zj
} and T 0,1 = span { ∂

∂z̄j
},

a necessary condition for (X, J) to be integrable is that [T 0,1, T 0,1] ⊂ T 0,1,
meaning that the Lie bracket of two differentiable sections of T 0,1 should
again be a section of T 0,1. Remarkably enough, this condition is not only
necessary, but also sufficient:

Theorem 2.1 (Newlander-Nirenberg) The almost-complex manifold
(X2n, J) is integrable, in the sense that there exist local complex coordinates
(z1, . . . , zn) on X in which

T 0,1 = span { ∂

∂z̄j
} ,

if and only if J satisfies the integrability condition

[T 0,1, T 0,1] ∈ T 0,1.

Newlander and Nirenberg’s proof actually only works if J is highly differ-
entiable, but a recent result of Hill and Taylor shows that the above theorem
holds even if we just assume that J is C1.

Notice that the statement of the theorem is exactly parallel to that of
the Frobenius theorem. Indeed, the Frobenius theorem was originally used
to prove the Newlander-Nirenberg theorem in the real-analytic case.

It is also worth remarking that the integrability condition can be restated
without explicit mention of T 1,0. Indeed, it turns out to be equivalent to the
vanishing of the Nijenhuis tensor, which can be expressed, for example, in
terms of an arbitrary symmetric connection ∇ on X as

N c
ab = (∇dJ[a

c)Jb]
d + J c

d∇[aJb]
d.
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2.2 Application to Twistor Spaces

In dimension 4, the Riemann curvature tensor of an oriented manifold splits
up into four invariantly defined pieces:

R = s⊕ ◦
r ⊕W+ ⊕W−.

These pieces are the scalar curvature s, the trace-free Ricci curvature
◦
r, the

self-dual Weyl tensor W+, and the anti-self dual W−. To see, this, remember
that the 2-forms on such a manifold decompose as

Λ2 = Λ+ ⊕ Λ−.

On the other hand, raising an index of the Riemann curvature tensor to
obtain Rij

kl, we may think of it as a linear map R : Λ2 → Λ2, and this linear
map may be considered as consisting of various blocks:

Λ+ → Λ+ Λ− → Λ+

Λ+ → Λ− Λ− → Λ−


This allows us to decompose the curvature tensor as

R =


W+ + s

12

◦
r

◦
r W− + s

12


.

Here W± are the trace-free pieces of the appropriate blocks, and the scalar
curvature s is understood to act by scalar multiplication; the trace-free Ricci

curvature
◦
r= r − s

4
g acts on 2-forms by

ϕab 7→
◦
rac ϕc

b−
◦
rbc ϕc

a.
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The above decomposition of the curvature tensor is perhaps simplest to
understand in terms of spinors. Indeed, in terms of 2-spinor indices, the
decomposition of the curvature tensor becomes

Rabcd = W+
ABCDεA′B′εC′D′ + W−

A′B′C′D′εABεCD

−1

2
r̊ABC′D′εA′B′εCD −

1

2
r̊A′B′CDεABεC′D′

+
s

12
(εACεBDεA′C′εB′D′ − εADεBCεA′D′εB′C′)

where W+
ABCD = W+

(ABCD), W−
A′B′C′D′ = W−

(A′B′C′D′), and r̊ABC′D′ = r̊(AB)(C′D′).

A metric is called anti-self-dual (or, more briefly, ASD) if W+ vanishes.
This is a conformally invariant condition: if g is ASD, so is g′ = ug, for any
positive function u.

Theorem 2.2 (Penrose, Atiyah-Hitchin-Singer) Let (M, [g]) be an ori-
ented 4-manifold with conformal structure. Then the previously-discussed
almost-complex structure J on the 6-manifold Z = S(Λ+) is integrable if and
only if (M, [g]) has W+ = 0.

We thus obtain a complex 3-manifold (Z, J) associated to each anti-self-
dual 4-manifold (M, [g]). This complex manifold is called the twistor space
of (M, g). It turns out that complex structure J of Z completely encodes
the conformal metric of [g], and that one can completely characterize the
complex 3-manifolds which arise as twistor spaces.

Conversely, a complex 3-manifold arises by this construction iff it admits a
fixed-point-free anti-holomorphic involution σ : Z → Z and a foliation by σ-
invariant rational curves CP1, each of which has normal bundle O(1)⊕O(1).
Moreover, the complex manifold (Z, J) and the real structure σ suffice to
determine the metric g on M up to conformal rescaling. This aspect of
the correspondence is particularly important in practice, as it reduces the
problem of constructing ASD metrics to that of constructing certain complex
3-folds.

We now present two simple examples:

Example. Let M = S4, and let [g] be the conformal class of the usual
“round” metric. This metric is conformally flat, and hence ASD. The corre-
sponding complex 3-manifold is just CP3. This may be is a bundle over S4
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via the so-called Hopf map, which arise by thinking of S4 as the quaternionic
projective line HP1.

CP3 = (C4 − 0)/C×

↓
S4 = HP1 = (H2 − 0)/H×

The Hopf map is natural map of quotient spaces induced by the inclusion
C× ↪→ H× of the multiplicative group of non-zero complex numbers into the
multiplicative group of non-zero quaternions. ♦

Example. Recall that the complex projective plane CP2 has a standard
orientation. Let us write CP2 to denote CP2 equipped with the opposite
orientation. Set M = CP2, and let us equip this manifold with the Fubini-
Study metric g. Then [g] turns out to be ASD.

Why? Up to scale, the Fubini-Study metric is completely characterized
by the fact that it is invariant under SU(3). Now the stabilizer of a point of
CP2 is U(2):

CP2 = SU(3)/U(2).

Thus the curvature tensor R must be U(2)-invariant at each point of CP2,
and hence SU(2)-invariant. But at a point of CP2, SU(2) acts on Λ− via
the standard representation of SO(3) = SU(2)/Z2 on R3. This is enough to
imply that (CP2, [g]) has W− = 0. Reversing orientation, we conclude that
(CP2, [g]) has W+ = 0, as claimed.

The twistor space of (CP2, [g]) is quite interesting. Let V ∼= C3 be a
3-dimensional complex vector space, let V∗ denote its dual vector space, and
let P(V) and P(V∗) be the two complex projective planes CP2 one gets from
these two vector spaces. Then the relevant twistor space is the hypersurface
in P(V) × P(V∗) ∼= CP2 × CP2 defined by the incidence relation v · w = 0,
where v ∈ V, w ∈ V∗.

You might guess that the twistor projection $ : Z → M might be a
factor projection ([v], [w]) → [v] or ([v], [w]) → [w]. Wrong! In fact, it is
given by ([v], [w]) → [v×w], where v → v is the anti-linear “index lowering”
map V → V∗ induced by some chosen Hermitian inner product, and where
× is the bilinear cross-product V∗ × V∗ → V induced by contraction with a
non-zero element of Λ3V. ♦
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3 Aside on Super-Manifolds

3.1 Definition of Super-manifolds

A complex super-manifold is consists of an ordinary complex manifold X,
called the bosonic manifold, and an enriched class S of “functions” on X,
where S is a sheaf of graded-commutative algebras which is locally isomorphic
to holomorphic functions with values in a Grassmann algebra Λ•Ck. In the
following discussion, we will in fact only consider examples which are globally
of the simple form

S = O(Λ•E∗) = O(⊕k
j=0Λ

jE∗),

where E is a holomorphic vector bundle of rank k, called the fermionic tan-
gent bundle, and E∗ is its dual vector bundle. The Berezinian line-bundle of
such a complex super-manifold is then defined to be B = K⊗ΛkE, and plays
a rôle similar to the canonical line bundle K = Λn,0 of a complex manifold.
(Notice that the formula for B involves E, rather than E∗; thus, fermionic
directions make a contribution with a “sign” opposite to the contribution of
the bosonic directions, in accordance with the the fact that Berezin’s super-
integration involves derivatives in fermionic directions.) We will say that a
super-manifold is formally super-Calabi-Yau if its Berezinian line bundle is
holomorphically trivial. This idea is important for Witten’s twistor string
theory.

An important example of a complex super-manifold is the super-projective
space CP(n|m), gotten by taking X = CPn, and setting E = O(1)⊕ · · ·O(1)︸ ︷︷ ︸

m

.

The Berezinian line bundle of CP(n|m) is B = O(m−n−1). Thus CP(n|n+1) is
formally super-Calabi-Yau for any n. Witten has drawn our attention to the
special case of CP(3|4), which is to be viewed as a super-symmetric version of
the twistor space of S4.

3.2 Twistor Spaces are Spin

I would now like to point out a recipe for producing an analog of this con-
struction for any ASD 4-manifold. We begin with the observation, due to
Hitchin, that any twistor space Z of a 4-manifold M is automatically spin,
in the sense than w2 = 0. Equivalently, the first Chern class c1 of Z is even,
in the sense that c1 = 2a for some a ∈ H2(Z, Z). This says that there is a
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complex line bundle K1/2 on Z such that K = K1/2 ⊗K1/2. On the face of
it, this is just a topological statement, but since the transition functions of
K1/2 are square-roots of the transition functions of K, there is a natural way
of making K1/2 into a holomorphic line bundle.

Example. Even though M = CP2 is not spin, its twistor space Z ⊂
CP2 × CP2 really is spin. Indeed, the canonical line bundle K of Z is the
restriction of O(−2,−2) from CP2 × CP2, and this is the square of the line
bundle K1/2 obtained by restricting O(−1,−1) to Z. ♦

Example. When M = S4, we have Z = CP3, the canonical line bundle of
which is O(−4). Thus we have K1/2 = O(−2) when M is the (spin) manifold
S4. Moreover, K1/4 also makes sense in this case. This reflects an interesting
general fact: the canonical line bundle of Z has a fourth root if and only if
M is spin. ♦

3.3 Super-Twistor Spaces

Now let Z be the twistor space of any ASD 4-manifold, or more generally just
some complex 3-fold which is spin. We can then cook up a super-symmetric
version of Z, of complex bi-dimension (3|4), by setting E = J1K−1/2, mean-
ing the bundle of 1-jets of of holomorphic sections of K−1/2. An element of
E encodes both the value and the first derivative of a section of K−1/2 at
some point of Z. More precisely, we have an exact sequence

0 → Ω1 ⊗K−1/2 → J1K−1/2 → K−1/2 → 0.

Note, however, by a theorem of Atiyah, this sequence never splits if Z has
c1 6= 0, as will hold whenever Z is a twistor space – the case of particular
interest to us.

Proposition 3.1 With the above choice, (Z,O(Λ•E∗)) is formally super-
Calabi-Yau.

Proof. The adjunction formula tells us that

Λ4E = K−1/2 ⊗ Λ3(Ω1 ⊗K−1/2)

= K−1/2 ⊗ Ω3 ⊗K−3/2
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= K−1/2 ⊗K ⊗K−3/2

= K−1

so that the Berezianian line bundle

B = K ⊗ Λ4E = K ⊗K−1

is trivial. �

The interest of this recipe is that in the particular case of CP3, one has

J1K−1/2 = O(1)⊕O(1)⊕O(1)⊕O(1),

so that the recipe produces CP(3|4) essentially out of thin air. More generally,
J1K−1/2 naturally arises in twistor theory in the context of ambitwistors and
Yang-Mills fields on ASD spaces, so I strongly suspect that this choice of E
will turn out to be the right generalization for twistor string theory.

4 Existence of ASD Metrics

Several natural questions are probably bothering you by now.

• Are there many compact ASD 4-manifolds, or only a few?

• Are the associated twistor spaces usually Kähler manifolds, like the
examples we have seen so far?

• Do the examples we have seen so far fit into some broader algebraic
pattern?

The short answer to the first question is that ASD manifolds exist in
great abundance. The deepest result in this direction is as follows:

Theorem 4.1 (Taubes) Let M4 be any smooth compact 4-manifold. Then
for all sufficiently large integers k � 0, the connect sum

M# CP2# · · ·#CP2︸ ︷︷ ︸
k

admits ASD metrics.
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The connect sums referred to in this statement are defined by iterating
the following construction:

Definition 4.2 Let M1 and M2 be smooth connected compact oriented n-
manifolds.
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via a reflection.

Taubes’ result is very powerful, but it does not by any means allow one
to write down formulas for the relevant metrics. Indeed, it does not even
tell us, for a given M , how large k should be for such a metric to exist —
although the flavor of the proof suggests that the answer might be something
like the numbers of protons in the universe!

Anyway, we now see that the world of ASD 4-manifolds is incredibly rich,
and as is the world of complex 3-manifolds associated to these objects by the
twistor construction. However, these twistor spaces are almost never Kähler!

Theorem 4.3 (Hitchin) If (M4, [g]) is an ASD 4-manifold for which Z is
a Kähler manifold, then either M = S4 or CP2, and [g] is the standard
conformal structure of our previous discussion.
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In particular, there are no other ASD 4-manifolds for which the twistor
spaces are complex projective varieties! However, there are many others for
which the twistor spaces can be obtained from singular projective varieties by
performing small resolutions of the singularities. Such complex manifolds are
called Moishezon manifolds, and while they are in some sense very close to
being projective algebraic, they are quite different from projective varieties
in other important ways. For example, projective algebraic varieties are
necessarily Kähler, but the same is generally not true of Moishezon spaces.

Theorem 4.4 (LeBrun) The 4-manifolds

kCP2 = CP2# · · ·#CP2︸ ︷︷ ︸
k

all admit ASD metrics for which the twistor spaces are Moishezon.

In fact, certain ASD metrics on each of these spaces can be written down
in closed form, and their twistor spaces are equally explicit.

On the other hand, we do not yet have a full classification of all compact
ASD manifolds with Moishezon twistor space. But we do at least have a
partial converse to the previous result:

Theorem 4.5 (Campana, Poon) If M admits an ASD metric for which Z
is Moishezon, then M is homeomorphic to S4 or to a connect sum CP2# · · ·#CP2.

Can one show that M must be diffeomorphic to such a connect sum?
This is certainly true when k is small, but the problem is completely open
when k � 0.

The difference between homeomorphism and diffeomorphism is very im-
portant to mathematicians, but it may be confusing for some physicists.
Recall that a homeomorphism between manifolds is a 1-to-1-correspondence
which respects the notion of continuous function; by contrast, a diffeomor-
phism is a 1-to-1 correspondence which respects the notion of differentiable
function. When mathematicians use the word topological, they generally are
talking about properties which only depend on homeomorphism type. But
when physicists talk about a topological field theory, they mean a field theory
that depends only on the diffeomomorphism type of a manifold. Still, I’m
not sure if physicists are really to blame for this confusion. After all, the
mathematical discipline that studies diffeomorphism types of manifolds is
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known as differential topology! And, at any rate, mathematicians themselves
systematically overlooked this subtle distinction until the second half of the
20th century.

For 4-manifolds, this distinction is particularly dramatic. Let us hence-
forth only consider simply connected manifolds (that is, manifolds in which
any loop can be continuously contracted to a point). Michael Freedman
showed that compact, simply connected 4-manifolds can be completely clas-
sified up to homeomorphism. In particular, in conjunction with a result of
Donaldson, his work implies the following:

Theorem 4.6 (Freedman-Donaldson) Any smooth compact simply con-
nected non-spin 4-manifold is homeomorphic to a connect sum

jCP2#kCP2 = CP2# · · ·#CP2︸ ︷︷ ︸
j

# CP2# · · ·#CP2︸ ︷︷ ︸
k

.

However, for “most” values of j and k, it is now known that there are
infinitely many distinct differentiable structures on these manifolds; more-
over, many of these differentiable structures had gone undetected until only
a couple of years ago. In short, while we have a pretty good picture of the
“topology” of 4-manifolds, their “differential topology” is an ongoing story,
with no end in sight.

Now if M is any 4-manifold, M#CP2 is non-spin, so the simply con-
nected case of Taubes’ theorem concerns manifolds homeomorphic to some
jCP2#kCP2. Now let’s focus on the standard differentiable structure, and
ask for what values of j and k this connect sum admits ASD metrics. For ex-
ample, Taubes’ theorem tells us that there are enormous values of k for which
CP2#kCP2 admits ASD metrics. But k fortunately doesn’t really have to
be astronomical for this to work. Indeed, here’s some relevant late-breaking
news:

Theorem 4.7 (Rollin-Singer) The 4-manifold CP2#kCP2 admits ASD met-
rics for every k ≥ 10.

This improves a decade-old result of LeBrun-Singer, which made the same
assertion for k ≥ 14.

Using a general gluing construction of Donaldson-Friedman, the Rollin-
Singer result immediately allows one to read off the following:
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Corollary 4.8 The 4-manifold jCP2#kCP2 admits ASD metrics if k ≥ 10j.

These metrics are not completely explicit, but the construction does give
an approximate geometric picture of them. Things are even better at the
twistor-space level, where the Donaldson-Friedman construction really takes
place.

I can only hope that this brief discussion has conveyed something of the
richness of ASD manifolds and their twistor spaces. We already know some
remarkable things about these objects, but I am convinced that we have as
yet only scratched the surface of the subject. Taubes’ theorem tells us that
4-manifolds can effectively be geometrized, in a way that is natural from the
point of view of several complex variables. I can only hope that, following
Witten’s lead, string theorists will now open our eyes to new and unexpected
vistas on this wild world of complex 3-folds and 4-dimensional geometries.
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