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Abstract

These are written up notes of the talk I gave at Simons Workshop 2004,
based on preprints hep-th/0402153,0403002,0403038 co-authored by J.
Gauntlett, J. Sparks, and D. Waldram. I review the construction of some
supersymmetric solutions of 11d supergravity of the type AdS5×M6 where
M6 are complex P1 bundles over Kähler four-manifolds, closely resembling
twistor spaces. Then I discuss the dualization of some of these solutions
yielding new Sasaki–Einstein metrics on S2 × S3. In addition, I briefly
review basic facts about Sasaki–Einstein geometry and discuss general
features of the field theory duals of these geometries.



1 Supersymmetric AdS5 ×M6 solutions

Our first goal is to construct supersymmetric solutions of eleven dimensional su-
pergravity which contain a (warped) AdS5 factor in the metric. The strategy will
be to consider the most general ansatz for the four-form flux G and Killing spinor,
compatible with the AdS5 symmetry.

Recall that the bosonic fields of 11d supergravity are a metric gMN and a four-
form GMNPQ. A supersymmetric solution of this theory is a configuration obeying
the condition

δψM = ∇̂Mη − 1

288

(
GNPQRΓ̂NPQR

M − 8GMNPQΓ̂NPQ
)

η = 0 (1.1)

which sets to zero the variation of the gravitino field, the G equation of motion and
Bianchi identity

d ∗̂G +
1

2
G ∧G = 0

dG = 0 (1.2)

and the Einstein equations. Our metric ansatz is the following

dŝ2
11 = e2λ(x)[ds2(AdS5) + ds2(M6)] (1.3)

where the warp-factor λ is a function on M6. The G field has arbitrary components
(to be determined) along M6, while the spinorial supersymmetry parameter is of the
form

η = ψ ⊗ ξ (1.4)

where, crucially, ξ is a non-chiral spinor on M6 and ψ is a Killing spinor in AdS5,
namely it obeys

∇µψ = i
2
mγµψ . (1.5)

Of course a non-chiral spinor in six dimensions can be always decomposed in its chiral
components, which are irreducible representations of Spin(6)

ξ = ξ+ + ξ− (1.6)

while ξ constitutes the minimal representation on which the Clifford algebra Cliff(6, 0)
acts in the usual way. So, although naively we seem to have more than minimal
supersymmetry, it turns out that the presence of non-trivial flux imposes a relation
between ξ+ and ξ− giving back minimal supersymmetry in d = 61. One can easily
show that if ξ is a chiral spinor, then G = 0, λ is constant, and the geometry
degenerates to R1,4×CY3.

1Thanks to Martin Rocek for asking clarifications on this point.
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In order to analyse systematically the geometries obeying these equations, we
utilize the formalism of G − structures, introduced in [1]. The idea is to consider
certain p−forms arising as spinorial bilinears, and use the supersymmetry equations
to constrain them. In the present situation, this will allow us to make contact with
Kähler geometry.

A (complex) non-chiral spinor ξ is equivalent to a “local SU(2)-structure” in six
dimensions2. This means that SU(2) is the stabilizer group of ξ in Spin(6) ' SU(4).
Using the concrete correspondence

ξ ↔ Yi1...ip = ξ̄γi1...ipξ (1.7)

where γi1...ip ∈ Cliff(6, 0), one is lead to considering the following set of forms on M6

sin ζ = ξ̄γ7ξ, K
1, K2, J, Ω (1.8)

where J, Ω are (1, 1) and (2, 0) forms respectively and KA are one-forms “orthogonal”
to them, namely iKAJ = 0, etc.

After some work (see [2] for details), we are able to constrain the geometry as
follows. The metric on M6 can be cast in the form

ds2
6 = e−6λ[ds2(M4) + sec2 ζdy2] + 1

9m2 cos2 ζ(dψ + ρ)2 . (1.9)

This is naturally adapted to the Killing vector dual to K2, i.e. K2# = sec ζ∂/∂ψ,
while K1 ∼ dy does not give rise to a second Killing vector. At any fixed y, we also
have

d4J = 0

d4Ω = iP ∧ Ω (1.10)

which implies that ds2(M4) is a family (parameterized by y) of Kähler metrics. Note
that P is the connection on the canonical line bundle of M4 and it is related to the
one-form ρ as follows

P = ρ− i(∂4 − ∂̄4) log cos ζ . (1.11)

The non-trivial part of the problem is contained in some first order “dynamical”
equations, governing the evolution of the geometry along y. These are

∂

∂y
J = −2

3
yd4ρ

∂

∂y
vol4 = F [ζ,

∂ζ

∂y
] (1.12)

2Note that although the mathematical definition of a G-structure requires that relevant p−forms,
or equivalently spinors, are globally defined, this is by no means true for the notion of G-structure
which is useful in String Theory (supergravity). As one is interested in solving supersymmetry
equations, which are local, one does not have to require a priori that the corresponding spinors/forms
be globally defined.
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where F is a specific function whose form we don’t need here. Finally, the flux G is
completely determind in terms of the geometrical data, namely in terms of ζ, λ,KA, J
and their first derivatives (see [2] for more details).

We have characterized the conditions for supersymmetry in terms of the data on
a family of Kähler four-manifolds and their evolution along y. At this point one is
typically stuck, since imposing the Bianchi identity for G gives rise to nasty second
order PDE’s which one can’t solve. Luckily, we can use the following fact

Lemma [2]: for all AdS5×M6 geometries of 11 dimensional supergravity, supersym-
metry implies the equations of motion and dG = 0.

Note that typically one can use integrability of supersymmetry equations to show
that most components of the equations of motion hold. However, these arguments do
not give any information on the Bianchi identities, which one has to impose separately.
It is a remarkable fact that in our case, these are also implied by supersymmetry3.

2 Complex P1 bundles

The conditions discussed so far have reduced the problem to a small number of
coupled first order equations, with clear geometrical meaning. We didn’t try to find
the general solution to this system — this indeed might still be rather complicated.
Instead, with one additional assumption, it will be possible to construct in closed
form all the solutions to the system. The assumption that we are going to make is

Assumption: ds2(M6) is a Hermitian metric on a complex manifold M6, with respect
to the natural complex structure inherited from the spinorial bilinears.

This in turn simplifies the conditions considerably, namely

d4ζ = 0 d4λ = 0 ∂yρ = 0 (2.1)

and
ρ = P (2.2)

implying that ρ is identified with a connection on the canonical line bundle of M4.
Thus at fixed generic y, the resulting 5-manifold is the total space of a U(1) bundle
over M4, which is just the U(1) bundle associated to the canonical line bundle L
of M4. Recalling the expression for the metric (1.9), and using the explicit form of
the function cos ζ(y), one has to check that the full six dimensional metric is smooth
(complete) when cos ζ has zeros or poles. One then finds that taking y to lie in
a suitable interval [y1, y2], all the necessary requirements are met. In this way the
coordinates (y, ψ) parameterize a smooth P1: this is the P1 in the title of the talk. In
fact, this P1 is fibered over M4, and all complex (non-singular) solutions are indeed

P1 → M4 . (2.3)

3We do not have a proof that this is a generic phenomenon, for flux compactifications to AdS.
Note however that the same fact is true for the M-theory AdS3 ×M8 geometries analyzed in [3].
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One can give a more detailed description of these bundles – quite intriguely these
are very closely related to the twistor spaces, as reviewed by C. LeBrun in his lecture
[4].

In particular, M6 can be viewed as the total space of the bundle of unit self-
dual two-forms over M4. Here one thinks of each P1 fibre as being a unit sphere in
R3 = R⊕C with the factor of R being the polar direction on the P1. The P1 bundle
may then be viewed as the unit sphere bundle in an R3 bundle, with the transition
functions acting only in the R2 = C part of the fibre. The rank 3 real bundle thus
splits into a direct sum O⊕LR of a trivial real line bundle O, and (the realisation of)
the complex canonical line bundle L. Recall that the two-forms on M4 decompose
into self-dual and anti-self-dual two-forms:

Λ2M4
∼= Λ+M4 ⊕ Λ−M4 . (2.4)

and these further decompose (since M4 is Kähler) as

Λ+M4
∼= R[J ]⊕ LR

Λ−M4
∼= Λ1,1

0 M4 . (2.5)

Here Λ1,1
0 M4 denotes the bundle of primitive (1, 1)-forms i.e. 2-forms which are

orthogonal to the Kähler form J , and are invariant under the action of the complex
structure. Thus we see that the bundle of self-dual two-forms splits as Λ+M4

∼= O⊕LR
where O is a trivial real line bundle generated by the Kähler form on M4. It is clear
that the R3 bundle over M4 associated with our metrics is in fact the bundle of
self-dual two-forms.

It is quite tempting now to identify the bundles as twistor spaces. We will show
momentarily that this is not quite correct. However, first we have to recall a couple
of useful theorems.

Lemma[2]: at any fixed y the Ricci tensor Rij(M4) on M4 has two pairs of constant
eigenvalues.

Proof: Let < = d4P be the Ricci form of M4. Using the “dynamical” equations
(1.12), we have that

< = − 3

2y
∂yJ <+ = 3m2e−6λ sec2 ζ (1 + 6y∂yλ) J (2.6)

hence the scalar curvature of M4 (R ≡ Rijg
ij) is constant

d4R = 0 . (2.7)

Moreover, using the fact that ∂yP = ∂yJi
j = 0 we find

Rij = − 3

2y
∂ygij , ∂yRij = 0 . (2.8)
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Note that the first equation is called a “Ricci-flow” in the maths literature. Collecting
all these simple facts, it is trivial to check that

RijR
ij =

3

2y
∂yR (2.9)

and hence
d4(RijR

ij) = 0 . (2.10)

Thus concluding the proof.

We can now feed the result of this lemma into the following theorem, in order to
list all the possibilities for the Kähler base four-manifold. We have

Theorem [Th. 2 of [5]]: A compact Kähler four-manifold whose Ricci tensor has two
distinct pairs of constant eigenvalues is locally the product of two Riemann surfaces
of (distinct) constant curvature. If the eigenvalues are the same the manifold is
Kähler–Einstein.

The compactness in the theorem is essential4, since there exist non-compact coun-
terexamples. However, for AdS/CFT purposes, we are most interested in the compact
case (for example, the central charge of the dual CFT is inversely proportional to the
volume).

Using this, we can write down simple ansatze for the dependence of the Kähler
metric on y. Moreover, quite remarkably, it turns out that the resulting equations are
simple enough that one can integrate them in closed form. The metric functions we
obtain in this way will depend on certain integration constants. The last step we have
to carry out is to check for which (if any) ranges of these integration constants the
metrics are complete, and non singular metrics on the total space of the P1 bundles
described above.

In summary, we have found that the following cases yield non-singular metrics:

i) Kähler–Einstein case:

The metric takes the form

ds2 = 1
3
e−6λ

(
1− y2

)
ds̃2(M4) + e−6λ sec2 ζdy2 +

1

9m2
cos2 ζ(dψ + P̃ )2 (2.11)

where ds̃2(M4) is a y-independent KE metric on the four-dimensional base satisfying
<̃ = d4P̃ = J̃ , with e.g.

e6λ =
2m2(1− y2)2

cy + 2 + 2y2
. (2.12)

We find that:

For 0 ≤ c < 4 we have a one-parameter family of completely regular, com-
pact, complex solutions with the topology of a P1 fibration over a positive
curvature KE space.

4It is also assumed that the Goldberg conjecture on almost Kähler manifolds is true.
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Since four-dimensional compact Kähler-Einstein spaces with positive curvature have
been classified [6, 7], we have a classification for the above solutions. In particular,
the base space is either P1× P1 or P2, or CP 2#nCP 2 with n = 3, . . . , 8. For the first
two examples, the KE metrics are of course explicitly known and this gives explicit
solutions of M-theory when fed into the above solutions.

ii) Product base

Now we consider the case where the base is a product of two constant curvature
Riemann surfaces. Here the metric has the following form

ds2 = 1
3
e−6λ

(
a1 − k1y

2
)
ds̃2(C1) + 1

3
e−6λ

(
a2 − k2y

2
)
ds̃2(C2)

+ e−6λ sec2 ζdy2 +
1

9m2
cos2 ζ

(
dψ + P̃

)2

(2.13)

where the y-independent metrics ds̃2(Ci) describe constant curvature Riemann sur-
faces with curvature ki ∈ {0,±1}. In other words the metrics on Ci are the standard
ones on either tori T 2, spheres P1 or hyperbolic spaces5 H2.

First suppose that one of the Riemann surfaces is the flat torus. In this case,
non-singular solutions arise only if the second Riemann surface is a P1. The general
solution for the warp factor is then:

e6λ =
2m2(a− y2)

1− cy
(2.14)

where a, c are integration constants. A detailed analysis reveals that:

For 0 < a < 1 and c 6= 0 we have a one-parameter family of completely
regular, compact, complex solutions that are topologically trivial P1 bundles
over P1 × T 2. A single additional solution of this type is obtained when
c = 0 and a 6= 0.

These will be the focus for the second part of the talk. The remaining non-singular
solutions that we have found are P1 → P1 × P1 and P1 → P1 ×H2. More details can
be found in [2].

Before turning to the second main topic of the talk, let us come back to an
issue risen earlier, namely how do the P1 bundles that we constructed differ from the
seemingly identical twistor space construction. Recall the following classical theorem,
as reviewed in C. LeBrun’s lecture [4]:

Theorem [8]: If (M4, [g]) is a self-dual (respectively, anti-self-dual) conformal Rie-
mannian manifold, its twistor space is a complex 3-manifold Z whose underlying

5Note that although we assumed compactness, H2 factors naturally arise as solutions of the
equations. These are clearly non-compact. However we can in principle quotient by some group
Γ to obtain compact higher genus Riemann surfaces. In this case one needs to check that this
operation doesn’t break supersymmetry.
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6-manifold is the total space of the sphere bundle of the rank-three real vector bun-
dle of anti-self-dual (respectively, self-dual) 2-forms.

Recall that by definition, a self-dual (SD) Riemannian manifold is such that its Weyl
tensor obeys W = ∗W . Conversely, for an anti-self-dual (ASD) manifold W = −∗W .

There is another theorem which we need to recall here:

Theorem [8]: A Kähler four-manifold M4 is ASD (with respect to the standard
orientation) iff its scalar curvature vanishes.

Now it’s easy to see that, since in our solutions the scalar curvature does not van-
ish, the corresponding M4 four-manifolds can not be ASD, in particular they may be
SD6. Thus we conclude that the P1 bundles in question are not twistor spaces. Notice
that we can’t simply reverse the orientation of M4, as this operation would swap the
meaning of self-duality for the Weyl tensor and the two-forms simultaneously.

3 Dualization to type IIB

For the rest of the talk we will concentrate on the solutions in the second class, where
M4 is taken to be T 2 × P1. The metric on M6 is now, schematically

ds2
6 ∼ ds2(T 2) + ds2(base P1) + ds2(fiber P1) (3.1)

and its isometry group is clearly

U(1)2 × SU(2)× U(1)R (3.2)

where each factor acts on the corresponding metric block, and we have denoted U(1)R

the isometry corresponding to the ∂/∂ψ Killing vector, which makes up the azimutal
coordinate on the fiber P1.

We would like now to perform a reduction to type IIA and subsequently a T-
duality to type IIB theory, thus we have to decide which U(1)’s to pick. The point
here is that the choice is not arbitrary, and it is dictated by requiring supersymmetry
to be preserved by these two operations.

The following example illustrates why one should be concerned with this issue.

Example: AdS5 × S5 is notoriously a (maximally) supersymmetric solution of type
IIB supergravity, when supplemented with appropriate self-dual five-form flux. Now,
the five-sphere can be viewed as an S1 bundle in the following way S1 → S5 → CP 2,
where the fibered S1 ' U(1) is an isometry. One can then T-dualize along this
direction, thus “untwisting” the fibration, and obtaining a type IIA solution of the
type AdS5×CP 2×S1, with appropriate fluxes. However, this is not a supersymmetric
solution of type IIA supergravity.

6For instance P2 with its Einstein metric is SD, while P1 × P1 is neither SD nor ASD.
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The reason why one breaks supersymmetry in this example is that the Killing
spinors are not invariant along the S1 we are using in the T-duality. In more physical
language, we say that they are “charged” with respect to the corresponding U(1).
Now, the U(1) in question is part of the field theoretical R-symmetry group, which
in this case is SO(6) ' SU(4), and the reason why the Killing spinors are charged is
because they correspond to the supercharges of the dual N = 4 superconformal field
theory.

Coming back to our solutions, one can convince oneself that the Killing spinors
are by construction charged with respect to the ∂/∂ψ direction, which was indeed
denoted U(1)R above. As these solutions correspond to N = 1 supersymmetry in the
dual field theory, this is indeed the full R-symmetry group. In conclusion, if we want
to preserve supersymmetry in the process, we must perform the dualization along the
T 2, whose crucial role now becomes clear. Following the standard rules, we are lead
to the following chain:

M-theory reduction Type IIA T-duality Type IIB

AdS5 ×M6 −→ AdS5 ×X4 × S1 −→ AdS5 ×X5

G flux RR and NS flux Φ=const, F5 ∼vol(AdS5)

Let us write down the resulting IIB metric:

ds2(X5) =
1− cy

6
(dθ2 + sin2 θdφ2) +

1

w(y)q(y)
dy2 +

q(y)

9
[dψ − cos θdφ]2

+ w(y) [dα + A]2 (3.3)

with

w(y) =
2(a− y2)

1− cy

q(y) =
a− 3y2 + 2cy3

a− y2

A =
ac− 2y + y2c

6(a− y2)
[dψ − cos θdφ] . (3.4)

Recall that we started from a P1 bundle over P1 × T 2 and we came down along the
T 2. On the first line of (3.3) one recognizes the remnant of this bundle, namely a
P1 → P1, while the second line arises from T-dualizing one circle in T 2. We will turn
to a detailed discussion of these metric momentarily.

We now face a potential “puzzle”: if the reduction hasn’t broken any supersym-
metry, as we claimed, then we seem to have a supersymmetric solution of type IIB
supergravity, of the type AdS5 ×X5 – for these, it is well known that X5 must be a
Sasaki–Einstein manifold. So, before proceeding further, it will useful to review some
basic aspects of Sasaki–Einstein geometry.
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4 Sasaki–Einstein geometry

There are a few different ways to define a Sasaki–Einstein structure on an odd dimen-
sional manifold. The original definition involved a specific type of contact structure
– we will come back to it shortly. The handiest definition is perhaps the following

Definition/proposition: A manifold X admits a Sasaki–Einstein structure if and
only if its metric cone C(X) is a (non-compact) Calabi–Yau manifold.

A metric cone is simply the naive metric

ds2(C) = dr2 + r2ds2(X) . (4.1)

Examples:

i) X is a sphere S2n−1 with its round metric → C(X) = R2n

ii) X = T 11 ' S2 × S3 → C(X) =singular conifold (defined by uv = xy)

Both these metric cones are well known Calabi–Yau metrics. In general, there is
always a natural CY metric associated to any SE manifolds. (These are the CY’s in
title of the talk).

The geometric data of a SE structure are summarized as follows:

• a unit-norm Killing Vector V = ∂
∂φ

• its dual one-form η

• a two-form K such that (in a conventional normalization) dη = 2K

One important aspect of SE manifolds is that they admit “Killing” spinors7 obey-
ing (in a conventional normalization)

∇mε =
i

2
γmε . (4.2)

Note that this condition follows easily from the reduction (along r) of the covariantly
constant spinors on the associated Calabi–Yau. The existence of these spinors is
the reason why, when combined with AdS5 and appropriate five-form flux, Sasaki–
Einstein manifolds provide supersymmetric backgrounds of type IIB supergravity

Fact: AdS5×X5 (with non-trivial RR F5) where X5 is a Sasaki–Einstein manifold, is
a supersymmetric solutions of type IIB supergravity, preserving 8/32 supersymmetry.

7Note that in the mathematical literature “Killing” spinors are by definition those obeying equa-
tion (4.2) above, whereas in supergravity one denotes loosely as “Killing” spinors any spinor obeying
a given supersymmetry equation.
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4.1 “Transverse geometry”

In order to appreciate the results presented in [9, 10], we will need to introduce a
finer characterization of Sasaki–Einstein manifolds. This is achieved using the Killing
vector V , which naturally induces a (2n) + 1 split of the geometry. The properties of
this vector, or equivalently, of the 2n-dimensional part, then characterize more finely
the geometry.

Specifically, V defines a foliation, whose leaves are the 2n-dimensional part we
alluded to above. Note that this is a local concept. To be concrete, let us introduce
a metric adapted to the Killing vector V = ∂/∂φ. In these local coordinates, the
metric takes the form

ds2(SE) = ds2
2n + (dφ + η)2 (4.3)

and it turns out (in fact just using the geometric data recalled) that ds2
2n is locally

a Kähler–Einstein metric, with Kähler form K. Recall that the Einstein condition
means that the Ricci tensor is proportional to the metric: Rij = sgij, for some con-
stant s. The exact nature of the KE leaves, determines the type of SE manifold, in
the following way:

Regular. In this case (ds2
2n, K) is a positive-curvature Kähler–Einstein manifold

M2n. Moreover, the orbits of the Killing vector V close, so that there is a well-
defined U(1) action. This action is also free, so that taking the quotient doesn’t
give rise to fixed points. We have that M2n = X2n+1/U(1) and the Sasaki–Einstein
manifold is then a circle bundle over M2n, that is U(1) → M2n.

Quasi-regular. Here one still has a U(1) action as the orbits of V close. However
now taking the quotient one introduces orbifold singularities. In this case (ds2

2n, K)
defines a positive-curvature Kähler–Einstein orbifold M̃2n. Similarly to the regular
case, we have that M̃2n = X2n+1/U(1) and the total space is the circle orbi-bundle
U(1) → M̃2n.

Irregular. This case is the less intuitive one, however it is also the generic one.
Here the orbits of V do not close so that there isn’t a U(1) action associated to the
canonical Killing vector V . In this case (ds2

2n, K) is simply not globally defined and
the operation “M2n = X2n+1/U(1)” doesn’t make sense.

It is important to remark that in all three cases the Sasaki–Einstein spaces are
smooth compact manifolds, equipped with complete metrics, irrespective of the trans-
verse geometry. In particular, in the non-regular cases, the singularities of the “base”
and of the “fibration” compensate in a non trivial way.

A useful way to understand the nature of the irregular geometries is as follows.
One can show [11] that irregular SE manifolds admit a T 2 ' U(1)×U(1) subgroup of
isometries. Normalize this to be a square torus, and denote A and B its generators.
Now, the canonical Killing vector V must be embedded in the T 2, hence we have

V = rA + sB (4.4)

10



for some coefficients r, s. The point is that these coefficients need not be rational
numbers. In particular, if these are irrationals, the orbit of V will densely cover the
torus8.

Let us now have a glance at the state of the art about the construction of Sasaki–
Einstein manifolds. We concentrate here on five-dimensional manifolds.

Regular. Using the fact that they are in one-to-one correspondence with four-
dimensional KE manifolds, these are completely classified using the results of Tian
and Yau [6, 7]. In fact the possibilities are the following:

1) S1 → S5 → CP 2 (and S5/Z3)

2) S1 → T 11 → P1 × P1 (and T 11/Z2)

3) S1 bundles over del Pezzo surfaces Pk with k = 3 . . . 8

The metrics are of course known explicitly only for the first two examples.

Quasi-regular. Until recently there were no examples known. Using algebraic geo-
metric techniques some examples have been constructed recently (see e.g. [12] for a
review). These include Sasaki–Einstein metrics on connected sums l#S2 × S3, with
l = 1 and higher. In particular, it is shown in [13] that there exist 14 inequivalent
quasi-regular SE metrics on S2 × S3. However none of these metrics are known ex-
plicitly.

Irregular. The algebraic geometric techniques mentioned above, can only produce
quasi-regular examples. So, no examples of irregular SE metrics were known to exist.

So, the natural question arises as to how do the metrics on X5 that we found fit in
this picture. Perhaps the metrics are singular and therefore meaningless? Or perhaps
they are diffeomorphic to some of the few examples known?

Luckily enough, after careful analysis, it will turn out that in fact these are new
explicit, non-regular, Sasaki–Einstein metrics!

5 Back to the type IIB solutions

In the following we will answer to the positive the following question:

Question: Are the metrics ds2(X5) “honest” Sasaki–Einstein metrics?

The strategy to understand these solutions splits in two parts: I) local analysis
and II) global analysis.

8This case is called irregular of rank 2. The rank n is the number of generators of a given square
Tn in terms of which V can be written.
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The local analysis consists in making sure that the metrics admit local Killing
spinors of the type recalled. This is guaranteed by the fact that we started with
a supersymmetric solution of M-theory and we have reduced an T-dualized along
“supersymmetric” directions, i.e. the flat two-torus. The most direct way to confirm
this fact, is to find a change of coordinates which brings the metric in the canonical
Sasaki–Einstein form (4.3). This is readily achieved posing 6α = −β − ψ′, ψ = ψ′

in (3.3). Moreover, after setting ρ2 = 2(1 − y)/3, the local four-dimensional metric
looks like

ds2
4 =

1

∆
dρ2 +

ρ2

4

(
σ2

1 + σ2
2 + ∆σ2

3

)

∆ = 1 +
4(a− 1)

27

1

ρ4
− ρ2 (5.1)

where σi are the usual one-forms on S2, i.e. dσ1 = σ2 ∧ σ3, etc. It was shown in
[14] that these metrics are indeed locally KE for any 0 < a ≤ 1. However, it was
also shown there that they are singular, unless a = 1, for which they reduce to the
Einstein metric on CP 2.

Let us now turn to the (more interesting) global analysis. As just shown, the
metric written in the canonical form, seems to be singular. However, now we have
an option, that is to go back to the original coordinates in which the metric was
obtained. Recall that it arose from dualizing a P1 → P1× T 2 bundle in M-theory. In
fact, it’s easy to convince oneself that the metric on the first line of (3.3) obtained
“forgetting” the T 2 is just a P1 → P1 bundle. We can be more precise. Recalling that
these bundles are classified by π1(SO(3)) = Z2, and calculating the corresponding
Chern number to be 2, we conclude that it is a topologically trivial bundle. As a
complex surface, this is called second Hirzebruch surface, and is denoted

F2 = P (O ⊕O(−2)) 'topologically S2 × S2 . (5.2)

We have then established the existence of a globally well defined four-dimensional
metric hidden in the full five-dimensional one. The hope is now to use this as a base
of U(1) fibration.

In fact, α is a coordinate on a circle S1 and the full space is indeed a U(1) bundle
(where α is the fiber coordinate) over F2 if A can be made into a connection. This is
true if the integrals of its curvature over a basis of two-cycles on F2 are integers:

1

2π

∫

Σi

dA

`
= p, q (5.3)

with Σi a basis for the second homology group H2(F2,Z) = Z ⊕ Z, and ` a suitable
coefficient.

A detailed analysis reveals that it is possible to chose the parameter a appropri-
ately to satisfy this requirement, for any integer p > q. We therefore conclude that we
constructed infinitely many (labelled by two integers p and q) new Sasaki–Einstein
metrics on U(1) bundles

U(1)p,q → Y p,q → S2 × S2 . (5.4)
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Let us conclude with a few remarks:

The global topology. It is possible to show that if p, q are co-prime, then

Y p,q ' S2 × S3 (5.5)

while a common factor h implies that the topology is simply a quotient of this by Zh.

A close relative. The attentive reader should have noticed by now the striking
similarity with the construction of Einstein metrics on S2×S3, denoted in the physics
literature T p,q. Indeed these metrics arise as U(1) bundles on P1×P1 (with its round
direct product metric), and are topologically S2× S3 for p, q coprime. Schematically

Y p,q 'as bundles T p,q . (5.6)

The main difference is that the metrics Y p,q are also Sasaki, therefore admit Killing
spinors, while the T p,q metrics are not, except for T 11. Correspondingly, the metric
cones are Calabi–Yau for Y p,q, while they are Ricci-flat, but not Kähler for T p,q.

Non-regular metrics. It is obvious that these metrics cannot be regular, in
the sense reviewed above. They are in fact generically irregular. Moreover, it turns
out that the metrics are quasi-regular if a certain quadratic Diophantine equation is
satisfied, namely

4p2 − 3q2 = n2 (5.7)

where n is an integer. It is possible to show that there are infinitely many solutions
to this equation.

Volumes. It is straightforward to compute a volume formula in terms of p and
q. This reads

vol(Y p,q) =
q2[2p + (4p2 − 3q2)1/2]

3p2[3q2 − 2p2 + p(4p2 − 3q2)1/2]
π3

It then turns out that in the general, irregular case, the volumes are given in terms
of square roots of rational numbers, while they are rational if and only if the metrics
are quasi-regular. We thus uncover9 a first surprising feature of irregular SE metrics:
their volumes are generically irrational!

6 AdS/CFT and N = 1 SCFT

We will close in this section with a brief discussion of the most immediate physical
application for the new Sasaki–Einstein metrics we discovered.

9Recall that these are the first examples of irregular metrics which have appeared in the litera-
ture. For quasi-regular metrics one can prove that the volumes must be rational numbers. This is
essentially because of the existence of a four-dimensional base Kähler–Einstein orbifold.
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According to the AdS/CFT correspondence, type IIB supergravity on AdS5×X5,
where X5 is Sasaki–Einstein, should be dual, in the large N limit, to a N = 1
super conformal field theory (SCFT), arising on N D3-branes placed at the tip of the
Calabi–Yau cone C(X5).

The isometries of X5 then correspond to global symmetries of the SCFT. More
precisely, the isometry group will be in general

F × U(1)R (6.1)

where the first factor is a “flavor” symmetry and the second is the R-symmetry. In
addition, the SCFT will be characterized by a central charge c which is inversely
proportional to the volume of X5

c ∼ 1

vol(X5)
. (6.2)

The simplest example (after X5 = S5) of this construction is given by the coni-
fold10 “uv = xy”, whose dual SCFT was identified in [16]. In fact, it’s fear to say
that this is the only example!

There are many ways to arrive at a guess for the SCFT, which are based on a
detailed knowledge of the conifold, as well as of the corresponding Sasaki–Einstein
metric T 11. In particular, the gauge group and the field content are most easily in-
ferred from the defining equations for the conifold, and it turns out that the complete
theory is a quiver SCFT, with gauge group SU(N) × SU(N) with bi-fundamental
chiral fields and a suitable superpotential. Moreover, the theory has a global sym-
metry group inherited from the isometries of T 11, which is SU(2)× SU(2)× U(1)R,
and a central charge c = 27/16.

In order to appreciate the implications of our supergravity results in the context
of the AdS/CFT correspondence, it is useful to summarize some recent results on
general N = 1 SCFT in four dimensions due to [17]. In [17] the authors presented
a method for determining uniquely the R-symmetry of an N = 1 SCFT, using a
procedure dubbed “a-maximization”. Recall that a SCFT usually arises as the infra-
red fixed point of some (possibly Lagrangian) field theory, and it is far from obvious
to determine the various R-charges, or the anomalous dimensions of the operators in
the chiral ring.

Recalling that the central charges are given in terms of the R-symmetry generators
by

a =
3

32
(3Tr R3 − Tr R) c =

1

32
(9Tr R3 − 5Tr R) , (6.3)

the procedure advocated in [17] is implemented as follows: consider a “trial” R-
symmetry

Rt = R0 + ΣIs
IFI (6.4)

10See for instance Vafa’s lectures in this workshop for a nice introduction to conifolds [15].
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where R0 is a possible R-symmetry assignment, FI are generators of U(1) factors
contained in F , and sI are a priori real coefficients.

“a-maximization” [17]: the exact R-symmetry is the one that maximazes (locally)
the central charge a. In particular it is determined by solving the equations

9Tr (R2FI) = Tr FI Tr (RFIFJ) < 0 . (6.5)

One of the consequences of this result is that

Fact: all N = 1 four-dimensional SCFT’s are “algebraic”, i.e. their R- and central
charges are square roots of rational numbers.

Let us finally come back to the new Sasaki–Einstein metrics Y p,q and discuss them
in the light of these results. The full isometry group of the metrics is

SU(2)× U(1)× U(1). (6.6)

Recall that the T 2 action indeed played a fundamental role in the construction of the
metrics. In fact, although the geometry naturally picks a Killing vector, the canonical
SE vector, which corresponds to the R-symmetry of the SCFT, this generically can
not be integrated to a U(1) action. So generically (for irregular metrics) the R-
symmetry will be non compact, since the corresponding generator has non compact
orbits - namely it densely covers a two-torus. Quite remarkably, the corresponding
central charges (which are inversely proportional to the volumes) will be generically
irrational, and rational iff the R-symmetry group is compact.

So, the CFT predictions of our metrics, using the AdS/CFT dictionary, are in
perfect agreement with the results reported in [17]! We can summarize the situation
in the following diagram

Geometry: Y p,q is irregular ⇔ vol(Y p,q) is irrational
m m

SCFT: non-compact R-symmetry ⇔ irrational central charges a, c

In conclusion, we have reported on a completely new mathematical construction of
(in-homogeneous) Sasaki–Einstein metrics. This generalizes to arbitrary dimensions,
as described in [10] and it is conceivable that the general principles underlying it can
be applied to the construction of other types of special geometries, like 3-Sasakian,
or G2 metrics.

Moreover, using the AdS/CFT correspondence, the new metrics on S2 × S3 are
expected to correspond to a family of N = 1 SCFT’s arising at the singularity of the
corresponding Calabi–Yau cones. It will be of extreme interest to find an appropriate
description of these non-compact Calabi–Yau’s, and to shed light on the nature of
the singularities.
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Of course, from the physical point of view, the ultimate challenge will be to fully
uncover the details of dual conformal field theories.

Note:

I originally planned to conclude the talk with a description of how the five-dimensional
construction of [9] has been generalized in [10] to any dimension, thus providing at
once infinitely many irregular Sasaki–Einstein metrics in arbitrary dimensions. Due
to lack of time, this topic was only briefly mentioned, and so I will not include it in
these notes.
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