
These notes

This is a very preliminary draft of the notes from Cumrun Vafa’s lectures at the Simons

Workshop in 2004. Many references and clarifications still have to be added, and there are

no doubt some errors and typos which need to be corrected. A more definitive version will

appear later.

1 Calabi-Yau spaces

1.1 Definition of Calabi-Yau space

We begin with a review of the notion of “Calabi-Yau space.” A Calabi-Yau space is a

manifold X with a Riemannian metric g, satisfying three conditions:

• I. X is a complex manifold. This means X looks locally like Cn for some n, in the

sense that it can be covered by patches admitting local complex coordinates

z1, . . . , zn. (1.1)

In particular, the real dimension of X is 2n, so it is always even. Furthermore the

metric g should be Hermitian with respect to the complex structure, which means

gij = gīj̄ = 0, (1.2)

so the only nonzero components are gij̄.

• II. X is Kähler. This means that locally on X there is a holomorphic function K

such that

gij̄ = ∂i∂j̄K. (1.3)

Given a Hermitian metric g one can define its associated Kähler form, which is of type

(1, 1),

k = gij̄dzi ∧ dz̄j. (1.4)

Then the Kähler condition is dk = 0.

• III. X is Ricci-flat. Constructing the Ricci curvature R as usual from g, we require

that

Rij = Rij̄ = Rīj̄ = 0. (1.5)
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Spaces satisfying the conditions I, II, III above are a natural setting for topological string

theory. Although some of these conditions can be relaxed to give “generalized Calabi-Yau

spaces,” with correspondingly more general notions of topological string, the examples which

have played the biggest role in the development of the theory so far are honest Calabi-Yaus.

Therefore, in this review we focus on the honest Calabi-Yau case.

Except in the simplest examples, it is difficult to determine the Ricci-flat Kähler metrics

on Calabi-Yau spaces. Nevertheless it is important and useful to know when such a metric

exists, even if we cannot construct it explicitly. A crucial tool in this respect is Yau’s Theorem

[1], which states that if X admits some metric satisfying conditions I and II, then it also

admits a metric satisfying condition III if and only if it obeys the topological constraint

c1(X) = 0. (1.6)

Here c1 refers to the first Chern class of the tangent bundle. The condition (1.6) is equivalent

to the existence of a nonvanishing holomorphic n-form Ω on X; if Ω exists, the volume form

of the Ricci-flat metric is (up to a scalar multiple)

vol = Ω ∧ Ω̄. (1.7)

Strictly speaking Yau’s Theorem as stated above applies to compact X, and has to be

supplemented by suitable boundary conditions at infinity for non-compact X. For physical

applications we do not require that X be compact; in fact, as we will see, many topological

string computations simplify in the non-compact case, and this is also the case which is

directly relevant for the connections to gauge theory.

1.2 Examples of Calabi-Yau spaces

1.2.1 Dimension 1

We begin with the case where the complex dimension n = 1. In this case one can easily

list all the Calabi-Yau spaces.

The simplest example is just the complex plane C, with a single complex coordinate z,

and the usual flat metric

gzz̄ = −2i. (1.8)

In this case the holomorphic 1-form is simply

Ω = dz. (1.9)
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Figure 1: A rectangular torus; the top and bottom sides are identified, as are the left and

right sides.

The next simplest example is C× = C \ {0}, with its cylinder metric

gzz̄ = −2i/|z|2, (1.10)

and holomorphic 1-form

Ω = dz/z. (1.11)

Finally there is one compact example, namely the torus T 2 = S1 × S1. We can picture

it as a rectangle which we have glued together at the boundaries, as shown in Figure 1.

This torus has an obvious flat metric, namely the metric of the page; this metric depends

on two parameters R1, R2 which are the lengths of the sides, so we say we have a two-

dimensional “moduli space” of Calabi-Yau metrics on T 2, parameterized by the pair (R1, R2).

It is convenient to repackage them into

A = iR1R2, (1.12)

τ = iR2/R1. (1.13)

Then A describes the overall area of the torus, while τ describes its complex structure. A

remarkable fact about string theory is that the theory is in fact invariant under the exchange

A↔ τ. (1.14)

This is the simplest example of “mirror symmetry,” which we will discuss further in Section

4.1. Here we just note that the symmetry (1.14) is quite unexpected from the viewpoint
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Figure 2: A torus with a more general metric; again, opposite sides of the figure are identified.

of classical geometry; for example, when combined with the obvious geometric symmetry

R1 ↔ R2, it implies that string theory is invariant under A↔ 1/A!

We could also consider a more general torus as in Figure 2; this is still a Calabi-Yau

space. It is natural to include such tori in our moduli space by letting the parameter τ have

a real part as well as an imaginary part. But then in order for the symmetry (1.14) to make

sense, A should also be allowed to have a real part; in string theory this real part is naturally

provided by an extra field, known as the “B field.” For general X this B field is a class in

H2(X,R), which should be considered as part of the moduli of the Calabi-Yau space along

with the metric. In our case X = T 2, H2(X,R) is 1-dimensional, and it exactly provides the

missing real part of A.

1.2.2 Dimension 2

Now let us move to Calabi-Yau spaces of complex dimension 2. Here the supply of

examples is somewhat richer.

One can obtain simple examples by taking Cartesian products of the ones we had in

dimension 1, e.g. C2,C × C×,C × T 2. There are various other non-compact examples as

well in d = 2, such as the ALE spaces; these also play an important role in string theory,

but we will not discuss them here. Instead we move on to the compact examples. Up to

diffeomorphism there are only two, namely the four-torus T 4 and the “K3 surface.” We focus

here on K3.

The fastest way to define K3 is to obtain it as a quotient T 4/Z2, using the Z2 identification

(x1, x2, x3, x4) ∼ (−x1,−x2,−x3,−x4). (1.15)

Strictly speaking, this quotient gives a singular K3 surface, with 16 singular points which are
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the fixed points of (1.15). Nevertheless, the singular points can be “blown up” (this roughly

means replacing them by embedded 2-spheres, see e.g. [2]) to obtain a smooth K3 surface.

In string theory both the singular K3 and the smooth K3 are allowed; the singular K3 gives

a special sublocus of the moduli space of K3 surfaces.

One can also define the K3 surface directly by means of algebraic equations. To begin

with we introduce an auxiliary space CPn, defined as follows: CPn consists of all (n+1)-tuples

(z1, . . . , zn+1) ∈ Cn+1, excluding the point (0, 0, . . . , 0), modulo the identification

(z1, . . . , zn+1) ∼ (λz1, . . . , λzn+1), (1.16)

for all λ ∈ C×. Then CPn is an n-dimensional complex manifold, roughly because we can

use the identification (1.16) to eliminate one coordinate. CPn is not a Calabi-Yau space by

itself. To get the Calabi-Yau space K3 we consider the equation

P4(z1, . . . , z4) = 0, (1.17)

where P4 is some homogeneous polynomial of degree 4. Then we define K3 to be the set of

solutions to (1.17) inside CP3. Since CP3 is 3-dimensional and (1.17) is 1 complex equation,

K3 so defined will be 2-dimensional. Note that in order for this definition to make sense it

is important that P4 is a homogeneous polynomial — otherwise the condition (1.17) would

not be well-defined after the identification (1.16).

Different choices for the polynomial P4 give rise to different K3 surfaces, in the sense

that they have different complex structures, although they are all diffeomorphic. P4 has 20

complex coefficients, but the equation (1.17) is obviously independent of the overall scaling

of P4, so this rescaling does not affect the complex structure of the resulting K3; all the

other coefficients do affect the complex structure, so one gets a 19-parameter family of K3

surfaces from this construction. 1

So far we have only discussed K3 as a complex manifold, but it is indeed a Calabi-Yau

space. It is easy to see that it is Kähler since it inherits a Kähler metric from CP4. To see

that it has a Ricci-flat Kähler metric one can invoke Yau’s Theorem, as we mentioned in

Section 1.1; that reduces the task to showing that K3 has c1 = 0. By using the “adjunction

formula” from algebraic geometry [2] one finds that given a polynomial equation of degree d

inside CPk−1, the resulting hypersurface X has

c1(X) ∼ (d− k)c1(CPk−1). (1.18)

1These are not quite all the complex moduli of K3 — there is one more complex deformation possible,
for a total of 20, but after making this deformation one gets a surface which cannot be realized by algebraic
equations inside CP3.
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In this case we took d = k = 4, so c1(X) = 0 as desired. This shows the existence of the

desired Calabi-Yau metric, but its explicit form is not known except at special points in the

moduli space.

1.2.3 Dimension 3

Now we move to the case which is most interesting for topological string theory. In d = 3

the classification problem is far more complicated, even in the compact case; while in d = 1

and d = 2 we had just T 2 and T 4, K3 respectively, in d = 3 it is not even known whether the

number of compact Calabi-Yau spaces is finite. So we content ourselves with a few examples.

The quintic threefold. This is defined similarly to our algebraic construction of K3

above; namely we consider the equation

P5(z1, . . . , z5) = 0, (1.19)

where P5 is homogeneous of degree 5. The solutions of (1.19) inside CP4 give a 3-dimensional

space which we call the “quintic threefold.” It is a Calabi-Yau space again using (1.18) just

as we did for K3.

It has 101 complex moduli, and is in some sense the simplest compact Calabi-Yau three-

fold. As such it has been extensively studied, e.g. as the first example of full-fledged mirror

symmetry [3].

Local CP2. One non-compact Calabi-Yau can be obtained by starting with four complex

coordinates (x, z1, z2, z3), subject to the condition (z1, z2, z3) 6= (0, 0, 0), and making the

identification

(x, z1, z2, z3) ∼ (λ−3x, λz1, λz2, λz3) (1.20)

for all λ ∈ C×. Mathematically, this space is known as the total space of the line bundle

O(−3) → CP2; we can think of it as obtained by starting with the CP2 spanned by z1, z2, z3

and adjoining the extra coordinate x. See Figure 3.

The rule (1.20) then characterizes the behavior of x under rescalings of the homogeneous

coordinates on CP2, or equivalently, it determines how x transforms as one moves between

different patches on CP2. Locally, our space has the structure of CP2 × C. In this sense it

has “4 compact directions” and “2 non-compact directions.”

Although this geometry is non-compact, it can arise naturally even if we start with a

compact Calabi-Yau — namely, it describes the geometry of a Calabi-Yau space containing

a CP2, in the limit where we focus on the immediate neighborhood of the CP2.
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    CP2 

 (z1,z2,z3)

 C
(x)

Figure 3: A crude representation of the local CP2 geometry, O(−3) → CP2.

Local CP1. Similarly, we can start with four complex coordinates (x1, x2, z1, z2), subject

to the condition (z1, z2) 6= (0, 0), and make the identification

(x1, x2, z1, z2) ∼ (λ−1x1, λ
−1x2, λz1, λz2) (1.21)

for all λ ∈ C×. This gives the total space of the line bundle O(−1) ⊕ O(−1) → CP1.

Similarly to the previous example, it is obtained by starting with CP1, which has “2 compact

directions,” and then adjoining the coordinates x1, x2, which contribute “4 non-compact

directions.” See Figure 4.

This example is also known as the “resolved conifold,” a name to which we will return

shortly.

Local CP1 × CP1. Another standard example comes by starting with five complex

coordinates (x, y1, y2, z1, z2), with (y1, y2) 6= (0, 0) and (z1, z2) 6= (0, 0), and making the

identification

(x, y1, y2, z1, z2) ∼ (λ−1µ−1x, λy1, λy2, µz1, µz2) (1.22)

for all λ, µ ∈ C×. This gives the total space of the line bundle O(−2,−2) → CP1 × CP1. It
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    CP1

 (z1,z2)

   C2

(x1,x2)

Figure 4: A crude representation of the local CP1 geometry, O(−1)⊕O(−1) → CP1.

has four compact directions and two non-compact directions.

Deformed conifold. All the local examples we discussed so far were “rigid,” in other

words, they had no deformations of their complex structure.2 Now let us consider an example

which is not rigid. Starting with the complex coordinates (x, y, z, t) ∈ C4, this time without

any projective identification, we look at the space of solutions to

xy − zt = µ. (1.23)

This gives a Calabi-Yau 3-fold for any value µ ∈ C, so µ spans the 1-dimensional moduli

space of complex structures. If µ = 0 then the Calabi-Yau has a singularity at (x, y, z, t) =

(0, 0, 0, 0), known as the “conifold singularity.” For finite µ it is smooth. Since we obtain the

2Strictly speaking, this is a delicate statement since we should specify what kind of boundary conditions
we are imposing at infinity. When we say that these local examples are rigid we essentially mean that the
compact part, e.g. CP1 or CP2, has no complex deformations.
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smooth Calabi-Yau from the singular one just by varying the parameter µ, which deforms

the complex structure, we call the smooth version the “deformed conifold.”

1.3 Conifolds

In the last section we introduced the singular conifold

xy − zt = 0, (1.24)

and the deformed conifold

xy − zt = µ. (1.25)

We now want to describe another way of smoothing the conifold singularity. First rewrite

(1.24) as

det

x z

t y

 = 0. (1.26)

This equation is equivalent to the existence of nontrivial solutions tox z

t y

 ξ1
ξ2

 = 0. (1.27)

Indeed, away from (x, y, z, t) = (0, 0, 0, 0), (1.26) just states that the matrix has rank 1,

so (ξ1, ξ2) solving (1.27) are unique up to an overall rescaling. So away from (x, y, z, t) =

(0, 0, 0, 0) one could describe the singular conifold as the space of solutions to (1.27), with

(ξ1, ξ2) 6= (0, 0), and with the identification

(ξ1, ξ2) ∼ (λξ1, λξ2) (1.28)

where λ ∈ C×. But at (x, y, z, t) = (0, 0, 0, 0) something new happens: any pair (ξ1, ξ2)

now solves (1.27). Taking into account (1.28), (ξ1, ξ2) parameterize a CP1 of solutions. In

summary, (1.24) and (1.27) are equivalent, except that (x, y, z, t) = (0, 0, 0, 0) describes a

single point in (1.24), but a whole CP1 in (1.27). We refer to the latter space as the “resolved

conifold.” (In fact, it is isomorphic to the local CP1 geometry we considered above.)

Mathematically this discussion would be summarized by saying that the resolved coni-

fold is obtained by making a “small resolution” of the conifold singularity. We emphasize,

however, that physically it is natural to consider this as a continuous process, contrary to

the usual mathematical description in which it seems to be a discrete jump. This is because

physically we consider the full Calabi-Yau metric rather than just the complex structure.
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Namely, the resolved conifold has a single Kähler modulus for its Calabi-Yau metric,3 natu-

rally parameterized by

t = vol(CP1). (1.29)

In the limit t → 0 the CP1 shrinks to a point and the Calabi-Yau metric on the resolved

conifold approaches the Calabi-Yau metric on the singular conifold. So the resolved conifold

is obtained by a Kähler deformation of the metric without changing the complex structure,4

while the singular conifold is obtained by deforming the complex structure.

Since the conifold is such an important example it will be useful to describe it in another

way. Namely, by a change of variables we can rewrite (1.25) as

x2
1 + x2

2 + x2
3 + x2

4 = r. (1.30)

Describing it this way it is easy to see that there is an S3 in the geometry, namely, just look

at the locus where all xi ∈ R. The full geometry where we include also the imaginary parts

of xi is in fact isomorphic to the cotangent bundle, T ∗S3.

This space is familiar to physicists as the phase space of a particle which moves on S3;

it has three “position” variables labeling a point x ∈ S3 and three “momenta” spanning the

cotangent space at x. Now we want to describe its geometry “near infinity,” i.e. at large

distances, similar to how we might describe the infinity of Euclidean R3 as looking like a

large S2. In the case of T ∗S3 the position coordinates are bounded, so looking near infinity

means choosing large values for the momenta, which gives a large S2 in the cotangent space

R3. Therefore the infinity of T ∗S3 should look like some S2 bundle over the position space

S3, i.e. locally on S3 it should look like S2 × S3. It turns out that this is enough to imply

that it is even globally S2 × S3.

So at infinity the deformed conifold has the geometry of S2 × S3. As we move toward

the origin both S2 and S3 shrink until the S2 disappears altogether, leaving just the S3 with

radius r which is the core of the T ∗S3 geometry (the zero section of the cotangent bundle.)

See Figure 5.

As r → 0 the metric approaches the metric of the singular conifold; the singularity at

the “tip” of the cone can be seen in Figure 5. Also, from this perspective, the S2 which

appears when we go to the resolved conifold seems very natural; in some sense it was in the

game to begin with, as we see from the S2 at infinity. The resolved conifold geometry just

3Once again, we are here considering only variations of the metric which preserve suitable boundary
conditions at infinity.

4Mathematically, the resolved conifold and the singular conifold are not the same as complex manifolds,
but they are birationally equivalent. Physically we want to consider birationally equivalent spaces as really
having the same complex structure.
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Figure 5: The three conifold geometries: deformed, singular and resolved.

corresponds to giving this S2 a finite size even at the tip of the cone. So all three cases —

deformed, singular, and resolved — look the same at infinity; they differ only near the tip

of the cone. This is exactly what we expect since we were trying to study only localized

deformations (normalizable modes, in physics language.)

In summary, we have two different non-compact Calabi-Yau geometries: the deformed

conifold, which has one complex modulus and no Kähler moduli, and the resolved conifold,

which has no complex moduli but one Kähler modulus; and we can interpolate from one

moduli space to the other by passing through the singular conifold geometry.

We will return to the conifold repeatedly in later sections. For more information about

its geometry, including the explicit Calabi-Yau metrics, see [4].

2 Toric geometry

Now we want to introduce a particularly convenient representation of a special class

of algebraic manifolds, which includes and generalizes some of the examples we considered

above. Mathematically this representation is called toric geometry ; for a more detailed

review than we present here, see e.g. [5].

Cn. We begin with Cn, with complex coordinates (z1, . . . , zn) and the standard flat

metric, and parameterize it in an idiosyncratic way: writing

zi = |zi|eiθi , (2.1)

we choose the coordinates ((|z1|, θ1), . . . , (|zn|, θn)). This coordinate system emphasizes the

symmetry U(1)n which acts on Cn by shifts of the θi. It is also well suited to describing the
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Figure 6: The positive octant O3+, which we identify as the toric base of C3.

symplectic structure given by the Kähler form k:

k =
∑

i

dzi ∧ dz̄i =
∑

i

d|zi|2 ∧ dθi. (2.2)

Roughly, splitting the coordinates into |zi|2 and θi gives a factorization

Cn ≈ On+ × T n, (2.3)

where On+ denotes the “positive orthant” {|zi|2 ≥ 0}, represented (for n = 3) in Figure 6.

Namely, at each point of On+ we have the product of n circles obtained by fixing |zi|
and letting θi vary. However, when |zi|2 = 0 the circle |zi|eiθi degenerates to a single point.

Therefore (2.3) is not quite precise, because the “fiber” T n degenerates at each boundary

of the “base” On+; which circle of T n degenerates is determined by which |zi|2 vanishes, or

more geometrically, by the direction of the unit normal to the boundary. When m > 1 of

the |zi|2 vanish, the corresponding m circles of T n degenerate, until at the origin all n cycles

have degenerated and T n shrinks to a single point. In this sense all the information about

the symplectic manifold C3 is contained in Figure 6, which is called the “toric diagram”
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|z3|
2

Figure 7: The toric base of CP2; geometrically it is just a triangle, but here we show it

naturally embedded in R3 and cut out by the condition (2.4).

for C3; when looking at this diagram one always has to remember that there is a T 3 over

the generic point, and that this T 3 degenerates at the boundaries in a way determined by

the unit normal. Despite the fact that the T 3 becomes singular at the boundaries, the full

geometry of C3 is of course smooth. (Of course, all this holds for general n as well as n = 3,

but the analogue of Figure 6 would be hard to draw in the general case.)

CPn. Next we want to give a toric representation for CPn. We first give a slightly

different quotient presentation of this space than the one we used in (1.16): namely, for any

r > 0, we start with the 2n+ 1-sphere

|z1|2 + · · ·+ |zn+1|2 = r, (2.4)

and then make the identification

(z1, . . . , zn+1) ∼ (eiθz1, . . . , e
iθzn+1) (2.5)

for all real θ. This is equivalent to our original “holomorphic quotient” definition, where we

did not impose (2.4) but worked modulo arbitrary rescalings of the zi instead of just phase
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Figure 8: The toric base of CP2. Over each boundary a cycle of the fiber T 2 collapses; if

we label the basis cycles as A and B, then the collapsing cycle over each boundary is as

indicated.

rescalings; indeed, starting from that definition one can make a rescaling to impose (2.4),

and afterward one still has the freedom to rescale by a phase as in (2.5). The presentation we

are using now is more closely rooted in symplectic geometry. It is also natural from the point

of view of a supersymmetric linear sigma model with U(1) gauge symmetry. Specifically [6],

the zi appear as the scalar components of 4 chiral superfields, all with U(1) charge 1. In that

context CPn is the moduli space of vacua; the constraint (2.4) is imposed by the D-terms,

and the quotient (2.5) is the identification of gauge equivalent field configurations.

Note that in this presentation of CPn we have the parameter r > 0, which did not appear

in the holomorphic quotient. This parameter appears naturally in the gauged linear sigma

model, where one sees directly that it corresponds to the size of CPn.

Now we want to use this presentation to draw the toric diagram. As we did for Cn, we

draw the toric base using the coordinates |zi|2; in the present case we also have to impose

(2.4), so the base is an n-dimensional simplex; for example, in the case of CP2 the base is just

a triangle, as shown in Figure 7. Over each point of the base we have a T 2 fiber generated

by shifts of θi (naively this would give a T 3 for θ1, θ2, θ3, but the identification (2.5) reduces

this to T 2.) A cycle of T 2 collapses over each boundary of T 2, as indicated in Figure 8.

Local CP2. To get a toric presentation of a Calabi-Yau manifold we have to take a

non-compact example. The construction is closely analogous to what we did above for CPn;

namely, for r > 0, we start with

−3|z0|2 + |z1|2 + |z2|2 + |z3|2 = r, (2.6)

and then make the additional identification

(z0, z1, z2, z3) ∼ (e−3iθz0, e
iθz1, e

iθz2, e
iθz3), (2.7)
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Figure 9: The toric base of the local CP2 geometry.

for any real θ. In the gauged linear sigma model of [6] this would be realized by taking

four chiral superfields with U(1) charges (−3, 1, 1, 1). Actually, the fact that the local CP2

geometry is Calabi-Yau can also be understood naturally in the gauged linear sigma model:

the condition c1 = 0 turns out to be equivalent to the statement that the sum of the U(1)

charges vanishes, which in turn implies vanishing of the 1-loop beta function.

We can also draw the toric diagram for this case. Introducing the notation pi = |zi|2,
the base is spanned by the four real coordinates p0, p1, p2, p3, subject to the condition (2.6),

which can be solved to eliminate p0,

p0 =
1

3
(p1 + p2 + p3 − r). (2.8)

The condition that all pi > 0 then becomes

p1 + p2 + p3 > r, (2.9)

p1 > 0, (2.10)

p2 > 0, (2.11)

p3 > 0. (2.12)
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Figure 10: The toric base of the local CP1 geometry.

So the toric base is the positive octant in R3 with a corner chopped off, as shown in Figure

9. The triangle at the corner represents the CP2 at the core of the geometry, just as in the

previous example.

Local CP1. A similar construction gives the toric diagram for the local CP1 geometry.

One obtains in this case Figure 10. One feature of interest is the CP1 at the core of the

geometry, which can be easily seen as the line segment in the middle. (To see that the line

segment indeed represents the topology of CP1, recall that along this segment two of the

three circles of the fiber T 3 are degenerate, so that one just has an S1 in the fiber; moving

along the segment, this S1 then sweeps out a CP1; indeed, the S1 degenerates at the two ends

of the segment, which are identified with the north and south poles of CP1.) Furthermore

it is easy to read off the volume of this CP1 from the toric diagram: the Kähler form in

this geometry is k = dpi ∧ dθi, and integrating it just gives 2π∆p, i.e. the length of the line

segment!5

Local CP1 × CP1. We can give a toric construction for this case as well, again parallel

5We are using a fact about Kähler geometry, namely, the volume of a holomorphic cycle is just obtained
by integrating k over the cycle.
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Figure 11: The toric base of the local CP1 × CP1 geometry.

to the holomorphic construction we gave above; in nonlinear sigma model terms it would

correspond to having 5 chiral superfields and two U(1) gauge groups, with the charges

(−2, 1, 1, 0, 0) and (−2, 0, 0, 1, 1). (Note that the charges under both U(1) groups sum to zero

as required for one-loop conformality.) The corresponding toric diagram is the “oubliette”

shown in Figure 11.

Our list of examples has focused on the non-compact case, but we should note that it

is also possible to construct compact Calabi-Yaus using the techniques of toric geometry.

Indeed, we have already done so in the last section, where we started with the toric man-

ifold CPn and then imposed some algebraic equations to obtain a Calabi-Yau. A similar

construction can be performed starting with a more general toric manifold, and this gives

a large class of interesting examples. From the point of view of the nonlinear sigma model

this construction corresponds to introducing a superpotential.

2.1 Why Calabi-Yau?

Now we want to briefly explain the role that these Calabi-Yau spaces play in superstring

theory.
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Generally, the reason that Riemannian manifolds are important for string theory is that

they provide a class of candidate backgrounds on which the strings could propagate. The

requirement that X be complex and Kähler turns out to have a rather direct consequence for

the physics of observers living in the target space: namely, it implies that these observers will

see supersymmetric physics. Since supersymmetry is interesting both phenomenologically

and mathematically, this is a natural condition to impose. The requirement that X be Ricci-

flat is even more fundamental: string theory would not even make sense without it, as we

will discuss in the next section.

So we are in a remarkable situation: the class of Calabi-Yau spaces, which were studied

by mathematicians well before their relevance to string theory was appreciated, turns out

quite independently to be crucial for physical considerations!

3 Sigma models and topological twisting

3.1 Sigma models and N = (2, 2) supersymmetry

Now let us sketch what the topological string actually is.

The string theories in which we will be interested (both the ordinary physical version

and the topological version) have to do with maps from a surface Σ to a target space X.

Roughly, in string theory one integrates over all such maps as well as over metrics on Σ,

weighing each map by its “energy” which is given by the Polyakov action:6∫
Map(Σ,X)

DX Dg e−
∫
Σ
|∂X|2 . (3.1)

This path integral defines a two-dimensional quantum field theory which is called a “sigma

model into X;” its saddle points are locally area-minimizing surfaces in X. Because we are

integrating both over maps Σ → X and over two-dimensional metrics, one often describes

the string theory as obtained by coupling the sigma model to two-dimensional quantum

gravity.

Classically, the sigma model action depends only on the conformal class of the metric

g, so that the integral over metrics can be reduced to an integral over conformal structures

— or equivalently, to an integral over complex structures on Σ. For the theory to be well

defined we need this property to persist at the quantum level, but this turns out to be a

nontrivial restriction on the allowed X; namely, requiring that the theory should be confor-

mally invariant even after including one-loop quantum effects on Σ, one finds the condition

6Actually, this is the Polyakov action for the “bosonic string”; we are really interested in the superstring,
for which there are extra fermionic degrees of freedom, but we are suppressing those for simplicity.
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that X should be Ricci flat as well as the condition that the total dimension should be 10,

both of which we discussed above.

For generic X one might expect even more conditions to appear when one considers

higher-loop quantum effects; this does happen in the bosonic string, but mercifully not in

the superstring provided that X is Kähler. The reason why the Kähler condition is so

effective in suppressing quantum corrections is that it is related to (2, 2) supersymmetry of

the 2-dimensional sigma model.7 This (2, 2) supersymmetry is crucial for the definition of

the topological string, so we now discuss it in more detail.

The statement of N = 2 supersymmetry simply means that there are 4 currents

J,G+, G−, T, (3.2)

with spins 1, 3/2, 3/2, 2 respectively, and with prescribed operator product relations. These

operators get interpreted as follows: T is the usual energy-momentum tensor; G± are con-

served supercurrents for two worldsheet supersymmetries; J is the conserved current for the

U(1) R-symmetry which rotates G± into one another. The modes of these currents act on

the Hilbert space of the theory.

In the case of the sigma model on X, these currents can be identified with the operators

deg, ∂̄, ∂̄†,∆ (3.3)

acting on Ω∗(LX), the space of differential forms on the loop space of X. This identification

suggests that among the operator product relations of the N = (2, 2) algebra should be

(G+)2 ∼ 0, (3.4)

(G−)2 ∼ 0, (3.5)

G+G− ∼ T + J ; (3.6)

these relations indeed hold and they will play a particularly important role for us below.

In the case where X is Calabi-Yau, so that the sigma model is conformal, we can make a

further refinement, splitting the algebra (3.2) into two copies, which we write (J,G±, T ) and

(J̄ , Ḡ±, T̄ ), both obeying the same operator products; this split structure is referred to as

N = (2, 2) supersymmetry. The structure of N = (2, 2) superconformal field theory — the

operators listed above as well as the Hilbert space on which they act — should be regarded

as an invariant associated to the manifold X.

7Note that this “worldsheet” supersymmetry is different from the spacetime supersymmetry we discussed
in the previous section, although the Kähler condition on X is ultimately responsible for both, and there are
indirect arguments which relate one to the other.
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3.2 Twisting the N = (2, 2) supersymmetry

Given an N = (2, 2) superconformal field theory as described in the previous section,

there is an important construction which produces a “topological” version of the theory.

One can think of this procedure as analogous to the passage from the de Rham complex

Ω∗(M) to its cohomology H∗(M): while the cohomology contains less information than the

full de Rham complex, the information it does contain is far more easily organized and

understood. So how do we construct this topological version of the SCFT? Guided by the

relation (G+)2 = 0 and the above analogy, we might try to form the cohomology of one of

the modes of G+. In fact this is not quite possible, because G+ has the wrong spin, namely

3/2; in order to define a scalar supercharge which makes sense on arbitrary curved Σ, we

need an operator with spin 1. This problem can be overcome, as explained in [7] (see also

[8]) by “twisting” the sigma model. The twist can be understood in various ways, but one

way to describe it is as a shift in the operator T :

Tnew = Told −
1

2
∂J. (3.7)

This shift has the effect of changing the spins of all operators by an amount proportional to

their U(1) charge,

Snew = Sold −
1

2
q. (3.8)

After this shift the operators (G+, J) have spin 1 while (T,G−) have spin 2.8 Now we can

define Q = G+
0 , which makes sense on arbitrary Σ and obeys Q2 = 0, and pass to the

cohomology of Q. In this context one often calls Q a “BRST operator.” Here we have

not obtained it from the usual BRST procedure, but in fact the structure of the twisted

N = (2, 2) algebra is isomorphic to one which is obtained from the usual BRST procedure,

namely that of the bosonic string. In that case one has operators (Q, Jghost) of spin 1

and (T, b) of spin 2, where (Q, b) are the BRST charge and antighost corresponding to

diffeomorphisms on the bosonic string worldsheet.

It turns out that the b antighost is the crucial element which is needed for the computation

of correlation functions in the bosonic string — more specifically, it provides the link between

CFT correlators, computed on a fixed worldsheet Σ, and string correlators, which involve

integrating over all metrics on Σ. Via the Faddeev-Popov procedure this integral over metrics

on Σ gets reduced to an integral over the moduli space Mg of genus g Riemann surfaces,

8Note that although G± now have integer spin, they still obey fermionic statistics!
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with the b ghosts providing the measure: the genus g free energy is9

∫
Mg

〈|
3g−3∏
i=1

b(µi)|2〉. (3.9)

Here the symbol 〈· · · 〉 denotes a CFT correlation function. The 3g − 3 µi are “Beltrami

differentials,” 1-forms on Σ with values in the holomorphic tangent bundle; they span the

space of infinitesimal deformations of the ∂̄ operator on Σ, which is the tangent space to

Mg. Then b(µi) is an operator obtained by integrating the b-ghost against µi:

b(µ) =
∫
Σ
bzzµ

z
z̄. (3.10)

More abstractly, b is an operator-valued 1-form on Mg, so the expectation value of the

product of 3g − 3 copies of b gives a holomorphic 3g − 3-form; taking both the holomorphic

and antiholomorphic pieces we then get a 6g − 6-form, which can be integrated over Mg.

Now comes the important point: since the twisted N = 2 superconformal algebra is

isomorphic to the algebra appearing in the bosonic string, we can now promote the correlation

functions of theN = (2, 2) SCFT on fixed Σ to correlation functions of the topological string,

by repeating the same formula with b replaced by G−:

Fg =
∫
Mg

〈|
3g−3∏
i=1

G−(µi)|2〉. (3.11)

The formula (3.11) can also be understood as coming from coupling the twisted N = (2, 2)

theory to topological gravity — see [7].

One then defines the full topological string free energy to be

F =
∞∑

g=0

λ2−2gFg, (3.12)

where λ is the “string coupling constant” weighing the contributions at different genera.10

Finally, the partition function is defined as

Z = expF . (3.13)

From our present point of view, the construction of the topological string would have

made sense starting from any N = (2, 2) SCFT, and in particular, the sigma model on any

Calabi-Yau space X would suffice.

9Strictly speaking this is the answer for g > 1; the expression has to be slightly modified for g = 0, 1
because the sphere and torus admit nonzero holomorphic vector fields.

10This expression is only perturbative; it should be understood in the sense of an asymptotic series in λ.
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On the other hand, for the physical string, there is a good reason to focus on Calabi-

Yau threefolds. Namely, if we focus our attention on backgrounds which could resemble the

real world, we find an obvious constraint: we seem to live in (to a good approximation) 4-

dimensional Minkowski space M . On the other hand one-loop conformal invariance requires

the total dimension of spacetime to be 10. Therefore a natural class of backgrounds would

be M ×X, where X is some compact 6-dimensional space, small enough that it cannot be

seen directly, either by the naked eye or by any experiment we have so far been able to do.

Studying string theory on M ×X, what one finds is that the internal properties of X lead

to physical consequences for the observers living in M . Conversely, the four-dimensional

perspective on the string theory computations sheds a great deal of light on the geometry of

X.

Remarkably, it turns out that the case of Calabi-Yau threefolds is special for the topo-

logical string as well. Namely, although one can define Fg for any Calabi-Yau d-fold, this Fg

actually vanishes for all g 6= 1 unless d = 3! This follows from considerations of charge con-

servation: namely, the topological twisting turns out to introduce a background U(1) charge

d(g − 1). In order for the correlator appearing in (3.11) to be nonvanishing, the insertions

which appear must exactly compensate this background charge; but the insertions consist

of 3g − 3 G− operators, so they have total charge −3(g − 1), hence the correlator vanishes

unless d = 3.11

3.3 A and B twists

In the last subsection we glossed over an important point; we chose the operator G− for

our BRST supercharge Q, but we could equally well have chosen G+. The latter possibility

corresponds to an opposite twist where we replace (3.7) by

Tnew = Told +
1

2
∂J. (3.14)

With this twist it is G+ rather than G− which will have spin 1. We have a similar free-

dom in the antiholomorphic sector, so altogether there are four possible choices of twist,

11For g = 0 one can get an interesting correlator even for d 6= 3, by inserting some other operators to
absorb the background charge, but for g > 1 there is really nothing to be done.
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corresponding to choosing for the BRST operators

(G+, Ḡ+) : A model (3.15)

(G−, Ḡ−) : Ā model (3.16)

(G+, Ḡ−) : B model (3.17)

(G−, Ḡ+) : B̄ model (3.18)

We have listed each choice together with the name usually given to the corresponding topo-

logical string. The Ā model is related to the A model in a trivial way, namely, all correlators

are just related by an overall complex conjugation; so essentially we have two distinct choices

here for a given Calabi-Yau X, namely the A and B models.

Now, what is the geometric content of the topological string? In the A model case, the

BRST operator Q + Q̄ turns out to be the d operator on X, and the BRST cohomology is

the de Rham cohomology H∗
dR(X). There is an additional “physical state” constraint which

leads to considering only the degree (1, 1) part of this cohomology. A (1, 1) form corresponds

to a deformation of the Kähler form, so finally the observables of the A model correspond

to deformations of the Kähler moduli of X. In the B model case one again gets objects of

bidegree (1, 1), but this time the complex in question is the ∂̄ cohomology with values in

∧∗TX, so the observables are (0, 1)-forms with values in TX, i.e. Beltrami differentials on

X. So the observables of the B model correspond to deformations of the complex structure

of X.

In fact, one can show directly that the A model is independent of the complex structure

deformations, and the B model is independent of the Kähler deformations; namely, one

shows that these deformations are Q-exact, so that they decouple from the computation of

the string amplitudes. In this sense the A and B models are decoupled. In sum,

A model on X ↔ Kähler moduli of X, (3.19)

B model on X ↔ complex moduli of X. (3.20)

How do we actually compute the correlation functions in the A and B models? In each

case we are computing a path integral over maps to X, but this path integral is significantly

simplified by the fermionic Q symmetry. Indeed, integrating the Q-invariant functional e−S

over the space of maps gives a sum of local contributions from the fixed points of Q; the

rest of the field space contributes zero, because one can introduce field space coordinates

in which Q acts by infinitesimal shifts of a Grassman coordinate θ, and then note that the

integral over that one coordinate gives ∫
dθe−S = 0. (3.21)
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This follows from the rule for Grassman integration, and the fact that Q is a symmetry of

the path integral, so that S is independent of θ.

So the path integral is localized on Q-invariant configurations. In the B model these

turn out to be simply the constant maps Σ → X, obeying dX = 0. In this sense the string

worldsheet reduces to a point on X, so the B model is “local,” and its correlation functions

are those of a field theory on X. In the A model, on the other hand, one finds the condition

∂̄X = 0, which requires only that the map Σ → X be holomorphic; such a map is called a

worldsheet instanton. In nontrivial instanton sectors the string worldsheet does not reduce

to a point. The sum over instanton sectors is a complicated structure, non-local from the

point of view of X, and therefore the A model does not reduce straightforwardly to a field

theory on X.

From this point of view the Kähler structure dependence in the A model is easy to

understand; it arises simply because each worldsheet instanton is weighted by the factor

e−
∫

C
k (3.22)

i.e. the area of the curve C ⊂ X which is the image of the string worldsheet in X. The fact

that the B model depends on the complex structure is more subtle, but it turns out that the B

model computes quantities determined by the periods of the holomorphic 3-form Ω, which are

sensitive to changes in the complex structure. Note that the complex structure moduli (the

periods) are naturally complex numbers themselves, while the A model moduli (volumes of

2-cycles) are real numbers, so we seem to have a serious asymmetry between the two moduli

spaces and hence between the A and B models; as we mentioned earlier, the symmetry

between the two moduli spaces is restored by including an extra class B ∈ H2(X,R). When

B is included, the weighting factor for a worldsheet instanton becomes

e−
∫

C
k+iB. (3.23)

We will combine k and B into a single modulus t = k + iB ∈ H2(X,C).

So the A and B models each depend on only “half” the moduli of X. In fact even more is

true: in each case the partition function factorizes into a chiral and anti-chiral part, and if we

focus on the chiral part, it formally depends only holomorphically on its moduli. One sees

this by trying to compute the antiholomorphic derivative of the free energy, which amounts

to inserting the operator corresponding to the anti-holomorphic deformation into the path

integral. It turns out that this operator is Q-exact and so it is formally decoupled. Actually,

this statement has to be modified slightly; because of the G− insertions in the definition of

the correlation function, what the Q-exactness really shows is that the integrand is a total
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g-1g

g1 + g2g

Figure 12: Degenerations of a Riemann surface of genus g, corresponding to boundary

components of the moduli space Mg.

derivative over Mg; there can be contributions from the boundary of moduli space. Indeed

there are such contributions, so the partition function is not quite holomorphic. Nevertheless

the antiholomorphic dependence can be determined precisely; it is expressed in terms of a

“holomorphic anomaly equation” derived in [9, 10]. Through the anomaly equation ∂̄Fg gets

related to the Fg′ with g′ < g, corresponding to boundaries of moduli space where some cycle

of the genus g surface shrinks — see Figure 12.

The holomorphic anomaly is familiar to mathematicians, particularly in the case of the

B model in genus 1, where it is related to the curvature of the determinant line bundle

which obstructs the construction of a holomorphic det ∂̄ [13]. The full holomorphic anomaly

including all genera can be interpreted as saying that the partition function transforms (in

an appropriate sense) as a wavefunction [11, 12].
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3.4 Genus zero

In our study of the topological string it is natural to begin with the simplest case, namely

genus zero; it turns out that this case already contains a lot of interesting geometrical

information. In the A model case one finds

F0 =
∫

X
k ∧ k ∧ k +

∑
n∈H2(X,Z)

∞∑
m=1

dn
e−〈n,t〉m

m3
. (3.24)

The first term is the classical contribution in the sense of worldsheet perturbation theory; it

corresponds to the zero-instanton sector, where the string reduces to a point, and just gives

the volume of X. The second term is more interesting since it contains information about

worldsheet instantons. Its form is intuitive, at least if we focus on the m = 1 term: we sum

over all n ∈ H2(X,Z), the homology classes of the image of the worldsheet, and weigh each

instanton by the factor e−〈n,t〉 giving the complexified volume. The interesting information

is then contained in the number dn which counts the number of holomorphic maps in the

homology class n.12 The sum over m reflects the subtlety that one has to consider “multi-

wrappings,” in other words maps Σ → X which are m-to-one; these lead to a universal

correction, which is independent of the particular X and just determined by the geometry

of maps S2 → S2. It is captured by the factor 1/m3.

To write the B model partition function we introduce a convenient coordinate system

for the complex moduli space. To describe it we first discuss the space H3(X,C), which is

decomposed into

H3 = H3,0 ⊕ H2,1 ⊕ H1,2 ⊕ H0,3,

h3 = 1 + h2,1 + h2,1 + 1.
(3.25)

Therefore H3(X,R) has real dimension 2h2,1 + 2. Now we choose a symplectic basis of

H3(X,Z); this amounts to choosing 3-cycles Ai, Bj, for i = 1, . . . , h2,1+1 and j = 1, . . . , h2,1+

1, with intersection numbers

Ai ∩ Aj = 0, Bi ∩Bj = 0, Ai ∩Bj = δi
j. (3.26)

Note that h2,1(X) is the complex dimension of the moduli space of complex structures (this

identification is obtained by using the holomorphic 3-form to convert Beltrami differentials

12Sometimes this number needs some extra interpreting from the mathematical point of view: it could be
that the holomorphic maps are not isolated, so that there is a whole moduli space of such maps. Nevertheless,
the virtual or “expected” dimension of this moduli space is always zero (for a Calabi-Yau threefold); roughly
this means that one can define a sensible “number of maps” even when the actual dimension happens to
be nonzero. The index computation showing that the virtual dimension vanishes when d = 3 is in fact
isomorphic to the charge-conservation computation which singled out d = 3.
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to (2, 1)-forms.) Indeed, we can get coordinates on the moduli space by defining

X i =
∫

Ai
Ω. (3.27)

Actually this gives h2,1 + 1 complex coordinates corresponding to the h2,1 + 1 A cycles, one

more than needed to cover the moduli space. The reason for this overcounting is that Ω is not

quite unique for a given the complex structure — it is unique only up to an overall complex

rescaling, so from (3.27), the X i are also ambiguous up to an overall rescaling. Thus we have

the right number of coordinates after accounting for this rescaling; and indeed the periods

over the A cycles do determine the complex structure. Hence the X i give homogeneous

coordinates on the moduli space.

One could ask, what about the periods over the B cycles? Writing13

Fi =
∫

Bi

Ω (3.28)

it follows from the above that they must be expressible in terms of the A periods,

Fi = Fi(X
j). (3.29)

(Of course, since our choice of symplectic basis was arbitrary, and in particular we could

have interchanged the A and B cycles, one could equally well write X i = X i(Fj).)

To describe the free energy we need one more fact, namely the statement of “Griffiths

transversality.” Recall that Ω ∈ H3,0. Now work in a local complex coordinate system in

which Ω = f(z)dz1 ∧ dz2 ∧ dz3, and consider a variation µ of complex structure, which

changes the local complex coordinates by dzi 7→ dzi + µj̄
idz̄j. Then expanding in dz and

dz̄ one sees that to first order in µ, the variation of Ω satisfies δΩ ∈ H3,0 ⊕ H2,1, and the

second-order variations similarly have δδΩ ∈ H3,0 ⊕H2,1 ⊕H1,2. This implies∫
X
δΩ ∧ Ω = 0, (3.30)∫

X
δδΩ ∧ Ω = 0, (3.31)

which in turn implies that
∂

∂X i
Fj =

∂

∂Xj
Fi, (3.32)

so that the Fi can be integrated:

Fi =
∂

∂X i
F. (3.33)

13There is an unfortunate clash of notation here; the Fi we define here are not the genus i free energy,
although below we will consider the genus 0 free energy, which we will write simply as F !
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The F so defined is the genus zero free energy of the B model. Strictly speaking, F is not

quite defined on the complex moduli space, because it depends on the choice of the overall

scaling of Ω; under Ω 7→ ξΩ one has F 7→ ξ2F . So F is better described as a section of a

line bundle over the moduli space.14

Note that in contrast to the A model, which involved an infinite sum over worldsheet

instantons and involved the integral coefficients dn, the B model free energy is determined

purely by “classical” geometry and seems to have no underlying integral structure. In this

sense one could say that the B model is easy to compute, while the A model is hard. (On the

other hand, it is the A model partition function which is easier to define, at least formally

— it just counts holomorphic maps!)

4 Computing the topological amplitudes

4.1 Mirror symmetry

In the last section we concluded that while the A model computes some interesting

geometric information, it is the B model which is easier to compute. Remarkably, it is

possible to exploit the simplicity of the B model to make computations in the A model!

Namely, the A model on a Calabi-Yau space M is often equivalent to a B model on a

“mirror” Calabi-Yau space W . Therefore computations of the periods of W can be exploited

to count holomorphic curves in M .

To understand how such a surprising duality could be true, we consider an example which

is in some sense underlying the whole phenomenon: string theory on a circle S1 of radius

R. The spectrum of states of this theory has one obvious quantum number, namely the

number w of times the string is wound around S1. It also has a second quantum number n

corresponding to the momentum of the center of mass of the string going around the circle;

this momentum is quantized in units of 1/R, as is familiar from point particle quantum

mechanics in compact spaces. The contribution to the energy of a state from these two

quantum numbers is (in units with α′ = 1)

En,w = wR +
n

R
. (4.1)

Note that the set of possible En,w is invariant under the interchange R ↔ 1/R — namely

En,w at radius R is the same as Ew,n at radius 1/R! This is the first clue that this interchange

14Even this more refined description is still a little misleading, because F also depends on the choice of A
and B cycles, i.e. the choice of a coordinate system. If one makes a symplectic transformation of the basis,
F transforms by an appropriate Legendre transform.

28



might be a symmetry of the full string theory; indeed, there is such a symmetry, called “T-

duality.” It can be rigorously understood from the worldsheet point of view, but as we will

see, it has deep consequences.

Indeed, T-duality implies mirror symmetry. The simplest example is one we already

mentioned in Section 1.2.1. Namely, given a rectangular torus T 2 with radii R1, R2 and

defining

A = iR1R2, (4.2)

τ = iR2/R1, (4.3)

taking R1 7→ 1/R1 is equivalent to swapping A↔ τ . So in this case M and its mirror W are

both T 2, but with different metrics, i.e. different values of the moduli. Anyway, given that

the physical string has this T-duality symmetry, one could then ask how it gets implemented

in the topological theory. Since it exchanges complex and Kähler moduli it would be natural

to conjecture that it exchanges the A and B models, and this is indeed the case; the A model

with Kähler modulus A computes exactly the same quantity as the B model with complex

modulus τ = A.

Since we are looking at T 2 here, which has complex dimension 1 6= 3, most of the

topological string is trivial as we explained before. However, one can still look at the one-

loop free energy F1, and mirror symmetry turns out to be an interesting statement already

here: namely, it turns out that the B model at one loop computes the determinant of the

∂̄ operator acting on T 2, in keeping with the general principle that the B model has to do

with local expressions on the target space. This determinant gives the Dedekind η function.

On the other hand, the A model at one loop counts maps T 2 → T 2, but it should also give

the η function; this gives a natural explanation of the integrality of the coefficients in the

expansion of η as a function of e2πiτ . Namely, the term e2πinτ gets related to e−nA by the

mirror map, and from the A model point of view the coefficient of e−nA counts maps which

wrap T 2 over itself n times.

Now what about the case of maximal interest, namely Calabi-Yau threefolds? Here also

one might expect a “mirror” duality. Indeed, this duality was conjectured before a single

example was known, on the basis of lower-dimensional examples like the one discussed above,

and also because from the point of view of the N = (2, 2) algebra the difference between

A and B models is purely a matter of convention — considered abstractly, the SCFT has

no way of knowing whether it is the A model or the B model. By now many examples of

mirror pairs are known, both compact and non-compact, and the symmetry has been proven

in various ways for various classes of examples.
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Here we sketch a derivation given in [14] which captures the essential physical picture.

We begin with a toric Calabi-Yau threefold M and realize it concretely via the gauged linear

sigma model of [6]. Recall that this model is constructed from a set of chiral superfields Zi

representing the homogeneous coordinates of M , and that its space of vacua is M itself. To

get the mirror of M one splits each Zi into its modulus and phase as we did before when

discussing the toric diagram,

Zi → (|Zi|2, θi), (4.4)

and then performs T-duality on the circle coordinatized by θi. The T-duality gives a new

dual periodic coordinate φi, and we organize this coordinate together with |Zi|2 into a new

“twisted chiral” superfield

Yi = |Zi|2 + iφi. (4.5)

Crucially, the dual description in terms of the Yi also turns out to have a superpotential,

generated by instantons of the linear sigma model:

W (Y ) =
∑

i

e−Yi . (4.6)

Finally, the D-term “moment map” constraints of the gauged linear sigma model,15

∑
i

Qi|zi|2 = t, (4.7)

are converted to holomorphic constraints in the dual model,

∑
i

QiYi = t. (4.8)

The three equations (4.6), (4.7), (4.8) contain all the information about the dual theory,

as we now see in an example: consider the local CP2 geometry O(−3) → CP2 which we

discussed before. This geometry involves four chiral superfields with charges

Z = (Z0, Z1, Z2, Z3),

Q = (−3, 1, 1, 1).
(4.9)

The corresponding D-term constraint

−3|z0|2 +
∑

i

|zi|2 = t (4.10)

15For simplicity we are writing (4.7), (4.8) in the case where there is just a single U(1) gauge group, hence
a single D-term constraint and a single Kähler modulus. The general case just has more indices.

30



becomes in the dual model

−3Y0 +
3∑

i=1

Yi = t, (4.11)

and the superpotential is

W =
3∑

i=0

e−Yi . (4.12)

It is convenient to make the change of variables

yi = eYi/3. (4.13)

Then, after eliminating Y0 using (4.11), we are left with the superpotential

W = y3
1 + y3

2 + y3
3 + et/3y1y2y3. (4.14)

So we might expect that the space of vacua in the dual theory will be given the locus W = 0.

This is correct, but we have to remember that the change of variables (4.13) is not quite

one-to-one; the yi are ambiguous by cube roots of unity, and therefore we have to divide out

by the group Z2
3 which multiplies the yi by cube roots of unity while leaving W invariant.

After so doing we obtain the mirror to the local CP2 geometry.

Looking at W = 0 one notices that, if the yi are considered as homogeneous coordinates

in projective space, it is in fact the equation describing an elliptic curve. Passing to inho-

mogeneous coordinates we could rewrite it as an equation in two variables,

F (x, z) = x3 + z3 + 1 + et/3xz = 0. (4.15)

Indeed, the mirror geometry in this case is effectively an elliptic curve rather than a Calabi-

Yau threefold, in the sense that the B model partition function can be computed from the

geometry of the elliptic curve. This is a common phenomenon when computing mirrors

of noncompact Calabi-Yaus. Nevertheless, the usual statement of mirror symmetry as we

phrased it above requires a threefold mirror to a threefold; to make contact with that for-

mulation we should add two extra variables u, v which enter in a rather trivial way:

F (x, z) = uv. (4.16)

These two variables just contribute a quadratic term to the superpotential W and do not

couple to the interesting part of the geometry.

We can derive mirror symmetry for compact Calabi-Yaus with linear sigma model real-

izations in a similar way. Recall the example of the quintic threefold; this space is obtained
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by starting with the linear sigma model for O(−5) → CP4 and then introducing a superpo-

tential which reduces the space of vacua to the quintic hypersurface in CP4. Temporarily

ignoring this superpotential and repeating the steps above we get the manifold defined by

W = y5
1 + y5

2 + y5
3 + y5

4 + y5
5 + et/5y1y2y3y4y5 (4.17)

modulo a Z4
5 symmetry multiplying the yi by fifth roots of unity. Now what happens if we

include the superpotential? Remarkably it turns out that the only effect is to change the

fundamental variables of the theory to the yi instead of Yi. (One might think that what is

the “fundamental variable” is a matter of terminology, but concretely, it affects the measures

of integration one uses when computing the B model periods.)

Finally, we briefly mention another point of view on the mirror symmetry in the compact

case, which leads more directly to the same conclusion: namely, it was observed in [15] that

the A model on the quintic threefold is in fact equivalent to the A model on a weighted super

projective space CP1,1,1,1,1|5, which is compact but nevertheless torically realized without the

need for a superpotential. T-dualizing on phases in this super context then leads to a new

derivation of the mirror to the quintic threefold [16].

4.2 Holomorphy and higher genera

So far we just discussed computation of topological amplitudes at genus zero. More

generally we can compute all the Fg using the fact that they depend only holomorphically

on moduli. Actually, as we mentioned earlier, this statement is not quite true; but the

antiholomorphic dependence is completely determined by the anomaly equation of [10] and

does not qualitatively affect the discussion to follow. So we can think of Fg as a holomorphic

section of a line bundle over the moduli space. Such objects are highly constrained once

their boundary behavior is determined — recall that a bundle over a compact space has

only finitely many sections. The Calabi-Yau moduli spaces under consideration are also

compact, or can be compactified by adding some points at infinity, where the order of the

singular behavior can be constrained by geometrical considerations; hence the Fg are basically

determined by holomorphy up to a finite-dimensional ambiguity at each g. With some work

this ambiguity can also be fixed, leading to a practical method for computing the Fg, which

has been applied to degrees and genera of order 10 [?].

4.3 Target space approach

There is also a target space approach to computing the topological string partition func-

tion [17]. Namely, suppose we study the A model on a non-compact threefold which has a
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toric realization as we discussed above. Then by mirror symmetry we obtain the B model

on a Calabi-Yau of the form

F (x, z) = uv (4.18)

with the corresponding holomorphic 3-form

Ω =
du ∧ dx ∧ dz

u
. (4.19)

The u and v variables are basically playing a trivial role here; the important part of the

geometry is captured by the equation F (x, z) = 0, which characterizes the degeneration

locus of the fiber spanned by u and v. Contour-integrating in u reduces Ω to ω = dx ∧ dz.

So we have an algebraic curve F (x, z) = 0 embedded in the (x, z) space equipped with the

two-form ω. What are the symmetries of this structure? If F were identically zero, then

we would just have the group of ω-preserving diffeomorphisms, which form the so-called

“W∞” symmetry. This infinite-dimensional symmetry is extremely powerful. Indeed, even

when F 6= 0 and the W∞ symmetry is spontaneously broken, it nevertheless generates Ward

identities which act on the possible deformations of F . But these deformations exactly

correspond to complex structure deformations of the Calabi-Yau geometry, which are the

objects of study in the B model! It turns out that the Ward identities are sufficient to

completely determine the B model partition function at all genera (and hence the A model

partition function on the original toric threefold) — see [17].

4.4 Large N dualities

Yet another approach to computing the Fg depends on the notion of “large N duality.”

Such dualities have played a starring role in the physical string theory over the last few years

[18, 19]; as it turns out, they are equally important in the topological string [20, 21].

4.4.1 D-branes in the topological string

These dualities relate open string theory in the presence of D-branes to closed string

theory in the gravitational background those D-branes produce; so in order to discuss their

topological realization, we have to begin by explaining the notion of D-brane in the topolog-

ical string.

From the worldsheet perspective, a D-brane simply corresponds to a boundary condition

which can be consistently imposed on worldsheets with boundaries. In the topological case

we require that the boundary condition preserves the BRST symmetry. In the A model this

condition implies that the boundary should be mapped into a Lagrangian submanifold L
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of the target Calabi-Yau X [22] (recall that “Lagrangian” means that the dimension of L

is half that of X and the Kähler form ω vanishes when restricted to L). This L should be

thought of as a real section of X — a typical 1-dimensional model is the upper half-plane,

which ends on the real axis L.

(As an aside, it is interesting that the branes which appear in the A model are wrapping

Lagrangian cycles, which are 3-cycles for which the volume is naturally measured by the

holomorphic 3-form Ω — the natural object in the B model! Similarly, in the B model the

branes turn out to wrap holomorphic cycles, whose volume is measured by the A model field

k. This crossover between the A and B models may be a hint of a deeper relation, which is

currently under investigation.)

Now how do the topological D-branes affect the closed string background? The answer

to this question will be crucial since it defines the dual geometry. In the physical superstring

D-branes are sources of flux; in the A or B model topological string the flux in question

should be the Kähler 2-form or holomorphic 3-form respectively. More precisely, consider a

Lagrangian subspace L. Since the total dimension is 6, we can consider a 2-cycle C which

“links” L, similar to the way two curves can “link” one another in dimension 3. This means

that C = ∂S for some 3-cycle S which intersects L once; so C is homologically trivial in the

full geometry of X, although it becomes nontrivial if we consider instead X \ L. Because C

is homologically trivial we must have
∫
C k = 0 in the original closed string geometry of X.

Then the effect of wrapping N branes on L is to create a flux of the Kähler form through

C, namely ∫
C
k = Ngs. (4.20)

This can be understood by saying that the branes act as a δ-function source for k, i.e., the

usual closed string relation dk = 0 is replaced by

dk = Ngsδ(L). (4.21)

Similarly, a B model brane on a 2-cycle induces a flux of Ω over the linking 3-cycle. Note

that this phenomenon actually suggests a privileged role for 2-cycles; we could also have B

model branes on 0, 4, or 6-cycles, but these branes do not induce gravitational backreaction

since there is no candidate field for them to source.

What about the target space description of the topological D-brane? In the case of

physical D-branes we know that the open strings produce a gauge theory on the brane in the

low energy limit; namely, in the case of a stack of N coincident branes, the fact that strings

can end on any of the N branes leads to a U(N) gauge theory. See Figure 13.

In the topological A model one can work out the exact open string field theory; it is again

a gauge theory, but this time a topological gauge theory, namely Chern-Simons. To see this
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Figure 13: A stack of N branes carries a U(N) gauge symmetry; the fundamental and

antifundamental gauge indices arise from strings which can end on any of the N branes.

we first note that our construction of the topological string (and specifically its coupling

to gravity) was modeled on the bosonic string, and therefore it is reasonable that the open

string field theory should also be the one that appeared for the open bosonic string. In the

bosonic string it was shown in [23] that the OSFT is an abstract version of Chern-Simons,

written

S =
∫
A ∗QA+

2

3
A ∗ A ∗ A. (4.22)

Re-running those arguments in the topological context, using the dictionary Q ↔ d, shows

that this abstract Chern-Simons is in this case simply the standard Chern-Simons action

[22] — possibly corrected by terms involving holomorphic instantons ending on L. (In

fact, one might ask how the appearance of the Chern-Simons action is consistent with the

localization of the open string path integral on holomorphic configurations; the answer is

that the localization has to be interpreted carefully because of the non-compactness of the

field space. One has to include contributions from “degenerate instantons” in which the

Riemann surface has collapsed to a Feynman diagram, and these diagrams precisely account

for the Chern-Simons action.) In some interesting cases there are no holomorphic instantons

and we just get pure Chern-Simons; this happens in particular in the case of branes wrapping

the S3 in the deformed conifold T ∗S3.

One can similarly consider the open string field theory on a B model brane. In the case

of a brane which wraps the full Calabi-Yau threefold X, one gets a holomorphic version of
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Chern-Simons, with action [23] ∫
Ω ∧ Tr(A∂̄A+

2

3
A3), (4.23)

where A is a u(N)-valued (0, 1) form on X, which we are combining with the (3, 0) form Ω

so that the full action is a (3, 3) form as required. Starting from (4.23), one can also obtain

the action for B model branes which wrap holomorphic 0,2,4-cycles inside X, by realizing

such lower-dimensional branes as defects in the gauge field on a brane that fills X.

4.4.2 The geometric transition

After these preliminaries on branes in the topological string, we are ready to use them

to compute closed string amplitudes. The simplest example is the A model on T ∗S3. This

geometry is uninteresting from the point of view of the closed A model, since it has no

2-cycles and hence no Kähler moduli; but it contains the Lagrangian 3-cycle S3 on which

we can wrap branes, obtaining the open string partition function Z(gs, N) for N branes.

As we discussed in the last section, this Z(gs, N) is nothing but the partition function of

U(N) Chern-Simons theory on S3, with level k = 2πi/(k + N); this partition function is

readily computable in practice. Furthermore, the effect of the branes on the closed string

geometry is to create a flux Ngs on the S2 which links S3. Now, a la AdS/CFT, let us try

to describe this geometry in terms of a background without branes. There is an obvious

guess for the answer: as we discussed earlier, in addition to the deformed conifold which has

a nontrivial S3 at its core, there is also the resolved conifold which has a nontrivial S2, and

both geometries look the same at long distances. So it is natural to conjecture that the dual

geometry is the resolved conifold, where the nontrivial S2 has volume t = Ngs [20]. In the

resolved conifold there are no branes anymore — we have just closed strings — and indeed

there is not even a nontrivial cycle where the branes could have been wrapped! The passage

from one geometry to the other is referred to as a “geometric transition.”

The conjecture that the open A model on the deformed conifold with N branes should

be equivalent to the closed A model on the resolved conifold with t = Ngs leads immediately

to a prediction for the partition function of the latter: namely, from the Chern-Simons side

one expects

Z(gs, t) =
∞∏

n=1

(1− qnQ)n, (4.24)

where q = e−gs and Q = e−t. Note that this expansion has integral coefficients, which seems

remarkable from the point of view of the closed string, and might make us wonder whether

the closed string partition function has an interpretation as the answer to some counting
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Figure 14: The geometric transition between the resolved conifold with Kähler parameter t

(above) and deformed conifold with N branes (below).

problem. We will understand this structure later when we discuss the physical applications

of the topological string.

The geometric transition we just discussed can be summarized in a toric picture as shown

in Figure 14.

One can also use open/closed duality to compute the partition function in more compli-

cated geometries [24]. For example, consider the local CP2 geometry. As shown in Figure

15, we can obtain this geometry as the ti → ∞ limit of a geometry with three compact

CP1’s, and each of these CP1’s in turn can be obtained by a geometric transition from an

S3. In this way the closed string on local CP2 is related to the open string on a geometry

with three S3’s, each supporting a stack of branes. Naively, then, we would expect that the

closed string partition function would be the product of three copies of the Chern-Simons

partition function. However, we have to remember that the Chern-Simons theory is corrected

by worldsheet instantons. One can show that the only instantons which contribute are ones

in which the worldsheets form tubes connecting two S3’s, as shown in Figure 16. Each such
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Figure 15: The geometric transition and ti →∞ limit relating local CP2 to a rigid geometry

with Ni →∞ branes.

tube ends on an unknotted circle in S3; so in a generic instanton configuration each S3 has

two such circles on it, and a careful analysis shows that they are in fact linked, forming the

“Hopf link.” One therefore has to compute the Chern-Simons partition function including

an operator associated to the link, given by a sum of link invariants [25]. The full partition

function at all genera is a sum over representations of U(N):

Z =
∑

R1,R2,R3

e−t|R1|SR1R2e
−t|R2|SR2R3e

−t|R3|SR3R1 , (4.25)

where SRR′ is the Chern-Simons knot invariant of the Hopf link with representations R and

R′ on the two circles, as defined in [26], and |R| is the number of boxes in a Young diagram

representing R.

4.5 The topological vertex

Although the geometric transitions we described above lead to an all-genus formula for

the A model partition function in the local CP2 geometry, the method of computation is
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Figure 16: Worldsheet instantons, with each boundary on an S3, which contribute to the A

model amplitudes after the transition, or dually, to the A model amplitudes on local CP2.

somewhat unsatisfactory: we obtained local CP2 only after taking the ti →∞ limit of a more

complicated geometry. One might have hoped for a more intrinsic method of computation.

Indeed there is such a method, and it generalizes to arbitrary toric diagrams, whether or

not they come from geometric transitions! This method exploits the similarity between

the toric diagram (with fixed Kähler parameters) and a Feynman diagram with trivalent

vertices and fixed Schwinger parameters. Namely, one can define a “topological vertex,”

CR1R2R3(gs), depending on three Young diagrams R1, R2, R3 and on the string coupling gs

[27]. See Figure 17. Then the full partition function is obtained by assigning a Young

diagram R to each internal edge of the toric diagram, with a propagator e−t|R|+mC2(R), and

a factor CR1R2R3(gs) to each vertex. (The integer m appearing in the propagator is related

to the relative orientation of the 2-surfaces on which the propagator ends.)

Of course, the actual vertex CR1R2R3(gs) is extremely complicated! It was originally

determined in [27] using Chern-Simons theory along the lines discussed above. Since then

two other methods of computing the vertex have appeared. One way uses the W∞ symmetry
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Figure 17: The topological vertex, which assigns a function of gs to any three Young diagrams

R1, R2, R3.

of the target space in the mirror B model [17], as we discussed above.

One can also obtain the vertex by a direct A model closed string target space computation

[28, 29, 30]. Namely, the target space description of the A model is a theory of “Kähler

gravity” [31], which roughly sums over Kähler geometries with the weight e−
∫

k3/g2
s . In

fact, we can describe exactly which Kähler geometries contribute to the A model sum that

gives the A model partition function, at least if we restrict to studying quantities which are

torically invariant in a suitable sense. For example, consider the case of the A model on the

non-compact Calabi-Yau C3. In this case one can obtain a new Kähler geometry which is

still toric by blowing up the origin; this replaces that point by a CP2 as shown in Figure

18. Of course, this new geometry is not Calabi-Yau; the only Calabi-Yau geometry which

is asymptotically C3 is C3 itself. Nevertheless, it should be included in the target space

A model sum; this is not unexpected, since a theory of quantum gravity should sum over

off-shell configurations as well as on-shell ones. One can also do more complicated blow-

ups. Such blow-ups are more difficult to describe in words, but their algebraic description

is straightforward: the possible blow-ups correspond to toric ideals in the space of algebraic

functions on C3, i.e. invariant ideals in the ring C[X,Y, Z] of polynomials in three variables.

Such ideals correspond to 3-dimensional Young diagrams D, or equivalently to configurations

of a melting crystal; this was the point of view taken in [28]. (The simplest blow-up which we

discussed above corresponds to the Young diagram with a single box, or the ideal 〈X, Y, Z〉.)
The weight e−

∫
k3/g2

s for such a geometry obtained by blowing up an ideal is simply q|D|,

where q = e−gs and |D| is the number of boxes of the 3-dimensional Young diagram D, or
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Figure 18: Blowing up the origin in C3 gives a new geometry which is not Calabi-Yau but

still contributes to the target space sum in the A model.

equivalently the codimension of the corresponding ideal. The sum over all such diagrams

with this weight gives the A model partition function on C3,

ZC3 =
∑
D

q|D| =
n∏

i=1

(1− qn)−n. (4.26)

This is the special case of the topological vertex where all three representations R1, R2, R3

are trivial. More generally one can consider infinite 3-d Young diagrams, which asymptote to

fixed 2-d diagrams R1, R2, R3 along the x, y, z directions; in this case the sum over diagrams

gives the full topological vertex!

5 Physical applications

So far we have mostly discussed the topological string in its own right. Now we turn to its

physical applications. At first it might be a surprise that there are any physical applications

at all, but they do exist; speaking broadly, the reason for this is that the topological string

is a localized version of the physical string, i.e. it receives contributions only from special

path-integral configurations as we discussed above, and there are some “BPS” observables

of the physical string which are also localized on the same special configurations.

The main examples which have been explored so far are summarized in the table below:
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physical theory physical observable topological theory

N = 2, d = 4 gauge theory prepotential A model

N = 1, d = 4 gauge theory superpotential B model with branes

spinning black holes in d = 5 BPS states A model

charged black holes in d = 4 BPS states nonperturbative?
Now we will discuss these applications in turn.

5.1 N = 2 gauge theories

One area in which the topological string connects to ordinary physical theories is in the

context of N = 2 gauge theories in d = 4. To understand this connection we begin by

discussing the physical theory obtained by compactifying the Type II string on a Calabi-Yau

X. The curvature of X breaks 3/4 of the supersymmetry, leaving 8 supercharges which

make the N = 2 algebra in d = 4; the massless field content in d = 4 can be organized into

multiplets of N = 2 supergravity as follows:

vector hyper gravity

IIA on X h1,1(X) h2,1(X) + 1 1

IIB on X h2,1(X) h1,1(X) + 1 1

The topological string computes particular F-terms in the effective d = 4 action. They

can be written conveniently in terms of the N = 2 graviphoton multiplet, which is a chiral

superfield Wαβ with lowest component Fαβ. 16 Namely, forming the combination

W2 = WalphaβWalpha′β′εαα′
εββ′

, (5.1)

the F-terms in question can be written as∫
d4x

∫
d4θFg(X

I)(W2)g. (5.2)

The crucial link between physical and topological strings here is as follows: the Fg(X
I) which

appears in (5.2) is precisely the genus g topological string free energy, written as a function of

the vector multiplets XI (so if we study Type IIB then the Fg appearing is the B model free

energy, since the vector multiplets in that case parameterize the complex deformations, while

for Type IIA it is the A model free energy that appears.) Arguments for this statement can

be found in [32, 10]; one can also see it more directly using the Berkovits hybrid formalism.

16Here the “graviphoton” F is the field strength for the U(1) vector in the supergravity multiplet, and α,
β are spinor indices labeling the self-dual part of the full field strength Fµν , i.e. Fµν = Fαβ(γµ)ασ̇(γν)β

σ̇ +
Fα̇β̇(γµ)α̇

σ(γν)β̇σ.
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It is noteworthy that each Fg contributes to a different term in the effective action and

hence to a different physical process. To see this more clearly we can expand (5.2) in

components; one term which appears is (for g > 1)∫
d4xFg(X

I)(R2F 2g−2), (5.3)

so Fg(X
I) contributes a gravitational correction to the amplitude for scattering of 2g − 2

graviphotons. In the application to N = 2 gauge theory we will mostly be interested in F0,

which gets identified with the prepotential of the gauge theory.

Now let us focus on the specific geometries which will lead to interesting N = 2 gauge

theories. In order to decouple gravity we should consider a non-compact Calabi-Yau space.

The simplest example is an ALE space; these are four-dimensional Calabi-Yaus obtained as

C2/G, where G is a finite subgroup of SU(2) acting linearly on C2. More precisely, the ALE

space is not quite C2/G; that quotient has a singularity at the origin, and one obtains the

ALE space by resolving that singularity, introducing a number of CP1’s localized near the

origin. For each such CP1 obtained by resolving the singularity there is a Kähler parameter

ti for its size; in the limit ti → 0 the metric reduces to that of the singular space C2/G.

In this sense one can think of the singularity of C2/G as containing a number of zero size

CP1’s. Then considering Type II string theory on C2/G one obtains a gauge theory in six

dimensions; the massless gauge bosons arise from D2-branes which wrap around these zero

size CP1’s, and the particular gauge group we get depends on the group G. The simplest

example is G = Zn, which gives SU(n) gauge symmetry in the six-dimensional gauge theory,

but one can also get SO(2n) or E6, E7, E8; this is called the “ADE classification” of finite

subgroups of SU(2).

But C2/G is not quite the example we want; we want to get down to d = 4 rather than

d = 6, and we also want to get down to 8 supercharges rather than 16. These goals can be

simultaneously accomplished by fibering C2/G over a genus g Riemann surface Σg; this can

be done in a way so that the resulting six-dimensional space is a Calabi-Yau threefold X,

and the Type II string on X gives an N = 2 theory with gauge group determined by G and

with g adjoint hypermultiplets [33]. (The origin of these hypermultiplets can be understood

by starting with the gauge theory in d = 6 and compactifying it on Σg; then the electric

and magnetic Wilson lines of the gauge theory give rise to the 4g scalar components of the

g hypermultiplets.)

An interesting special case is g = 1. In this case the fibration of C2/G over the Riemann

surface T 2 is trivial, so the N = 2 supersymmetry should be enhanced to N = 4; this

agrees with the fact that we get a single adjoint hypermultiplet, which is the required matter
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content for the N = 4 theory. Furthermore, there is a relation

Vol(T 2) = 1/g2
Y M . (5.4)

T-dualizing on the two circles of T 2 then implies that the theory with coupling gY M is

equivalent to the theory with coupling 1/gY M — so the existence of a string theory realization

already implies the highly nontrivial Montonen-Olive duality of N = 4 super Yang-Mills!

One could also consider the case g > 1, but in this case the gauge theory is not asymp-

totically free. We therefore focus on g = 0, which gives pure N = 2 gauge theory; and for

simplicity we consider the case G = ZN , which gives SU(N) gauge theory. To “solve” this

gauge theory a la Seiberg and Witten [34], one wants to compute its prepotential F0, as a

function of the Coulomb branch moduli. As we remarked above, this prepotential coincides

with the F0 computed by the A model topological string; namely, the Coulomb branch mod-

uli get identified with the Kähler moduli ti which give the sizes of the CP1’s resolving the

singularity, while the volume of the base CP1 controls the bare gauge coupling at the string

scale,

Vol(CP1) = 1/g2
Y M . (5.5)

So we have two different kinds of CP1 in the geometry, playing quite distinct roles. Indeed,

from (5.5) one sees that the worldsheet instantons which wrap n times around the base CP1

contribute with a factor e−n/g2
Y M to F0, and hence they should correspond to target space

instanton number n.

So far we have elided one subtlety: at generic values of g2
Y M and ti, the string theory

actually contains more information than just the 4-dimensional gauge theory. This is to be

expected since the F0 of the gauge theory depends just on the moduli ti, while our F0 also

depends on the size of the base which we identified with g2
Y M at the string scale. To isolate

the 4-dimensional content we have to take a decoupling limit in which g2
Y M and ti approach

zero, which sends the string scale to infinity while keeping the masses of the W bosons on

the Coulomb branch fixed [35]. If we do not take this decoupling limit, we get a theory

which includes information about compactification from 5 to 4 dimensions; from that point

of view the instantons can be interpreted as particles of the 5-dimensional theory which are

running in loops.

We have just reformulated the problem of solving the IR dynamics of the N = 2 gauge

theory as the problem of computing the A model F0 in a particular Calabi-Yau geometry.

Let us see how this procedure works out in the simplest example, namely the pure SU(2)

theory. In this case we have to consider the A1 singularity fibered over CP1, and it turns

out that this geometry is nothing but the local CP1 × CP1 geometry we discussed before.
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The two CP1 factors appear symmetrically in the geometry, although we are interpreting

them quite differently (one of them is the “base” which controls g2
Y M while the other is the

“fiber” which gives the Coulomb branch modulus) and in particular the decoupling limit

breaks the symmetry between them. Now we want to obtain F0 for this geometry, and this

can be done using mirror symmetry; recalling that we have a toric realization as shown in

Figure 11, the techniques we illustrated in Section 4.1 can be straightforwardly applied. The

mirror geometry is again of the form F (x, z) = uv, where the Riemann surface F (x, z) = 0

is precisely the Seiberg-Witten curve encoding the solution of the model [36].

A similar procedure can be applied to any ADE gauge group by choosing the appropriate

geometry, and conversely, anytime we have a toric geometry where the Kähler parameters

arise by resolving some singularity, we expect that that toric geometry can be interpreted in

terms of gauge theory. The zoo of N = 2 theories one can “geometrically engineer” in this

way includes cases with arbitrarily complicated product gauge groups and bifundamental

matter content, as well as some exotic conformal fixed points in higher dimensions; see e.g.

[35, 36, 37, 33, 38, 39]. To obtain the prepotentials for the geometrically-engineered theories is

in principle straightforward via mirror symmetry, and it has been worked out in many cases,

but it is not always easy — e.g. for the Ek singularities one would have a more difficult

job, because to realize these geometries torically one has to include a superpotential, which

makes the mirror procedure and computation of the mirror periods less straightforward.

5.2 N = 1 gauge theories

So far we have discussed geometric engineering of N = 2 theories, but it turns out that

string theory also has something to say about the N = 1 case. How can we geometrically

engineer an N = 1 theory? Starting with compactification on a Calabi-Yau space, we need

to introduce an extra ingredient which reduces the supersymmetry by half. There are two

natural possibilities: we can add either D-branes or fluxes. In both cases we want to preserve

the four-dimensional Poincare invariance; so if we use D-branes we have to choose them to

fill the four uncompactified dimensions, and if we use fluxes we have to choose them entirely

in the Calabi-Yau directions (i.e. the 0, 1, 2, 3 components of the flux should vanish.) In

fact, the two possibilities are sometimes equivalent because of the possibility of a geometric

transition in which branes are replaced by flux, as we discussed above.

Let us first focus on the case where we introduce a stack of N branes, which are wrapped

on some cycle in the Calabi-Yau and also fill the four dimensions of spacetime. Then we

obtain anN = 1 theory in four dimensions, with U(N) gauge symmetry. (Note the difference

from the geometric engineering we did in the N = 2 case; there we obtained the gauge
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symmetry from a geometric singularity, but in the N = 1 case it just comes from the usual

Chan-Paton mechanism, while the geometry is responsible for details of the gauge theory,

specifically the form of the bare superpotential.)

Now what does this have to do with topological strings? We have seen above that the

free energy Fg (and particularly F0) compute F-terms relevant for the N = 2 theory. After

introducing D-branes in the topological string, we need not consider only closed worldsheets

anymore; an open string worldsheet naturally corresponds to a Riemann surface with bound-

aries. Therefore we can define a free energy Fg,h, obtained by integrating over worldsheets

with genus g and h holes, with each hole mapped to one of the D-branes; and we can ask

whether this Fg,h computes something relevant for the N = 1 theory. The answer is of course

“yes.” As we did in the N = 2 case, we will focus on g = 0 at first; higher genera are related

to gravitational corrections.

To write the terms which the topological string computes in the N = 1 theory with

branes, we need the “glueball” superfield S, with lowest component Trψαψ
α. Then we

organize the F0,h into a generating function:

F (S) =
∞∑

h=0

F0,hS
h. (5.6)

The F-term the topological string computes in the N = 1 theory can then be written [10]∫
d4x

∫
d2θN

∂F

∂S
. (5.7)

This is a superpotential for the glueball S, and it turns out that the this superpotential

captures a lot of the relevant infrared dynamics. More precisely, in addition to (5.7), one

also has to include the term ∫
d4x

∫
d2θτS, (5.8)

which is simply the super Yang-Mills action in superfield notation, with

τ =
4πi

g2
YM

+
θ

2π
. (5.9)

After including this extra term, one can determine the vacuum structure of the theory just

by extremizing the glueball superpotential — different vacua are distinguished by different

values of the glueball condensate.

Now what about the case where we introduce fluxes instead of branes? Consider Type

IIB on a Calabi-Yau X. Recall from the last section that this theory has a prepotential term∫
d4x

∫
d4θF0(X

I), (5.10)
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where F0 is the B model topological string free energy at genus zero, and the XI are the

vector superfields, whose lowest components parameterize the complex structure moduli of

X. How does this term change if we introduce N I units of three-form flux on the I-th A

cycle?17 In the N = 2 supergravity language, it turns out that this flux corresponds to the θ2

component of the superfield XI ; turning on a vacuum expectation value for this component

absorbs two θ integrals from (5.10), leaving behind an F-term [40],∫
d4x

∫
d2θN I ∂F0

∂XI
. (5.11)

There is a natural extension of this formula to include a flux τI on the I-th B cycle (which

need not be quantized since the B cycle is non-compact):∫
d4x

∫
d2θN I ∂F0

∂XI
+ τIF

I . (5.12)

This form of the superpotential was derived in [41].

There is an obvious analogy between (5.7) and (5.11). Note though that the lowest

component of the XI which appears in (5.11) is an honest scalar field parameterizing a

complex structure modulus, while the S which appears in (5.7) is a fermion bilinear, which

naively cannot have a classical vacuum expectation value. Nevertheless, the analogy between

the two sides seems to be suggesting that we should treat S also as an honest scalar, and we

will do so in what follows.

So what do (5.7) and (5.11) have to do with one another? The crucial link is provided

by the notion of “geometric transition” which we discussed before, but now in the context

of the Type IIB superstring rather than the topological string:18 start with a Calabi-Yau

X which has a 2-cycle. Then wrap D5-branes on these 2-cycles, obtaining a U(N) gauge

theory. There is a dual geometry where the D5-branes disappear and are replaced by a

3-cycle A; in this dual geometry there are N units of flux on the dual cycle B, the remnant

of the vanished D5-branes. The claim is that the string theories on these two geometries

are equivalent, after we identify the glueball superfield S with the period of Ω over the A

cycle in the dual geometry.19 With this identification (5.7) and (5.11) are identical. One can

therefore use either one to compute the glueball superpotential.

17Recall that in writing the N = 2 supergravity Lagrangian we have chosen a splitting of H3(X) into A
and B cycles, with the XI representing the A cycle periods.

18See [40] for a detailed discussion of the superstring version of the large N duality in the Type IIA case.
19On the face of it this claim might sound bizarre since the theory with branes should have U(N) gauge

symmetry in four dimensions; but since we are now talking about the effective theory in d = 4, what we
should really compare is the IR dynamics, and we know that N = 1 gauge theories confine, which reduces
the U(N) to U(1) in the IR.
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The simplest example of this phenomenon is provided by the geometry we discussed

before, namely the resolved conifold, which just has a single 2-cycle CP1. So suppose we

wrap M D5-branes on the CP1 of the resolved conifold. As one might expect, this simplest

possible geometry leads to the simplest possible gauge theory in d = 4, namely N = 1

super Yang-Mills. Now using the glueball superpotential we can recover the standard lore

about this theory’s infrared behavior. Let us derive this superpotential from the geometric

transition and (5.11). The dual geometry after the transition is the deformed conifold, which

has a compact S3 and its dual B cycle, with corresponding periods

X =
∫

A
Ω = µ, (5.13)

F =
∫

B
Ω = µ log µ. (5.14)

Here to compare with the gauge theory we have to identify µ = S as we stated above.

(A simple way to check the formula for F in terms of µ is to note that it has the correct

monodromy; as µ → e2πiµ the B cycle gets transformed into a linear combination of the B

cycle and the A cycle, corresponding to the fact that F gets shifted by the A period µ.)

From the periods we immediately obtain the closed string F0,

F0 =
1

2
XF = µ2 log µ, (5.15)

which leads to the superpotential

N
∂F0

∂S
− τS = NS logS − τS. (5.16)

This is the standard Veneziano-Yankielowicz glueball superpotential for N = 1 super Yang-

Mills [42]. By extremizing it as a function of S one finds the expected N vacua of N = 1

super Yang-Mills,20

S = Λ3 exp (2πij/N) , (5.17)

where j = 1, . . . , N .

So far we have not used much of our topological-string machinery. But now we can

consider more elaborate examples: instead of the singular conifold geometry

u2 + v2 + y2 + x2 = 0, (5.18)

which just has a single shrunk CP1, we could look instead at

u2 + v2 + y2 +W ′(x)2 = 0, (5.19)

20We have not been careful to keep track of the cutoff Λ0; if one does keep track of it, one finds that it
combines with the bare coupling τ to give the QCD scale Λ which appears in (5.17).
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for some polynomial W (x) of degree n+1. This geometry has n conifold singularities at the

n critical poitns of W . The singularities can be resolved by blowing up to obtain n CP1’s at

these n points (all these CP1’s are homologous, however, so in particular there is only one

Kähler modulus describing the resolution.)

We want to use this geometry to engineer an interesting N = 1 gauge theory. Namely, if

we have M D5-branes we can wrap M1 of them on the first CP1, M2 on the second and so

on, obtaining gauge symmetry U(M1)×· · ·×U(Mn). Actually, all such configurations could

be viewed as different vacua of a single gauge theory describing the M branes; this is natural

because the gauge theory on the branes should include an adjoint chiral multiplet Φ, whose

lowest component represents the x-coordinate of the brane. 21 Now what can we say about

this gauge theory? The supersymmetric vacua should arise from configurations in which the

eigenvalues of Φ are distributed among the critical points of W . It would therefore be natural

to guess that the gauge theory in question has a bare superpotential TrW (Φ). This is indeed

the case; one can derive this result from the holomorphic Chern-Simons action which, as we

discussed earlier, is the topological open string field theory of the brane [43]. Namely, one

shows from the holomorphic Chern-Simons action that, as one moves the 2-brane along a

path, sweeping out a 3-cycle C, the classical action is shifted by
∫
C Ω; combined with the

explicit form of Ω in the geometry (5.19) this gives the classical action for the brane at x as

W (x). This classical action in the topological string turns out to be the superpotential of

the physical superstring. This superpotential computation can also be interpreted directly

in the worldsheet language as coming from disc diagrams with boundary on the brane; to

see this from the topological string one notes that F0,1 contributes an S-independent term

to (5.7), which gets interpreted as the desired bare superpotential.

So we have geometrically engineered an N = 1 gauge theory, with U(M1)× · · · ×U(Mn)

gauge group, one adjoint chiral multiplet Φ, and a superpotential TrW (Φ). To answer

questions about the vacuum structure of this theory we now want to find the appropriate

glueball superpotential. As in the case of the simple conifold geometry, one way to do this is

to consider the dual geometry in which the branes have disappeared and each of the n CP1’s

has been replaced by an S3: this geometry is written

u2 + v2 + y2 +W ′(x)2 = f(x), (5.20)

where f(x) is a polynomial of degree n − 1 giving the deformation. This f(x) depends on

the Mi and is completely fixed by the requirement that the period of Ω on the i-th S3 is

21The adjoint scalar Φ is present even in the conifold case which we considered above, but there (as we will
see below) it is accompanied by a quadratic superpotential W (Φ) = Φ2, so Φ can be harmlessly integrated
out to leave pure N = 1 super Yang-Mills.
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Migs. This approach was followed in [44].

Alternatively, one can avoid the geometric transitions altogether and compute directly

in the gauge theory on the D5-branes. Since the glueball superpotential is computed by

the topological string, one can avoid all the complexities of Yang-Mills theory, and use

instead the topological open string field theory; as we explained above, in the case of the B

model this is (the dimensional reduction of) holomorphic Chern-Simons. Working this out

one finds that the whole computation of the topological string free energy is reduced to a

computation in a holomorphic matrix model [45, 46, 47]. Specifically, to compute the planar

free energy F0,h one is interested in the planar limit of the matrix model, while the higher

Fg,h correspond directly to higher genera in the ’t Hooft expansion of the matrix model.

These models have turned out to be a quite powerful tool, which is applicable to geometries

more general than the case we described here. They are also related in a beautiful way to the

geometric transitions we described above: namely, the planar limit of the matrix model can

be described as a saddle-point expansion around a particular distribution of the eigenvalues,

and this distribution turns out to capture the dual geometry in a precise way. In this sense

the smooth geometry seems to be an emergent property, which only makes sense at large N !

5.3 BPS black holes in d = 5

So far we have discussed applications of the topological string to gauge theory, which

(at least if we do not ask about gravitational corrections) involved only the genus zero free

energy F0. Now we want to discuss an application to black hole entropy, which is somewhat

more sophisticated in the sense that it naturally involves all of the Fg. We ask the following

question: given a compactification of M theory to five dimensions on a Calabi-Yau threefold

X, how many BPS black hole states are there with a particular spin and charge?

First, what do we mean by “charge”? M-theory compactified on X has a U(1) gauge field

for each 2-cycle of X, obtained by dimensional reduction of the M-theory 3-form C on the

2-cycle, i.e. via the ansatz Cµαβ = Aµωαβ, where ωαβ is the harmonic 2-form dual to the cycle

in question. So we get U(1)n gauge symmetry, where n = b2(X) is the number of independent

2-cycles. We also naturally get states which are charged under this U(1)n; namely, an M2-

brane wrapped on a 2-cycle gives a particle state charged under the corresponding gauge

field. Hence the charges in the theory are classified by elements of the second homology,

Q ∈ H2(X,Z).

So we could ask for the number of BPS states with given Q. But actually there is a finer

question we can ask: namely, it turns out that in five dimensions it is possible for a black

hole to have spin and still be BPS. The little group for a massive particle in this dimension
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is SO(4) = SU(2)L × SU(2)R, giving rise to spins (jL, jR), and one can get BPS states so

long as one requires either jL = 0 or jR = 0. So fixing, say, jR = 0, we can ask for the

number of BPS states with charge Q and spin jL.

A convenient way of packaging this information is suggested by the notion of elliptic

genus, which we now quickly recall in a related context, namely N = (1, 1) theories in

two dimensions [48]. The partition function on a torus with modular parameter τ with the

natural boundary conditions is

Tr(−1)F qL0 q̄L̄0 . (5.21)

This partition function is relatively “boring” in the sense that it just computes the Witten

index [49], which is independent of q and q̄. But in an N = (1, 1) one can define separate

left and right-moving fermion number operators FL, FR, and we can use these to define a

more interesting object, the elliptic genus,

Tr(−1)FRqL0 q̄L̄0 . (5.22)

The usual argument shows that (5.22) gets contributions only from states which have L̄0 = 0,

so it is independent of q̄, but it is a nontrivial function of q, which has modular properties.

Like the usual Witten index it has some rigidity properties, namely, it does not depend on

small deformations of the theory (moduli of the target space); this follows from the fact that

the coefficients in the q expansion are integral.

Returning to the d = 5 black hole, note that we have a splitting into left and right similar

to the one for N = (1, 1) theories, so instead of computing the ordinary index

Tr(−1)Je−βH (5.23)

we can consider an elliptic genus analogous to (5.22),

Tr(−1)JRqJLe−βH . (5.24)

Like (5.22), this elliptic genus has a rigidity property: it is independent of the complex

structure moduli of X, although it can and does depend continuously on the Kähler moduli.

This property is reminiscent of the A model topological string, and indeed it turns out

that the A model partition function ZA(gs, ti) is precisely the elliptic genus (5.24), with the

identification

q = e−gs , (5.25)

as we will see below. In this sense the spin-dependence of the BPS state counting gets related

to the genus-dependence of the topological string.
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Now, why is the A model partition function counting BPS states? Such a connection

seems reasonable; after all, the A model counts holomorphic maps, and the image of a

holomorphic map is a supersymmetric cycle on which a brane could be wrapped to give a

BPS state. There is a more precise argument which explains the relation; it was worked out

in [50, 51] and goes roughly as follows. If we are interested in computing (5.24) we should

study the five-dimensional theory on a circle S1 of radius β. However, since (5.24) is an index

it is independent of β, and can be evaluated in the limit β → 0 in which the theory becomes

four-dimensional. Interpreting S1 as the M-theory circle, in this limit we are studying the

weakly coupled Type IIA string on X. As we mentioned earlier, there are certain F-terms

in the effective four-dimensional action of this theory which are computed by the A model

topological string, namely ∫
d4x

∫
d4θFg(t)(W2)g + c.c., (5.26)

which give rise to ∫
d4xFg(t)(R

2F 2g−2). (5.27)

If we consider the Euclidean version of the theory, then in four dimensions we can turn on a

self-dual graviphoton background Fαβ 6= 0, Fᾱβ̄ = 0, i.e. W 6= 0, W̄ = 0. Substituting this

background into (5.27) we get a sum correcting the R2 term, ∞∑
g=0

Fg(t)F
2g−2

R2. (5.28)

Note that in (5.28) we get a sum over all genus topological string amplitudes, with the role

of the topological string coupling played by the graviphoton field strength F .

To establish the relation between the topological string and the elliptic genus, we now

want to show that one can compute the R2 correction in a graviphoton background in a

different way which manifestly gives the elliptic genus. This second computation is based

on Schwinger’s computation of the correction to the vacuum energy from pair-production of

charged particles in a background electric field. In the present context the relevant charged

particles are the BPS states we have been considering; for a D2 brane wrapped on the cycle

Q, bound to k D0 branes, the central charge is

Z = 〈Q, t〉+ ik, (5.29)

and the mass of the corresponding BPS state is m = |Z|. We compute the corrections

to the effective action due to pair production of such states in the self-dual graviphoton

background F . Since these states come in hypermultiplets of the N = 2 supersymmetry,

their contribution to the vacuum energy cancels, but it turns out that they make a simple
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contribution to the R2 term: for example, a multiplet whose lowest component is scalar

contributes precisely as a scalar would have contributed to the vacuum energy.

Let us focus on the contribution to the R2 correction from a particular homology class Q,

supporting a BPS hypermultiplet with lowest component scalar. Actually, we will get one

such hypermultiplet for each value of the D0 brane charge k. The Schwinger computation

expresses the contribution from each of these hypermultiplets as a one-loop determinant;

summing over all k gives

∑
k

log det(∆ +m2
k) =

∞∑
k=−∞

∫ ∞

ε

ds

s

e−2πs(〈Q,t〉+ik)

(2 sinh sF
2

)

2

. (5.30)

(Here F enters the determinant through the non-commutation of the covariant derivatives

which appear in ∆.) The integral appearing in (5.30) looks formidable, but luckily we do not

have to do it: the sum over D0 brane charge k gives a δ-function which cancels the integral

and also removes the awkward dependence on the cutoff ε. We get a simple result,

∞∑
n=0

1

n

e−2πn〈Q,t〉

(2 sinh nF
2

)

2

. (5.31)

This is the contribution to the R2 correction coming from a single BPS multiplet with scalar

lowest component. Now identifying F = gs to compare with the topological string, and

taking the gs → 0 limit, we recover

1

g2
s

∑
n

e−2πn〈Q,t〉

n3
, (5.32)

which is precisely the formula we wrote in (3.24) for the contribution of an isolated genus

zero curve to the A model F0! In particular, the counting of BPS states reproduces the

tricky
∑

n 1/n3, which arose from multi-covering maps S2 → S2 in the A model. Indeed,

from counting BPS states one obtains formulas for the multi-covering contributions at all

genera, as well as “bubbling” terms which occur when part of the worldsheet degenerates to

a surface of lower genus.

Looking at (5.31) one does not see any obvious integer structure, but after exponentiating

to get Z one finds
∞∏

n=1

(1− qne−〈Q,t〉)n, (5.33)

which indeed has integer coefficients. This is an expected property, because from what we

have said, (5.33) is supposed to be the contribution to the elliptic genus from an M2-brane

wrapped on the homology class Q. At first glance this formula might be surprising — one
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might naively have expected to get simply e−〈Q,t〉 — but one has to remember that the M2-

brane gives rise to a whole field φ in five dimensions, and this φ can have excitations which

are not Poincare invariant but are still BPS. Namely, choosing complex coordinates z1, z2 for

the Euclidean time-slice R4, we can write

φ = φ(z1, z2, z̄1, z̄2), (5.34)

and the BPS excitations are the ones where we only excite the zi, so expanding

φ =
∑

l,m≥0

φlmz
l
1z

m
2 (5.35)

we get a collection of fermionic creation operators φlm. The operator φlm creates SU(2)L

spin l +m, so there are n+ 1 of them that create spin n. The second quantization of these

operators then accounts for the degeneracy (5.33). From this discussion one easily sees how

to modify the answer if the lowest component were not scalar but rather had SU(2)L spin

j: one just has to replace qn by qn+j in (5.33).

Now we are ready to write the general form of the topological A model free energy

in terms of the five-dimensional BPS content. It is convenient to choose a slightly exotic

basis for the representation content: namely, we introduce the symbol [j] for the SU(2)L

representation [2(0)⊕ (1
2
)]⊗j. Any representation of SU(2)L can be written as a sum of the

representations [j] with integer coefficients (not necessarily positive). Then write Nj,Q for

the number of times [j] appears in the SU(2)L content of the BPS spectrum obtained by

wrapping M2 branes on Q. Combining our results above we can now write

F (t, gs) =
∑
j≥0

∑
Q∈H3(X,Z)

Nj,Q

∑
n≥0

(
2 sinh

ngs

2

)2j−2

e−n〈Q,t〉

 . (5.36)

The formula (5.36) expresses all the complexity of the A model topological string at all genera

in terms of the integer invariants Nj,Q. Conversely, it gives an algorithm for computing the

numbers Nj,Q, which capture the degeneracy of BPS states, using the topological string.

Despite the formidable computational techniques which are known for the topological

string, it has not yet been possible to use it to verify one of the simplest predictions from

black hole physics: namely, the asymptotic growth of the Nj,Q with Q should agree with the

scaling of the black hole entropy.

5.4 BPS black holes in d = 4

Remarkably, it turns out that the topological string is also relevant to black hole entropy

in d = 4! This application is somewhat subtler than the d = 5 case, however. In the d = 5
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case, one could recover the number of BPS states with fixed charge and spin j just by looking

at the A model amplitudes up to genus j. In d = 4 the perturbative topological string will

only give us coefficients of the asymptotic growth of the number of states as a function of

the charge; to get the actual number of states with a given fixed charge would require some

sort of nonperturbative completion of the topological string.

What kind of black holes will we study in d = 4? Unlike in d = 5, there are no spinning

BPS black holes, so we just want to determine the number of BPS states as a function of the

charge. The charges in d = 4 are also a little more subtle than in d = 5; each U(1) in the

gauge group leads to both an electric and a magnetic charge. In Type IIA on X, there would

be a natural splitting into electric and magnetic charges; namely, D0 and D2 branes on X

give electrically charged states, while D4 and D6 branes give magnetically charged states. In

Type IIB, on the other hand, all of the charges are realized by D3 branes wrapping 3-cycles,

and a splitting into electric and magnetic is obtained only after making a choice of symplectic

basis (A and B cycles), as we’ve discussed before:

AI ∩BJ = δJ
I . (5.37)

So a general combination of electric and magnetic charges can be realized by a D3 brane

wrapping a general 3-cycle, i.e. a choice of C ∈ H3(X,Z). Now, how can the Calabi-Yau

space X give us the number of BPS states, as a function of this C?

The crucial ingredient here is the attractor mechanism of N = 2 supergravity [52].

Namely: suppose we consider the supergravity theory obtained by compactifying Type IIB

on X and look for classical solutions describing a BPS black hole with charge C. There are

various such solutions, depending on a choice of boundary condition: namely, the supergrav-

ity theory includes scalar fields corresponding to the moduli of X, and we can choose the

expectation values of those scalar fields at infinity arbitrarily. Then studying the evolution

of the scalar fields as we move in from infinity toward the black hole horizon, one finds a

remarkable phenomenon: the vector multiplet moduli, describing the complex structure of

X, approach fixed values as we approach the horizon. These fixed values depend only on the

charge C of the black hole; they are independent of the boundary condition.22 It is not easy

to describe the map from the charge C to the holomorphic 3-form Ω (which determines the

complex structure), but the inverse map is straightforward: choosing a basis of 3-cycles and

22This statement needs to be slightly qualified: the moduli at the horizon are locally independent of the
moduli at infinity, but there can be multiple basins of attraction [53]. This phenomenon is related to the
existence of lines of marginal stability for BPS states in N = 2 theories.
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corresponding electric-magnetic splitting C = (P I , QJ), the relation is

P I =
∫

AI
ReΩ, QJ =

∫
BJ

ReΩ, (5.38)

or more invariantly, ReΩ ∈ H3(X,R) is the Poincare dual of C ∈ H3(X,Z). (Note that the

counting of parameters works out correctly: the complex structure moduli, when augmented

to include the choice of overall scaling of Ω, make up 2b3(X) real parameters, and this is

also the number of possible black hole charges.)

Given the black hole charges C we now want to compute the number of BPS states. In

fact it will be convenient to express the answer in terms of S, the entropy, To leading order

in C, the answer is remarkably simple: the entropy is given by the “holomorphic volume” of

the Calabi-Yau at the attractor value of Ω,

S(Ω) =
iπ

4

∫
X

Ω ∧ Ω̄. (5.39)

Note that this entropy has the expected scaling with the size of the black hole: namely, from

(5.38) we see that a rescaling C 7→ λC (which also rescales the size of the black hole by

λ thanks to the BPS relation between mass and charge) rescales the attractor moduli by

Ω 7→ λΩ, and hence S 7→ λ2S. This is the expected behavior for the entropy of a black hole

in four dimensions.

Now we want to highlight a connection between (5.39) and the topological string. To do

so, we begin by noting that if we choose an electric-magnetic splitting we can rewrite (5.39)

as

S(P,Q) =
iπ

4
(XIF̄I − X̄IFI). (5.40)

This expression is quadratic in the periods of Ω, which is reminiscent of the tree level B

model free energy F0. Indeed, form the combination

iπ

4
(F0(X)− F̄0(X)) =

iπ

4
(XIFI − X̄IF̄I). (5.41)

Now (5.40) and (5.41) are not quite equal, but they are related, as explained in [54]: namely,

beginning with (5.41), we introduce the notation ΦI = XI − X̄I , and then make a Legendre

transform from ΦI to a dual variable QI . We call the dual variable QI for a reason: namely,

according to (5.38) the black hole electric charge QI = FI + F̄I , and substituting this for the

QI we just introduced in the Legendre transform of (5.41) one recovers (5.40)!

One thus obtains, to leading order in P and Q, the relation

∑
Q

ρ(P,Q)e−QIΦI

= |ZB(P + iΦ)|2. (5.42)
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On the left side of (5.42), ρ(P,Q) is the number of BPS black holes with electric and magnetic

charges (P,Q), while on the right side ZB(P+iΦ) is the B model partition function, evaluated

at the complex structure determined by the A cycle periods XI = P I + iΦI .

In other words, the partition function of the grand canonical ensemble of black holes

where we fix the magnetic charges P and the electric potential Φ, then sum over all electric

charges, is given by |ZB|2! This is a beautiful relation and it is very natural to conjecture

that it holds not just at tree level but in fact to all genera [54].

Now what is the evidence for this conjecture beyond tree level? The major source of

evidence comes from a reconsideration of the corrections to N = 2 supergravity computed

by the topological string, which we wrote in (5.2):∫
d4x

∫
d4θFg(X

I)(W2)g + c.c. (5.43)

In the background of the charged black hole, the graviphoton field W and W̄ both have

nonzero expectation values (and create a nontrivial gravitational backreaction.) The terms

(5.43) therefore lead to terms proportional to Fg(X
I). A careful study of these terms shows

that they correct the black hole entropy, as explained in [?], and these corrections can

be shown to be consistent with the conjecture. There are also formulas for the one-loop

correction to the black hole entropy which agree with the conjecture.

Finally, there is at least one example (so far) where one can see directly that the square of

the B model partition function is related to counting of black holes. This example, studied in

[55], is obtained by putting the B model on the Calabi-Yau threefold geometry L⊕L−1 → T 2,

where L is a particular complex line bundle over T 2. First consider the counting of black

hole BPS states in this geometry. The relevant black holes are obtained by wrapping D4

branes on L−1 → T 2 as well as wrapping D2-D0 bound states on T 2. One can then argue

that the theory on the N D4 branes is a topological U(N) gauge theory, and furthermore

that it localizes to a bosonic U(N) Yang-Mills theory on T 2. The latter theory was studied

in detail in [?], where it was shown that the exact partition function can be obtained as a

sum over representations of U(N):

ZY M =
∑
R

e−λC2(R)+iθ|R| (5.44)

where |R| is the number of boxes in the Young diagram representing R. Furthermore,

expanding around the large N limit, one finds that this ZY M is the square of a holomorphic

function to all orders in 1/N , ZY M = |Z|2. (This splitting into “chiral” and “anti-chiral”

parts is obtained by splitting up the Young diagrams R into short diagrams, with a finite

number of boxes, and large diagrams, for which the size of the first column differs from N
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by a finite number; from this description it is manifest that the splitting only makes sense

in the large N limit.) So the partition function on the branes, which counts BPS states, is

indeed of the form |Z|2. Furthermore, using the topological vertex techniques we mentioned

earlier, one can see that this Z actually agrees with the B model partition function, Z = ZB!

The example of Yang-Mills on T 2 thus provides a striking confirmation of the conjecture

that |ZB|2 counts BPS black hole states. It also gives us some insight into the nonperturbative

topological string. Namely, as we noted above, the factorization of ZY M into |ZB|2 is only

valid in perturbation theory; but whatever the nonperturbative topological string is, we want

it to count BPS states and hence to agree with ZY M . Therefore we might expect that ZB

itself probably only makes sense perturbatively in general — the object that has a chance to

have a nonperturbative completion is |ZB|2, but the nonperturbative completion probably is

not generally factorized into chiral and anti-chiral parts.

References

[1] S.-T. Yau, “On the Ricci curvature of a compact Kaehler manifold and the complex
Monge-Ampere equation. I.,” Comm. Pure Appl. Math. 31 (1978) 339–411.

[2] P. A. Griffiths and J. Harris, Principles of algebraic geometry. John Wiley & Sons
Inc., New York, 1994. Reprint of the 1978 original.

[3] P. Candelas, X. C. de la Ossa, P. S. Green, and L. Parkes, “A pair of Calabi-Yau
manifolds as an exactly soluble superconformal theory,” Nucl. Phys. B359 (1991)
21–74.

[4] P. Candelas and X. C. de la Ossa, “Comments on conifolds,” Nucl. Phys. B342 (1990)
246–268.

[5] K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. P. Thomas, C. Vafa, R. Vakil, and
E. Zaslow, Mirror symmetry, vol. 1 of Clay Mathematics Monographs. American
Mathematical Society, Providence, RI, 2003.

[6] E. Witten, “Phases of N = 2 theories in two dimensions,” Nucl. Phys. B403 (1993)
159–222, hep-th/9301042.

[7] E. Witten, “Topological sigma models,” Commun. Math. Phys. 118 (1988) 411.

[8] E. Witten, “Mirror manifolds and topological field theory,” hep-th/9112056. In Yau,
S.T. (ed.): Mirror symmetry I , 121-160.

[9] M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa, “Holomorphic anomalies in
topological field theories,” Nucl. Phys. B405 (1993) 279–304, hep-th/9302103.

58



[10] M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa, “Kodaira-Spencer theory of
gravity and exact results for quantum string amplitudes,” Commun. Math. Phys. 165
(1994) 311–428, hep-th/9309140.

[11] E. Witten, “Quantum background independence in string theory,” hep-th/9306122.

[12] R. Dijkgraaf, E. Verlinde, and M. Vonk, “On the partition sum of the NS five-brane,”
hep-th/0205281.

[13] D. Quillen, “Determinants of Cauchy-Riemann operators on Riemann surfaces,”
Functional Anal. Appl. 19 (1985), no. 1, 31–34.

[14] K. Hori and C. Vafa, “Mirror symmetry,” hep-th/0002222.

[15] A. Schwarz, “Sigma models having supermanifolds as target spaces,” Lett. Math.
Phys. 38 (1996) 91–96, hep-th/9506070.

[16] M. Aganagic and C. Vafa, “Mirror symmetry and supermanifolds,” hep-th/0403192.

[17] M. Aganagic, R. Dijkgraaf, A. Klemm, M. Marino, and C. Vafa, “Topological strings
and integrable hierarchies,” hep-th/0312085.

[18] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, “Large n field
theories, string theory and gravity,” Phys. Rept. 323 (2000) 183–386, hep-th/9905111.

[19] J. M. Maldacena, “The large N limit of superconformal field theories and
supergravity,” Adv. Theor. Math. Phys. 2 (1998) 231–252, hep-th/9711200.

[20] R. Gopakumar and C. Vafa, “On the gauge theory/geometry correspondence,” Adv.
Theor. Math. Phys. 3 (1999) 1415–1443, hep-th/9811131.

[21] H. Ooguri and C. Vafa, “Worldsheet derivation of a large N duality,” Nucl. Phys.
B641 (2002) 3–34, hep-th/0205297.

[22] E. Witten, “Chern-Simons gauge theory as a string theory,” Prog. Math. 133 (1995)
637–678, hep-th/9207094.

[23] E. Witten, “Noncommutative geometry and string field theory,” Nucl. Phys. B268
(1986) 253.

[24] M. Aganagic, M. Marino, and C. Vafa, “All loop topological string amplitudes from
Chern-Simons theory,” hep-th/0206164.

[25] H. Ooguri and C. Vafa, “Knot invariants and topological strings,” Nucl. Phys. B577
(2000) 419–438, hep-th/9912123.

[26] E. Witten, “Quantum field theory and the Jones polynomial,” Commun. Math. Phys.
121 (1989) 351.

59



[27] M. Aganagic, A. Klemm, M. Marino, and C. Vafa, “The topological vertex,”
hep-th/0305132.

[28] A. Okounkov, N. Reshetikhin, and C. Vafa, “Quantum Calabi-Yau and classical
crystals,” hep-th/0309208.

[29] A. Iqbal, N. A. Nekrasov, A. Okounkov, and C. Vafa, “Quantum foam and topological
strings,” hep-th/0312022.

[30] D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande, “Gromov-Witten
theory and Donaldson-Thomas theory,” math.AG/0312059.

[31] M. Bershadsky and V. Sadov, “Theory of Kahler gravity,” Int. J. Mod. Phys. A11
(1996) 4689–4730, hep-th/9410011.

[32] I. Antoniadis, E. Gava, K. S. Narain, and T. R. Taylor, “Topological amplitudes in
string theory,” Nucl. Phys. B413 (1994) 162–184, hep-th/9307158.

[33] S. Katz and C. Vafa, “Matter from geometry,” Nucl. Phys. B497 (1997) 146–154,
hep-th/9606086.

[34] N. Seiberg and E. Witten, “Electric-magnetic duality, monopole condensation, and
confinement in N = 2 supersymmetric Yang-Mills theory,” Nucl. Phys. B426 (1994)
19–52, hep-th/9407087.

[35] S. Kachru, A. Klemm, W. Lerche, P. Mayr, and C. Vafa, “Nonperturbative results on
the point particle limit of N = 2 heterotic string compactifications,” Nucl. Phys.
B459 (1996) 537–558, hep-th/9508155.

[36] S. Katz, A. Klemm, and C. Vafa, “Geometric engineering of quantum field theories,”
Nucl. Phys. B497 (1997) 173–195, hep-th/9609239.

[37] S. Katz, P. Mayr, and C. Vafa, “Mirror symmetry and exact solution of 4d N = 2
gauge theories. I,” Adv. Theor. Math. Phys. 1 (1998) 53–114, hep-th/9706110.

[38] D. R. Morrison and N. Seiberg, “Extremal transitions and five-dimensional
supersymmetric field theories,” Nucl. Phys. B483 (1997) 229–247, hep-th/9609070.

[39] A. D. Shapere and C. Vafa, “Bps structure of argyres-douglas superconformal
theories,” hep-th/9910182.

[40] C. Vafa, “Superstrings and topological strings at large N ,” J. Math. Phys. 42 (2001)
2798–2817, hep-th/0008142.

[41] S. Gukov, C. Vafa, and E. Witten, “CFT’s from Calabi-Yau four-folds,” Nucl. Phys.
B584 (2000) 69–108, hep-th/9906070.

60



[42] G. Veneziano and S. Yankielowicz, “An effective Lagrangian for the pure N = 1
supersymmetric Yang-Mills theory,” Phys. Lett. B113 (1982) 231.

[43] M. Aganagic and C. Vafa, “Mirror symmetry, D-branes and counting holomorphic
discs,” hep-th/0012041.

[44] F. A. Cachazo, K. A. Intriligator, and C. Vafa, “A large N duality via a geometric
transition,” Nucl. Phys. B603 (2001) 3–41, hep-th/0103067.

[45] R. Dijkgraaf and C. Vafa, “Matrix models, topological strings, and supersymmetric
gauge theories,” hep-th/0206255.

[46] R. Dijkgraaf and C. Vafa, “On geometry and matrix models,” hep-th/0207106.

[47] R. Dijkgraaf and C. Vafa, “A perturbative window into non-perturbative physics,”
hep-th/0208048.

[48] E. Witten, “On the Landau-Ginzburg description of N = 2 minimal models,” Int. J.
Mod. Phys. A9 (1994) 4783–4800, hep-th/9304026.

[49] E. Witten, “Constraints on supersymmetry breaking,” Nucl. Phys. B202 (1982) 253.

[50] R. Gopakumar and C. Vafa, “M-theory and topological strings. I,” hep-th/9809187.

[51] R. Gopakumar and C. Vafa, “M-theory and topological strings. II,” hep-th/9812127.

[52] S. Ferrara, R. Kallosh, and A. Strominger, “N = 2 extremal black holes,” Phys. Rev.
D52 (1995) 5412–5416, hep-th/9508072.

[53] G. W. Moore, “Arithmetic and attractors,” hep-th/9807087.

[54] H. Ooguri, A. Strominger, and C. Vafa, “Black hole attractors and the topological
string,” hep-th/0405146.

[55] C. Vafa, “Two dimensional yang-mills, black holes and topological strings,”
hep-th/0406058.

61


