MiniBooNE: Up and Running

Morgan Wascko
Louisiana State University

MiniBooNE detector at Fermi National Accelerator Lab
Outline

• Motivation
• MiniBooNE Overview
• Physics at MiniBooNE
• Current Status
• First Data!
Neutrino Oscillations
The Evidence So Far ...

Solar $\Delta m^2 \sim 10^{-(4-5)}$

Atmospheric $\Delta m^2 \sim 3 \times 10^{-3}$

Both are well established

LSND $\Delta m^2 \sim 10^{-(0-1)}$

Three Δm^2 scales!

Unconfirmed result...

Morgan O. Wascko, LSU

Yang Institute Conference

11 October, 2002
Motivation for MiniBooNE
The LSND Oscillation Signal

Excess: $87.9 \pm 22.4 \pm 6.0$ evts.

Oscillation probability: $(0.264 \pm 0.067 \pm 0.045)\%$.

3.8 σ statistical significance of excess.

Confirmation is Crucial!

Morgan O. Wascko, LSU
Yang Institute Conference
11 October, 2002
Motivation for MiniBooNE
The LSND Oscillation Signal (2)

Karmen result excludes part of LSND allowed region
...but a lot of phase space is left open

Plot taken from Church, Eitel, Mills, and Steidl
hep-ex/0203023
MiniBooNE Sensitivity to ν_e Appearance

- Same L/E as LSND
 - Higher statistics
 - Different systematics (different L, E)

- MiniBooNE sensitivity will cover entire LSND allowed region at 5 σ level in two years
MiniBooNE Sensitivity to ν_μ Disappearance

- Can help distinguish $3+1$ from $2+2$
- Complementary Analysis
- Lower Δm^2 reach than CDHS
- MiniBooNE will have HIGH statistics for ν_μ disappearance!
MiniBooNE Experiment: Beamline Overview

- **8GeV protons from Fermilab Booster**
- **Incident on Be target**
- **Magnetic horn focuses interaction products**

- π and K secondaries traverse decay pipe
- Traverse beam absorber + berm
- $\nu_\mu \rightarrow \nu_e$?

Morgan O. Wascko, LSU
Yang Institute Conference
11 October, 2002
MiniBooNE Experiment: Detector Overview

- 12m diam. sphere
- lined with 8" PMTs
 - 1280 main region
 - 240 veto region
 - 10% coverage
- 800 tons of mineral oil
- Custom electronics from LSND
- All new Data Acquisition System
MiniBooNE Experiment:
Particle Identification

- Short track, no multiple scattering: Sharp Ring
- Electrons: short track, mult. scat., brems.: Fuzzy Ring
- Muons: long track, slows down: Sharp Outer Ring with Fuzzy Inner Region
- Neutral pions: 2 electron-like tracks: Two Fuzzy Rings
MiniBooNE Experiment: Neutrino Fluxes

\[\text{p} + \text{Be} \rightarrow \pi^+, K^+, K^0_L \]

The beam is comprised almost entirely of \(\nu_\mu \)

\[\pi^+ \rightarrow \mu^+ \nu_\mu \]
\[K^+ \rightarrow \mu^+ \nu_\mu \]
\[\rightarrow \pi^+ \pi^0 \]

Intrinsic \(\nu_e \) flux is small compared to \(\nu_\mu \) flux

\[K^0_L \rightarrow \pi^+ e^- \nu_e \]
\[\mu^+ \rightarrow e^+ \nu_e \nu_\mu \]
\[K^+ \rightarrow e^+ \nu_e \]

Morgan O. Wascko, LSU
Yang Institute Conference
11 October, 2002
MiniBooNE Experiment: Numbers of Events

Approximately 500,000 $\nu_\mu C$ events expected in MiniBooNE with two years of running.

- Intrinsic ν_e background: 1,500 events
- μ mis-ID background: 500 events
- π^0 mis-ID background: 500 events
- LSND-based $\nu_\mu \rightarrow \nu_e$: 1,000 events
MiniBooNE Experiment: Blindness Scheme

- Blind analysis is used to prevent bias
 - Encourages sound development of Monte Carlo
- In a nutshell:
 - Start by putting all but clean ν_μ CC events "in the box"
 - Take 1000 open event to use for studies
 - Open the box incrementally to extract clean μ and π^0 samples
Non–Oscillation Physics:
ν–C Cross–Section Measurements

• Quasi–elastic ν–C cross–sections are key for the oscillation measurement
• We will improve on the current uncertainty in the total ν cross–section around 1 GeV
Non−Oscillation Physics: MiniBooNE the Supernova Detector

- Estimated sensitivity: $190 \nu_e p \rightarrow e^+ n$ for a galactic supernova at 10 kPc
- Supernova trigger in action! 15.2 µsec holdoff after cosmic rays + 99% veto efficiency cuts michel e^-
- 12B decay background peaked at lower energy, cosmic ray background peaked at higher energy

Non–Oscillation Physics: Anomalous Neutrino Magnetic Moment

- If non–zero μ_ν, ν_μ can have EM interactions → large contribution to ν_e scattering cross–section at low electron recoil energy
- Expected sensitivity: ~ 100 ν–e scattering events will give a factor of 2 improvement over LSND μ_ν limit

B. Fleming and J. Beacom, in preparation
More Oscillation Related Physics: Test of CP and CPT

- MiniBooNE can run in \(\nu \) or anti-\(\nu \) mode
- Recent CPT violating models account for all current experimental oscillation results with only 3 \(\nu \)s

Legend:
- \(\nu_e \) □
- \(\bar{\nu}_e \) □
- \(\nu_\mu \) □
- \(\bar{\nu}_\mu \) □
- \(\nu_\tau \) □
- \(\bar{\nu}_\tau \) □

Morgan O. Wascko, LSU
Yang Institute Conference
11 October, 2002
Current Status of MiniBooNE: Protons on target!

- Protons on target for physics running since August 24, 2002
- Average intensity is about 10% of desired level
- Shown in plot:
 - Total
 - MiniBooNE
 - Stacking
MiniBooNE’s First Data

Cosmic muon enters detector and decays; both are observed

hit times for 3 "Michel" events

Fit Lifetime:

\[\tau = 2.12 \pm 0.05 \, \mu s \]

Expected \(\mu \) lifetime in oil

2.13 \(\mu s \)

with 8\% \(\mu^- \) capture on carbon.

Morgan O. Wascko, LSU

Yang Institute Conference

11 October, 2002
Current Status of MiniBooNE: Neutrino Events in the Detector!

- **Cuts:**
 - >200 hits in tank
 - <6 hits in veto region
- **Average rate** >1 Hz
- **Typical pulse has** 3.5×10^{12} protons
- **2.3×10^{-15} int/proton** OR 1 ν in detector every 120 pulses
MiniBooNE Beam Data:
Looking closer

Angular distribution is peaked forward – quasi–elastic scattering
MiniBooNE Beam Data: Analyzing Events in the Detector

Stopping muon

Nice, clean ring
MiniBooNE Beam Data: Events in the Detector

Through-going muon

Filled circle
Current Status of MiniBooNE: Summary

• **MiniBooNE is running and taking physics data.**
• Detector is working well.
• The beam is steadily improving.
• **Two years of running in ν mode**
 • Two years of anti-ν mode to follow
• **Will cover entire LSND region at 5σ level**
Motivation for MiniBooNE
The LSND Experiment

Data Collected 1993–98
30 m baseline
$20\text{MeV} < E_{\nu_e} < 55\text{MeV}$
$L/E \sim 1\text{m/MeV}$

167 tons liquid scintillator

Signal Reaction:
$\bar{\nu}_e \, p \rightarrow X \, e^+ \, n$
$n \, p \rightarrow d \, \gamma(2.2\text{MeV})$

Morgan O. Wascko, LSU
Yang Institute Conference
11 October, 2002