A $Q_\phi=25000$ SUPERCONDUCTING CHARGE QUBIT

QUANTUM ELECTRONICS GROUP

CEA-Saclay, France

A. COTTET V. BOUCHIAT A. AASSIME P. JOYEZ D. VION

C. URBINA H. POTHIER D. ESTEVE M. DEVORET

YALE, USA

R. VIJAY I. SIDDIQI F. PIERRE C. WILSON R. SCHOELKOPF M. DEVORET

Acknowledgements: A. Clerk & S. Girvin (Yale); J. Martinis (NIST Boulder)

Stony Brook, May 2003
THE JOSEPHSON TUNNEL JUNCTION: AN ATOM-LIKE SYSTEM TO WHICH YOU CAN ATTACH WIRES ...
.... IN 3 DIFFERENT WAYS

“CURRENT-BIASED JUNCTION”

“RF-SQUID”

“COOPER-PAIR BOX”

\[Z(\omega) \]

\[\delta \]

\[Z(\omega) \]

\[\phi \]

\[\Phi_b \]

\[N_g = C_g U/2e \]

\[Z(\omega) \sim Z_{vac} = 377\Omega \]
ENERGY LEVELS OF THE COOPER PAIR BOX IN THE CHARGE REGIME

\[E_j/E_c = 0.25 \]

\[E_c = \frac{e^2}{2(C_g + C_j)} \]

Zorin, Averin & Likharev '85
Experimental Implementations of Squubits

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>CHARGE</th>
<th>FLUX</th>
<th>PHASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEASURE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHARGE</td>
<td>Saclay, SUNY Stony Brook, NEC, Yale, Chalmers, LPS, JPL, …</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>FLUX</td>
<td>______</td>
<td>SUNY Stony Brook, TU-Delft, UC Berkeley, NTT, Rome …</td>
<td>NIST</td>
</tr>
<tr>
<td>PHASE</td>
<td>Saclay Yale/Saclay</td>
<td>IBM TU-Delft …</td>
<td>NIST U. Kansas U. Maryland …</td>
</tr>
</tbody>
</table>
BOX AS SPIN 1/2

OFFSET CHARGE!
ENERGY LEVELS IN THE INTERMEDIATE REGIME

\[E_J/E_C = 4 \]

\[E/EC \]

\[N_g = C_g U / 2e \]

optimum work. pt.
KEY IDEA: WRITE WITH CHARGE, READ WITH PHASE

readout measures current response to applied phase δ instead of island charge N

$N_g = \frac{C_g U}{2e}$

Cottet et al. 2002
Friedman & Averin, Zorin, Buisson et al.
ELECTRON MICROGRAPH OF SAMPLE

EXPERIMENTAL SETUP

Vion et al., Science 296 (2002), 286
CW ABSORPTION LINESHAPe AT OPTIMAL POINT

- $N_g = 0.5$
- $\delta = 0$
- $\tau = 4 \mu s$

Lorentzian fit:
- $\nu_{01} = 16463.64 \text{ MHz}$
- $Q_{\text{app}} \sim 20000$
RELAXATION TIME AT OPTIMAL POINT

Exponential fit:
$T_1 = 1.84 \mu s$

$Q_1 \sim 90,000$
RABI OSCILLATIONS

\[U_{w} = 22 \text{ } \mu\text{V} \]

\[\tau \]

\[\nu_{RF} = 16430.05 \text{ } \text{MHz} \]

\[\text{RF pulse duration } \tau (\mu\text{s}) \]

\[\text{Rabi frequency } \nu (\text{MHz}) \]

\[\text{switching probability } (%) \]

\[\text{nominal } U_{w} = \mu\text{V} \]
MEASURING QUANTUM COHERENCE LIFETIME (1)

preparation

90° pulse

free evolution

90° pulse

measurement

Ramsey fringe experiment, principle of atomic clocks
MEASURING QUANTUM COHERENCE LIFETIME (2)

preparation | 90° pulse | free evolution | 90° pulse | measurement

Ramsey fringe experiment, principle of atomic clocks
RAMSEY FRINGES MEASUREMENT

\(f - f_{01} = 20.6\, \text{MHz} \)

\(Q_\phi \sim 25000 \)
TRANSITION FREQUENCY vs BIAS

FIT:

\[E_J = 0.68 \text{ k}_B\text{K} \]
\[E_{CP} = 0.86 \text{ k}_B\text{K} \]
junction asymmetry = 0
LINEWIDTH CLOSE TO THE OPTIMAL POINT

\[2 \times 10^{-3} \frac{\partial \nu_{01}}{\partial \phi} \]

\[4 \times 10^{-3} \frac{\partial \nu_{01}}{\partial N_g} \]
2-QUBIT GATE

qubit # 1

qubit # 2

will prepare

$$\frac{|01\rangle - |10\rangle}{\sqrt{2}}$$
QUANTUM vs CLASSICAL SPIN-SPIN CORRELATIONS FOR 2 QUBITS

<table>
<thead>
<tr>
<th></th>
<th>Qubit1</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qubit2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>-1</td>
<td>0.5 (<0.33)</td>
<td>0.5 (<0.33)</td>
</tr>
<tr>
<td>Y</td>
<td>0.5 (<0.33)</td>
<td></td>
<td>-1</td>
<td>0.5 (<0.33)</td>
</tr>
<tr>
<td>Z</td>
<td>0.5 (<0.33)</td>
<td>0.5 (<0.33)</td>
<td>-1</td>
<td></td>
</tr>
</tbody>
</table>
RF PULSE READOUT PRINCIPLE

write qubit

μW pulses
f~15GHz

excite readout junction

RF pulse
f’~1GHz

amplify & mix reflected pulse

S\textsubscript{out}\ast\sin(2\pi f''t)

IF pulse
f’-f''=20MHz

state 1

state 0
PRELIMINARY RESULTS ON QUBIT READOUT PERFORMANCE

- Measurement time is <15 ns! (<< T₁)
- Single-shot qubit state readout recorded in < 100 ns
- Discriminating power = 76% for 1% change in I₀ @ T=380 mK
CONCLUSIONS AND PERSPECTIVES

- EXISTENCE PROOF OF COHERENCE QUALITY FACTORS OF $Q_\phi \sim 25\,000$ FOR CHARGE-PHASE QUBITS

- GATES BASED ON SIMPLE CAPACITORS

- RF-PULSE READOUT SHOULD BE QUASIPARTICLE-FREE; SHOULD IMPROVE CONTRAST, EFFICIENCY AND REPETITION RATE

- PROTECTION FROM $1/f$ CHARGE NOISE AND FLUX NOISE CAN BE IMPROVED FURTHER WITHIN PRESENT TECHNOLOGY