1. In this problem we just have to calculate the proper time interval in B rest frame. The situation is symmetrical for the round trip — if we neglect accelerations, etc. at the turning point.

We simply have

\[\Delta t_B = \Delta t_A \sqrt{1 - \left(\frac{v}{c}\right)^2} \]

\[= 2 \text{ years} \times \sqrt{1 - (0.99)^2} \]

\[= 0.282 \text{ yrs} \]

2. We'll use

\[E = E_0 \cosh y \]

\[p = E_0 \sinh y \]

where \(v = \tanh y \)

\(y \) is the rapidity, we set \(c = 1 \).

The force is defined as

\[F = \frac{dp}{dt} \]

So in frame A, \(F_A = \frac{dp}{dt_A} \)
Using the previous relations,

\[F_a = \frac{d}{dt_a} (E_0 \sinh y) = E_0 \cosh y \frac{dy}{dt_a} = E \frac{dy}{dt_a} \]

We now use the fact that rapidity is the same in both frames. We also relate it to the relative velocity

\[dv = (1 - \tanh^2 y) dy = (1 - v^2) dy \]

By definition, \(v = 0 \) in \(B \) frame, so the acceleration in \(B \) frame is

\[a_B = \frac{dv}{dt_B} = \frac{dy}{dt_B} \]

Now we write \(F_a \) in terms of \(B \)-quantities

\[F_a = E \frac{dy}{dt_a} = E \frac{dy}{dt_a} \frac{dt_a}{dt_B} \frac{dt_a}{dt_B} \frac{dy}{dt_B} = E \frac{dy}{dt_B} \frac{1}{\gamma} \]

But also \(E = M_0 \gamma \) \(\gamma \) so using \(\frac{dy}{dt_B} = a_B \)

\[F_a = \gamma M_0 a_B \frac{1}{\gamma} = M_0 a_B \]