
Physics 308 Introduction to Quantum Mechanics Spring 2005

Homework 13 (Extra Credit), Answers

1. Describe how the two assumptions for photons E = hν and ρ =
[ε0 ~E2 + ~B2/µ0]/8πhν, both at least implicit in Einstein’s 1905 paper on
particle phenomena for light, give single-particle quantum mechanics and
so a natural introduction to all quantum mechanics. [Here ρ is the number
of photons per unit volume.]

In his 1905 paper on particle aspects of light, Einstein stated that each
light particle (today called a ’photon’) carries an energy E = hν, where h is
Planck’s constant and ν is the frequency of the light. He also said that the
rate at which photons knock out electrons from a metal is proportional to
the intensity of the light beam. A straightforward way to interpret this is
that photon intensity is given by the power intensity of the electromagnetic
field, divided by the energy per photon. Consequently, the field energy
density should determine the density of photons. This implies that photons
don’t necessarily travel like particles, but instead are ’told’ where to go by
the wave – one can’t predict exactly where a photon will go, but only give
probabilities depending on the wave intensity.

2. Describe the magic numbers for closed shells in atoms, on the assumption
that the forces between electrons can be neglected. What are the qualitative
changes when electron screening of the positive nuclear charge is taken into
account?

Ignoring electron-electron interactions gives independent electrons around
a nucleus with charge Ze. A neutral atom has Z electrons, with levels (ob-
tained from the Schrödinger equation) filled from the lowest up. Principal
quantum number n gives En = −Z2e2/2an2, with a = h̄2/me2 the hydro-
gen Bohr radius. For each n the number of different space wave functions
is n2, and by the Pauli principle the number of electrons to completely
fill such a level is Nn = 2n2, one spin-up and one spin-down electron for
each space wave function. This gives magic numbers for chemically inert
atoms with filled shells 2, 2+8=10, 2+8+18=28, etc. Because inner elec-
trons shield part of the nuclear charge from electrons farther out, the actual
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magic numbers increase more slowly – wave functions far out have less bind-
ing because of the charge shielding. Therefore the actual magic numbers
are Z = 2, 10, 18, etc. In the third row of the periodic table n = 3, ` = 2
states are so far out that they are not bound until after n = 4, ` = 0, 1
states have been filled, which brings one to the next shell, so the n = 3
electrons are chemically unimportant because they don’t stick out as far as
n = 4.

3. Describe the closest quantum-mechanical harmonic-oscillator solution
to the behavior of a classical harmonic oscillator, whose coordinate goes
back and forth with sinusoidal time dependence. What is the crucial differ-
ence between this solution and the classical one? When is that difference
unimportant?

The ground-state wave function for a harmonic oscillator is a gaussian func-
tion centered on the equilibrium point of the oscillator, with the minimum
value for the uncertainty product δxδp allowed by the uncertainty princi-
ple. If at the start this wave function is centered about a point a distance
X from the equilibrium point and released, it will swing back and forth
between X and −X just like a classical mass at the end of a spring, and at
the same frequency as for the classical harmonic oscillator. The difference
is that we cannot describe the quantum wave as a point, because it has a
size. Therefore the classical description of the motion will be accurate as

long as X is much greater than the width δx ∼

√

(h/
√

(km).

4. Two basic ideas in quantum mechanics are the notion that phase space is
quantized, that is, a finite area h in (x, p) space is needed to accommodate
a possible state of the system, and the uncertainty principle which says that
the product δxδp must be no smaller than h̄/2. Explain why it is natural
that one involves h and the other h̄.

The most compact shape for a certain area is a circle, or if the scales are
different in x and p directions, an ellipse. The area of an ellipse with length
2X in the x direction and 2P in the p direction is πXP , which is easily
checked by scaling out the dimensions to get an integral over the unit circle.
On the other hand, assuming the ellipse is centered on the origin, δx2 can
be obtained by integrating x2 over the ellipse and dividing by the area of
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the ellipse. This gives δx2 = X2/4, and δp2 = P 2/4. Then we have δxδp =
XP/4. Setting the area πXP equal to h, we get XP/4 = h/4π = h̄/2.
Thus a uniform distribution in phase space with total area h automatically
gives the minimum possible value for the uncertainty product.

5. Imagine a solution of the Schrödinger equation with energy E. Suppose
that the potential in the equation is V = 0 for x < 0 and V = V0 > E for
x > 0. Discuss the different results in classical and quantum physics for the
possible presence of a particle in the region x > 0.

In classical physics, a particle must always have non-negative kinetic en-
ergy. Because the kinetic energy is p2/2m = E − V , in the region to the
right of x = 0 the kinetic energy would be negative, so it is impossible for
the particle to be found there. Therefore this is called a ‘classically for-
bidden zone’. On the other hand, in quantum mechanics p2 = −h̄2∂2

x < 0
just means that the wave function is exponentially increasing or decreasing.
Given a beam coming from the left, it makes no sense to have an expo-
nentially increasing probability density on the right, so the only option is
exponential decrease. Therefore, instead of vanishing to the right of x = 0,

the probability decreases exponentially as e−2
√

(2m(E−V0) x/h̄. This is an
example of an uncertainty-principle effect: The finite energy barrier cannot
keep particles completely out of the classically forbidden zone.
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