Physics 308 Introduction to Quantum Mechanics Spring 2005

Homework 9, Due AT BEGINNING OF CLASS, Wednesday 6 April

Algebraic or Heisenberg approach to harmonic oscillator

1. The lowering operator is defined by $a = (\xi + \partial_{\xi})/\sqrt{2}$, and the raising operator a^{\dagger} is its adjoint. Given on the space of eigenstates of the harmonic oscillator that ξ and $-i\partial_{\xi}$ are self-adjoint, what is a^{\dagger} ?

2. What are the commutators $[a^{\dagger}, a]$, [a, a] and $[a^{\dagger}, a^{\dagger}]$?

3. Define $N \equiv a^{\dagger}a$. What are the commutators [N, a] and $[N, a^{\dagger}]$?

4. Given that a^{\dagger} is the adjoint of a, show that N cannot be negative. This implies, as explained in class, that the state $|0\rangle$ with the lowest value of N must obey $a|0\rangle = 0$. What is N for this state?

5. Show that the Hamiltonian $(\xi^2 - \partial_{\xi}^2)/2 = N + 1/2$. Then what is the energy of the lowest state? Does this agree with what you found earlier using the Schrödinger approach?