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| ntroduction “

 There aeinteresting solutions of type |IB theory, named
fradional D3 branes.

— The gauge duals are non-confor mal N=2 gauge theoriesin d=4

e Fractional branes are mmmonly viewed as 5-branes wrapped
onaVvanishing cycle of transverse space
— Transverse spaceis R?x R4T.

 We havefoundasupersymmetric (BPS D3-brane solution
where transverse spaceis R2x ALE
— Inthe orbifold limit we recover fractional branes
— Thewarp factor isdeter mined by a har monic equation on ALE

— In Eguchi Hanson case the har monic equation reduces to a confluent
Heun equation

— Open questions on the boundary action and the gauge dual.
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Type lIB Sugra

FIELD CONTENT OF TYPE IIB SUPERGRAVITY.

The D3 brane
couplesto Cy
whose field
strength
Involves a
Chern Simons
of lower forms

Greek indices o, 8,... = 1,2 run in the fundamental representation of|SU(1, 1), [C®® denote the Ramond-
Ramond p—forms: RED=fermion, Blue =boson
superstring
Fielda SU(1,1) U(1) 2610 modes
e J =10 { graviton g,
(n J=0 : gravitinos 1.4,
@ = 1
AE J=3 0 By , C'[g]
Clavpr J=0 0 Cly
A J=0 g dilatinos A 4
L2, J=3 +1 0, Clg

The bosonic field strengths are defined as follows:

Fi'=dCq ; Fg =dCy— CgdBy
Fi® =dBp ; Fif* =dCq — 3 (B AdCpy — Cp A dBp))

Castellani & Pesando (1991) established geometric formulation

_ iR
Fi* = «Fy
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The SL(2,R)SU(1,1)
Structure

The solvable Lie algebra
parametrization of the coset

| naturally introduces the
(Lo, Le] =+ L+ ; [Ly, L]=2Lo | gi|5t0n and the RR O-form

SL(2,R) Lie algebra

L (, Cio) = exp [ Lo] exp [Cigje?] = ( Ca  epl—0/]

where go(:z:) and Cyy are the dilaton and the Ramond-Ramond O-form.

A7ldA = (_;*Q g) : C:T%(i-_l) . 8U(1,1) 3 A =CLC!
1 1

Explicitly

P=1(dp—ie” dO[{]]) scalar vielbein
1 explp] dCly U{1)-connection
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The FDA defining the
Theory

The curvatures of the free differential algebra in the complex bagis

Note B = DV® — ip AT
the R® = du® —w® Aw®ny
Chern p =Dy =dp — 3w ATt — Q@ A%

Simons Hiy = dAR + AP AT AVE+ 23ATY" AT AV
Fis) = 40 + 15 1 €apipy A Hig [+ 5P ATaactp AVEAVIAVE
+id eapdly A (AT + A%*Fazp) AVE

1
DA = dA—7 DA — i3 QA
DAS = dAS FiQAS.

Castellani & Pesando (1990-1991}

Asfor all supergravitiesthe algebraic structure isencoded in an FDA.
(D’ Auria, Fré, (1982, Castellani, P. Van Nieuwenhuizen, K. Pilch (1982) E) E[f'é
O
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Always running to get

- Opdl.. | was also there but do not
tell anybody....
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The rheonomic
parametrizations~susy rules

(3] 5 =Tl — LT L3 1
p = paV" A & o l_E'IF e (F-:u—aa 5 Efﬂl—ﬂlﬂFﬂﬂ—ﬂlﬂ)

o A gI"ﬂﬂﬂaw*Vﬂsi) Ai?{ﬁ

ay—a,Cap -+ fermion bilinears

i
Hy = HaVEAVEAVO+ A Ta A VEAVE + A%PTadVEA VP

Fo) = FopoggVUA... AV Fermionic
i Components
DA = DodV 1P — ST SgeaphfH, o, <Cummmmn| o€
3 expressed
DA? = A°PVe LAY\ <4— In terms of
Space-time
R® = R"bﬂdV“n Ve + fermionic terms components
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Our task: the equations to he ¥

solved m

The Bosonic field equations

i

N\t )
Stonv Brook.

ey 1 ap=a
R, —1PR%, = 75 (anl_ﬂ4ppﬂ1 R L

9/ ~ o~ o~ o~ 1
(ijlﬂﬂ?{ —|gagap T HEWH +Hgaies ™ g

16
—3 (PPP; + P,P** — & P°Fy)

] i)
a1apa3
(%)H+ H |ﬂlﬂ'2‘-'13)

D°P, = —3fjnanf], Note _that these o
) o eguations are written in
Dot = —200sopiy 7+ PHoon gt indices and appear
fhutabogprats as cosntraints on the
Curvature components

s
DF, aragagash = 1gpCerapazashs.. by

where dressed field strengths are:

o~ - o ﬁ
Hi|ﬂlﬂ'2‘-'13 = EﬂﬁA:I: Hﬂ-lﬂgﬂa
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Fractional Branes= D3
branes on orbifolds C4/I"

e Consider Type lIB string theory on a space-time of the form

R x R x C2/T",

in which (fractional ) D3-branes, transverse to the orbifold, are
located at the orbifold singularity:

orbifold C*/T"

_——— a -
=

gl T B e

Susyis (2! = 2 iz, fixed point
halved 5 : 2 =2"=10
in the bulk == j

by o
restricted z, "
holonomy 3 world-volumes

(7o)

Rty
ERT S,

Ll"‘.l It LI “. :.xll ]
Stony Brook, 2001

In the dual gauge
theory, x4+ix®
makes the
complex scalar of
the vector
multiplet while

X6, X? ,X8 . Xg
constitute the
scalar part of a
hypermultiplet
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g 5 JURERGIAVIY
ALE manifoldsasorbifold  oee g
resol utions Al
e The group T" is a discrete subgroup of SU(2) acting on C2
by

ALE manifolds are
21 2! related to the ADE
ger: () aw(,), e .
- SRS zdef, Sy 2 o classification of Lie
L (.9.) €2H(2) thedshning 2.dim [EPIREENLEAN, algebras. They can be
e Such Kleinian subgroups I" are ADE-classified. For instance, _ _
obtained as suitable

1 2rifn 1 .
AnroT=Z: (N~ (7, ") Hyperkahler quotients
5 . p of flat HyperKahler
AIS’D, Dn_|_2 & I'= ]Dﬂ, and Eﬁ,?,s +— ['= T? @?I manlfOIdS

¢ Resolving the singularity produces an ALE space,with non-
trivial two-cycles e; whose intersection is

________

e; e = —Ciy; , {  ALEspace
] \ exc)épt;mnal cycles
where C;; is the Cartan matrix associated to I Gl 4 /’/z:d
; Ilk‘x?ﬁrfh._,-ﬂ-.__,"l i i-.__,:':.':
' ' rlki_ﬂ-;dia'”;am of A,_
Kronheimer construction of ALE spaces Mt it :

ISrealized by Sring Theory ) Brd
Aiie



ALE Manifolds.: man
relevant feature

Generalities on ALFE spaces:

Self dual solutions of 4 dim. Euclidean Einstein gravity whose asymptotic geometry is
R*/T (T' c SU(2)).

They have compact cycles 5, I = 1,..., 7 — 1 {7 being the Hirzebruch signature) and
correspondingly 7 — 1 square normalizable anti-selfdual harmonic forms w':

= gL / it nigt — it
ALFE

X

W AW = —AY(Y) Qarr

where 47 denote local coordinates on ALE, Cry is the Cartan matrix {‘DI']."E“%DDI]dlI],E; to the

ADE Dynkin diagram of I and A%/(y) > 0 S
{ ALE space

\ /(exc}épt‘lonal cycles
T = a !

."Dynkin_dia'g';am of Ap_1
OG-
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The ansatz:

Ansatz for the 3—brane solution on an ALE space

with non trivial H, flux:
Note the
e Metric: warped R x R2 x ALE (coordinates z#, z, Z (or z*, z°) and ¢°): || essentia use
. —1 > — T of the
“ ds* = H 2 (—nuds" dz") + H2dedz + H2dsy; p “ harmonic
where H = H(z, z,v). 2 forms
. . dual to the
e Axion/Dilaton: Cip=¢ = 0. ¥ homology
e Complex 3-Form: H, = 2dy(z,2) AW, H_. = —2d3(z,2) A &' cycles of
o 5—Form: FEB = [J 4+ %/ where I = d(H‘l QR1,3) ALE

[5]

Axion /Dilaton equations:|

Hi AxHy = 0 & [Hyself (anti self) dual & v = vw(z) 7 =7:(2))]

*xsHy = tiHy &|vw =~w(z) [—> | Holomorphic field

PAEi@
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Pinpointing the sources.

Cp) and By equations:

dxH, = iF[IE%R ANHy+T(z,2,y) & Opv = T(z, 2)

where 7(z, Z,7) depends on the interaction of the 3-brane with Cly) and Bjg = derived from boundary
action {unknown at this stage), it fixes boundary conditions on {2):

yriz) o 2 (k> 1)
T{z,2) o« 6%z, Z) ie. 3-brane source of Cly and By
l 7 7
nizloc g ) e { localized in B2, as for fractional branes on an orhifold.

Ciy Equation + Self-Duality of Flgiﬂ;‘ Thisistheredl
problem of
dFg" = igHs AH-+8(z 2,) & interpretation:
what is the source
of B,C fields?

»(Dlﬂ b DALE) H(z: E,Q‘) it z’ffaf’?i&fj(y) i S(E: E? y)

where &(z, Z,y) ia the D3—brane charge source term, to be considered in the present moecroscopic analysia
as a choice of boundary conditions.

Even without D3 brane charge thereis effective source for 5-form @D E[f’é
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Killing spinors |- m

Counting SUSYs (in brief)

Looking for 10 dimensional Killing spinor x(z, z, ) (' x = x): 8, ¥ =08, A=0.
e Case H, = 0:
e Presence of D3 brane (FRR %10 = (32| — (16

e Curvature of ALE space (SU(2) holonomy) = —

e Switching H, on, above solution Y is still & Killing spinor iff:

||~| il — vy |-||

consistently with our ansatz.

Theory on 3 brane world volume is an A = 2, D = 4 gauge theory.
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Killing spinors 11:

Counting SUSYs|
Looking for 10-dimensional Killing spinor {2, z, ) ("' x = x): & =4, A =0.

o = DPux + %ilﬂ‘q““qui Fa, 4 VigTex+ 3% (— Tea..ay Vig + QFA““VA?"’) Hoy | aytpty X

6A = gD 4 a0,

On geometry R™ x (R x ALE); D=10=4+{=2+4) 2 x=e®@ (n=60Q¢§

The Clifford algebra splita:
M= {10l vy} ={"®1;i° @7} = (¥*6) @ (ran) = ie® 7 [32]

Counting solutions with Hy = 0:
a) D3-brane (1*_'[‘;?1 Z0 = (Ye)=¢;{nyg) =iy

b) B2 x ALE geometry] + [x = H % e @ 7] =

Diars® = 0 = Bub = jJR*M1-P)§ =06 PE£ = ¢
(selfduality of ALE curvature F™ )
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Killing spinors 111:

In the case H, # 0, previous solution defining 8 residual s. charges, is still a Killing
spinor iff:

(FAIAEAE H+|A1A2A3) X ()+(b)
= +
(I‘A1A2A3 H+|A1A2A3) X x6Hy = 1H,

consistently with our ansatz.

summarizing the conditions on the Killing spinor:
ox=HYe®7;, Ye=¢; =17
1 =08& 7E=¢

® ﬁALEﬁ = 0 |= 2 solutions , 8 s. charges

Two solutions because of SU(2) holonomy of ALE
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Harmonic equation in the

Equation for H
in the Eguchi—Hanson Case

Simplest case: ALE asymptotically R*/Zs, 7 = 2 = 1 exceptional cycle 3 < anti
self dual harmonic 2 form w
Eguchi Hanson metric:
) 9

ds2 = glr)2dr® + % (dﬂg + sin (9)2 dfﬁ’g) = %g(’r)g (94 + cos (f) d'i’)g

g{r]2=l—(§)4; 6:07)}; {,¢:02x); {r:a— o> 0)}
o [d@b-l—ma{ﬁ} d¢ 2.q* Explicit form of the
=4 Q2 -
dx # w2p8 ALE " compact har monic 2-form
e T i3 an S located at # = 2 and spanned by {4, ¢} and “interseadion function”

¢ near—cycle behavior: » = 1#"'1—1;.2@ , v s

2
dety = dv +07dy? + % (d92 + sin (6) dng) +O(")

W = }#w!\ru:—

Note factorization
of near cycle metric
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B2 x Sy




The partial Fourier ooy 1
transform “

Equation for H{z, Z,y) in the Eguchi Hanson metric:

Tt B
35107 +8(2, 2, 9)

(33 + 35) H+ Tigfir (’r3 g(r)? &H) = —

Boundary conditions

(p=|z|2—>oo;r—>oo) H{z,z,y9) = 1

D3-brane charge ¢} locolized at
Fhigarcyiil) {0} x © c R x ALE Make'_s Laplace
Equation on
Looking for H{z, Z,4) = H(p, r). inhomogeneous
A convenient approach i8 to Fourier transform the equation along B2
flz, 2) — F[fl{p, §), {p, p being the conjugate variables to z, Z).
Dencting by ;2 = |p|? we define:

H{p, r) = F[H —1{, r)
) = F[1997 W)
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Heun confluent equation

brane
¢ charge

The Equation in the new variables has the form:

1 T ponan 5 25 2a* @ B
S0 (Per o )~ H = S5 — 55580 —0)

e The above equation is a confluent form of a hon homogeneous |{Heun's equation: its
homogeneous part in the complex v plane has two regular singularities r = g, 0 and

one irregular singularity at r = oo (type [0, 2, Lo]...Hard to handle!) Fixed by
e (eneral solution has the form: boundary
Er(su‘a T) = ﬁl ﬁl(au‘? T) +ﬁ2 ﬁg(,{ﬁ, T) + ﬁw_h(ﬂ‘; T) Conditions

H 1,2 being two independent solutions of the homogeneous part and Hr " g particular
solution of the whole equation.

Preliminary Analysis:

e Determine 3 o from boundary conditions by solving equation in the limits r = o0
and r — @ {(near cycle). Consider first the homogeneous part (j{u) = 0 &
~v = const.) with the boundary condition represented by the source term S{g, 7)...
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Asymptotics and the charges b1

The asymptotic behaviors of the solution are: The D3 brane char ge
reafp o0 r oo deter minesthe
H o~ L Ko(uv) | Hy ~ 2 Ki{pr) coefficient of the
Hy~1  |Hy~ 2 irregular solution

Implementing the boundary conditions:

/ near thecycle

Asymptotic flatness fixes
the coefficient of the

Irregular solution at infinity
i {back to the 2z, Z coordinates)

Source term S{y, r) = P
wr

H{p,r 5> ) =0 =

Harmonic Potential on
EIETE L R x RYZ,
(H(p: ?.) - ]-)|T=.-:.-mat. = 4 Z _ _ =

Q/2a° Harmonic Potential on
5 (close to ALE cycle) 2 2
(P+o?) R? x B2 x S,

4l

solution consistent with picture of D3-brane "ameared” on the cycle T with charge density (} /{7 a?)
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Power series and questions
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Study of the solution in H

e The Fourier transformed solution:

ot

H(,{L, T') = %ﬁl—kﬁﬂ_h

was then determined in a finite neighborhood of ¥ = @ in terms of a power series
expansion:

Hp, r) =Y ealpyy )"
=0

and the generic coefficient ¢,{yt; 7¥) was computed as a functional of v(z) =
corrections to the previously described asymptotic behavior could be computed.

e In the case v(2) = K log(z/p.) we may summarize the asymptotic behaviors of H:

(p,r>a): Hip, 1)~ 1+ log terms) Il

@y

(p{a): Hip v~ & 14K210g(p)2 See picture

e~ a 2a2p? + v 97m%q 20
74
) [

20




Interpolation and singularity mﬁ

Asymptotic Behaviors of H

(case of vanishing 3—form)

Near thecycleweseea
Harmonic . B )
anctions on: IR x IRZ R, P3braneinD=8.Itisas
- | 2 | if we had compactified

%
Far from the cyclewejust see sugraon an S

the charge of anormal D3 in D=10 ,
7 e



The World Volume Action s

1/2
—3 (H: 13 7 b7 +2 [det (h +F + F)] ) et Ae? A e A e e,
+u (9, Cy) F (FP] +ga Ag]) Aef A e e K appa supersymmetric:

g the fermions are hidden
Fii (gl A , .
v (¢ Co) (F T A[ﬂ) e A EJ‘] in the p—forms that are

+f l.ﬂ + ga Hfg] A eP,ng A[‘%‘]] superforms
My

AD3—b’ra.nE = f [vaén@"?ifl Aefz A ef3 A Eﬁd Eflfgf:;fq
My

The interactions of world—volume fields

Red=Auxiliary fields _
(fluctuations from vacuum val ues) fed all

Brown=Sugrabekgfields | the pekg fields. Yet this actioniis surce

Blue=World volumefields|  only for C,. Whereisthe sourceof A" ?

Thisisthe open question answering the which will shed light
on thereal nature of fractional branes
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L et us make an appointment for all supergravity people m
to be back here for Supergraw ty @50

Such people are always
running when someone
watches..........
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