# **Gauged Supergravity and Holographic RG Flows**

Stonybrook, December, 2001

**Based upon:** 

hep-th/9904017; hep-th/9906194; hep-th/004063
 Freedman, S. Gubser, K. Pilch and NPW

• Recent work with R. Corrado, M. Gunaydin and M. Zagermann

to appear

### **Overview**

- Teaching an old dog new tricks: The AdS/CFT Correspondence
- Holgraphic Description of RG flows
- Open problems in holographic field theory and supergravity

• Half-maximal supersymmetric models

 $\mathcal{N} = 2$  Quiver Gauge theories  $\checkmark$   $\mathcal{N} = 4$  supegravity + tensor multplets

• Half-maximal supersymmetric flows

 $\mathcal{N} = 2$  Seiberg Witten flows

- Supersymmetric AdS geometries
- Other issues



D3 branes + r  $\checkmark$  AdS<sub>5</sub>



#### **Five-dimensional perspective:**

- View S<sup>5</sup> as an internal space
- Decompose theory into generalized Fourier modes on S<sup>5</sup>
- Space-time = D3 branes + radius, r
- Interpret r as an RG scale for theory on brane

**Interpreting the metric** 



- Localize D3-branes at infinity Localize D3-branes finite r
- Red shifts
- Cosmological Entropy
- No hair theorems
- Gauged supergravity potentials
- Consistent truncation

- **Conformal, UV limit** Explicit cut-off
- Wilsonian coarse graining
  - c-function / theorem
  - Universality in IR limit

**Phase diagrams / flows** from relevant perturbations



Large N structure of OPE in E.M. supermultiplets

Infra-red Fixed Points

I. Perturb the  $\mathcal{N} = 4$  theory:  $(A_{\mu}, \lambda^{1}, ..., \lambda^{4}, X^{1}, ..., X^{6})$ Freedman, Gubser, Pilch and Warner, hep-th/9901017

Give mass to an  $\mathcal{N} = 1$  chiral multiplet:  $\mathbf{W} = \mathbf{W}_0 + \mathbf{m} \operatorname{Tr}(\Phi^2)$ 

 $\Delta \mathcal{L} = m_1 \operatorname{Tr}(\lambda^1 \lambda^1) + m_2 \operatorname{Tr}((X^1)^2 + (X^2)^2); \qquad m_2 = m_1^2 = m_1^2$ 

Non-trivial  $\mathcal{N} = 1$  fixed point (Leigh and Strassler) for flow as  $m \rightarrow \infty$ 

$$\left(\frac{C_{IR}}{C_{UV}} = \frac{27}{32}\right)$$

<u>Supergravity:</u> steepest descent on a supergravity superpotential,  $\mathcal{W}$ :



## **II.** Perturb an $\mathcal{N} = 2$ superconformal quiver theory:

Klebanov and Witten hep-th/9807080 Gubser, Nekrasov and Shatashvili hep-th/9811230



# **Quiver Theories and Orbifolds**



Superconformal with R-symmetry =  $SU(2) \times U(1)$ 

**Untwisted sector:** Vector multiplets

 $\begin{pmatrix} A^{(k)}_{\mu}; \lambda_1^{(k)}, \lambda_2^{(k)}; \varphi^{(k)} = X_1^{(k)} + i X_2^{(k)} \end{pmatrix} \quad k = 1, ..., p$ Twisted sector: Hypermultiplets  $(\psi_1^{(k)}, \psi_2^{(k)}; A^{(k)}, B^{(k)})$ Mass terms / flow:  $\Sigma_k m_{(k)} (\Phi^{(k)})^2$ Klebanov and Witten:  $m ((\Phi^{(1)})^2 - (\Phi^{(2)})^2) \qquad p=2, Z_2 \text{ odd}$ Freedman, Gubser, Pilch and Warner:  $m ((\Phi^{(1)})^2 + (\Phi^{(2)})^2) \qquad Z_2 \text{ even}$ Leigh-Strassler fixed points

## Five-dimensional, gauged supergravity and quiver flows

Gauged  $\mathcal{N} = 4$  supergravity + Vector or Tensor multiplets:

Dall'Agata, Herrmann and Zagermann, hep-th/0103106

| <b>R-symmetry on the brane</b> =                                                                              | Gauge group:<br>(supergravity)                                                       | SU(2) x U(1)                                                       |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| $m_{(k)}^{ab} \lambda_a^{(k)} \lambda_b^{(k)} + c.c.$                                                         | $ \longrightarrow $                                                                  | 3 (+2) + 3 (-2)                                                    |
| $m_{(k)} (\phi^{(k)})^2 + c.c.$                                                                               |                                                                                      | 1 (+4) + 1 (-4)                                                    |
| $\mathbf{T}_{(\mathbf{k})} = \frac{4\pi i}{\mathbf{g}_{(\mathbf{k})}^2} + \frac{\theta_{(\mathbf{k})}}{2\pi}$ | $\longleftarrow$                                                                     | 1 (0) + 1 (0)                                                      |
| Scalar content of a pair of five-dimensional, charged tensor multiplets                                       |                                                                                      |                                                                    |
| <b>Gauged</b> $\mathcal{N} = 4$ supergravity + 2p Tensor multiplets: charges (+2) and (-2)                    |                                                                                      |                                                                    |
| Scalar Manifold (Supergravity)                                                                                |                                                                                      |                                                                    |
| $SO(1,1) \times \frac{SO(5, 2p)}{SO(5) \times SO(2p)} \supset SO(3) \times SO(2, 2p)$                         |                                                                                      |                                                                    |
| SU                                                                                                            | (2) <sub><math>\mathcal{R}</math></sub> x U(1) <sub><math>\mathcal{R}</math></sub> x | SU(p, 1)                                                           |
| SU(p, 1)<br>SU(p) x U(1) = Non-co                                                                             | ompact CP <sub>p</sub> para                                                          | metrizing couplings: <b>T</b> <sub>(k)</sub>                       |
| Generalizes:<br>SU(1,1)/U(1) of IIB super                                                                     | gravity <                                                                            | $\checkmark \mathcal{N} = 4 \text{ Yang-Mills}$ Coupling, <b>T</b> |





#### **Field Theory:**

Flows driven by  $\Sigma_k m_{(k)} (\Phi^{(k)})^2$  go to a smooth, SU(p) symmetric family of IR fixed points parametrized by  $\tau_{(k)}^2 m_{(k)}$  considered as homogeneous coordinates on  $CP_{p-1}$ .

U(p)

### **<u>IIB Supergravity:</u> <u>Bizarre</u>**

- FGPW flow: topologically trivial flux on  $S^5/Z_2$
- KW flow: topologically non-trivial flux on blow-up of A<sub>1</sub> singularity on S<sup>5</sup>/Z<sub>2</sub>

## **Comments:**

- Family of equivalent fixed points with same central charge: parametrized by initial "velocities", m<sub>(k)</sub>, of flow.
- This is a "large N result:" the U(p) symmetry is broken by anomalies at finite N.

Residual Symmetry  $U(p) \supset \mathcal{G} \supset (\mathbb{Z}^{2N})^p$ 

- Discrete symmetry at finite N between FGPW and KW flow?
- Singular behavior at finite N when one or more m<sub>(k)</sub> vanish?
- Does consistent truncation work for  $\mathcal{N} = 4$  supergravity?
  - Unknown territory...
  - We have solutions in both five and ten dimensions.
    - Solutions coincide at linearized level
    - Same initial velocities
    - Same supersymmetry
    - Same *R*-symmetry
- Try to find the SU(2) family of solutions in IIB supergravity that interpolates between a topologically trivial flux on S<sup>5</sup>/Z<sub>2</sub> and a topologically non-trivial flux on the blow-up of an A<sub>1</sub> singularity on S<sup>5</sup>/Z<sub>2</sub>. Corrado, Pilch and Warner: work in progress Another duality that trades 3-form flux for Kähler moduli ....

# **Open Problems:** Supersymmetric *RR*-Geometries

Geometry of supersymmetric solutions with background RR-fluxes?Ricci flat manifolds +  $\mathcal{N} = 2$  supersymmetry:KählerRicci flat manifolds +  $\mathcal{N} = 4$  supersymmetry:Hyperkähler

What is the analogue of this for holographic RG flow solutions?

The issue for flow solutions in IIB supergravity:

- The flows generally start from AdS<sub>5</sub>, with a background 4-form RR-tensor gauge field
- Softly broken *N* = 4 Yang-Mills: fermion masses are holographically dual to 2-form tensor gauge fields
- The dilaton and axion are dual to the Yang-Mills gauge couplings, and thus generically run.



Interesting supersymmetric flow solutions involve fluxes for all the background tensor gauge fields

**Classification theorems for such solutions:** very few, and none of them relevant to the important physical holographic flows.

**Important Example: (unsolved)** 

Find the Holographic Dual of the  $\mathcal{N} = 2$  Seiberg-Witten effective action

Holography and the  $\mathcal{N} = 2$  Seiberg-Witten effective action

**Simplest version:** 

 $\mathcal{N} = 4 \text{ Yang-Mills} \longrightarrow \mathcal{N} = 2 \text{ Yang-Mills} + \text{massive hypermultiplet}$ Coulomb branch:  $u_n = \text{Tr}(\phi^n)$ D3-brane distribution
Source:  $\rho(y) = \sum u_n y^n$ Complex scalar,  $\phi \longrightarrow$  Complex coordinate, y

**Problem:** Find the general  $\mathcal{N} = 4$  supersymmetric flow solution determined by an arbitrary source function,  $\rho(\mathbf{y})$ , of two variables

What is known: the solution for one point in the moduli space

$$\rho(\mathbf{y}) = (|\mathbf{a}^2 - |\mathbf{y}|^2)^{1/2}$$

A uniform disk-like distribution of D3-branes

Pilch and Warner; hep-th/0006066 Buchel, Peet and Polchinski; hep-th/0008076 Evans, Johnson and Petrini; hep-th/0008081

The general  $\mathcal{N} = 8$  supersymmetric flow solution (the Coulomb branch of  $\mathcal{N} = 4$  Yang-Mills) is well-known, and is determined by an arbitrary harmonic source function, H(y), of six variables. The half-maximal supersymmetric solutions shouldn't be much more difficult....

**Harder problem:** Find the general  $\mathcal{N} = 4$  supersymmetric flow solution for the quiver gauge theories

# **Other Issues**

- $\mathcal{N} = 1$  supersymmetric flows: generalized Kähler structure in the presence of *RR* fluxes?
  - Brane probe results find the Kähler structure on the moduli space of the probe.

Johnson, Lovis, C. Page, hep-th/0107261

- Non-compact gaugings: Holographic interpretation???
  - Vacua: De-Sitter space All supersymmetry broken
  - Domain wall solutions can be (half-maximally) supersymmetric

Hull, hep-th/0110048; Gibbons and Hull hep-th/0111072

Potentials without critical points:
 Domain wall solutions...

**↓**???

Gauged Supergravity description + Generalizations and variations on Duality Cascade of Klebanov and Strassler? hep-th/0007191



- Most of the exactly known flow solutions have been obtained by lifting solutions of gauged supergravity
  - Systematics of lifting
  - General methods of construction in 10 or 11 dimensions

## Conclusions

- Gauged supergravity is a very valuable tool in the study of holographic RG flows
- *N* = 4 gauged supegravity coupled to tensor multiplets can be used to study a class of *N* = 1 supersymmetric flows in large N,
   *N* = 2 quiver gauge theories
- The large N, Z<sub>p</sub> quiver models have a (p-1)-dimensional surface, CP<sub>p-1</sub>, of *N* = 1 supersymmetric fixed points, and all these fixed point theories are equivalent under the action of an SU(p).
- In ten dimensions, this SU(p) must act as a "generalized duality symmetry", mapping compactifications with fluxes on S<sup>5</sup>/Z<sub>p</sub> to compactifications with blow-ups of the A<sub>p-1</sub> singularity:

Important open question in holographic RG flows:

**Geometry of supersymmetric compactifications with** *RR***<b> fluxes**???

- Holographic description of Seiberg-Witten actions
- Holographic interpretation of the many supersymmetric domain-wall solutions?