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D-p-brane: p-dimensional object

DO0-brane = particle, Dl-brane = string,

E)_g—brane = membrane etc.

Consider static flat D-p-brane in flat space-
time, lying along a p—dlmensnonal subspace

Definition of a D-p-brane: Fundamental strings
can end on a D-brane
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Open string
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D-brane

Quantum states of a fundamental string with

O i ——

ends on a D-brane represent quantum excita-
tion modes of the D-brane.

_F.--
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Spectrum of D-branes in type IIA/IIB string
theory in (941) dimensions:

1. Oriented (BPS) D-p-brane for even/odd p

Mass per unit p-volume (teﬂS'On 71?) f2ﬂ'j?’gs

(in o’ = 1 i.e. string tension = ﬂ unit)

A —

gs: string coupling constant

Anti-D-brane (D-brane) = a D-brane with
GDDOSite orientation

All open string states on a BPS D-brane or
D-brane have m3552 Sl

2. Unoriented (non-BPS) D-p-brane for odd/even p

- 2 '\
Tension 7;) p— (ﬁ%ﬂ:

Each such D-brane has one open string

\'”-"\ll—-

mode with mass? = —Q

[ ——

— Eachyonic mode

NOTE - IN THE AR SENCE oF A

D-BRANE TA/OIB UAS ONLy CGLoSED
STRING STATES



A coincident BPS D-p-brane D-p-brane pair
also has two tachyonic ic modes, each of mass2 =
_2 from the open strings with one end on the
brane and one end on the antibrane (sectors

(c) and (d)).
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For a non-BPS D-brane, the dynamics of the
tachyonic mode can be described by a real
scalar field T with negative mass?, coupled to
L’lfl".‘t.i? number of other massiess and massive

fields associated with other states of the string,
in (p+ 1)-dimension.

T = the tachyon field

—

For the D-D D system, the dynamics of these
tachyonlc modes IS descrlbed by a complex
scalar field T' with negative mass?, coupled to

e = e

infinite number of other massless and massive

g e el

fields.
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In either case we can fornjally integrate out all
fields other than the tachyon field, and define

a tachyon effective action S s¢(T). (AT TREE
S . ceveL)

For space-time independent field configurations,

Ege f;(i) oo / dP+ImV(Tﬂ

V(T): tachyon effective potential

In actual practice we shall never try to con-

struct Seff(T) but

1) either work with the infinite set of fields
describing the dynamics of open strings on the
D-brane (string field theory)

2) or use indirect method e.g. of two dimen-
sional CFT to study the dynamics of open
strings on the D-brane.




Nevertheless it is more convenient to state var-
ious results in terms of SE“(T) as if the dy-
namics can be described in terms of a single

(complex)scalar field T

Properties of V(T') and Sepf(T):

e For a non-BPS D—brane(‘j’e“(—T) — SE”(T)}

For a D-D system,%ﬁ(ew’r) = Seff(T)l

e mass? of the field T is V"(T)|r=0 < 0.

Thus V(T') has a maximum at 7" = 0.

Question: Does V(T') have a minimum?

——— o




Conjectures: A.<.

1. V(T) does have a minimum at |T'| = Tp.

\V(To) + & = 0|

A
i

- - = - o o = = =

§E Total energy density of the original sys-
tem

oq*_‘\

F‘f;. for a non-BPS D-p brane.
et

Ep = 27, \for D-p — D-p system.

Thus at [T| = Tp the total energy density
vanishes ldentically

-® MQORE NATURAL “TO CALL VET) S,
T™™E TACHYON PotTeEenN TIAL
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2. |T| = Ty configuration describes the closed
string vacuum without any D-brane.

Thus around this minimum there are no
physical open string excitations.

3. There are classical _solutions of the equa-
tions of motion of T, representing lower
dimensional D-branes.

Examples:

(a) On a non-BPS D-p-brane, a kink rep-
resents a D-(p — 1)-brane.C 8ps)

Energy density is localized around a codi-
mension 1 subspace (zf = 0)



©

(b) On a D-p-D-p pair, a kink represents a
non-BPS D-(p — 1)-brane.

In this case T is complex, but we consider a
solution for which $(T) = 0 and R(T) takes
the form of a kink.

— - — W

(c) A vortex on a D-p-D-p pair represents a
BPS D-(p — 2)-brane.

[T_(EO, .aP) = f(p)e'®

an=p(3059, 2P~ = psing |

[f(p) — Ty for p— o0, ?(E) =0 \

Energy density localized around p =0

— a codimension 2 subspace (zP = 2P~! = 0).
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So far we have talked about time independent
solutions.

What about time dependent solutions?

We shall study time dependent solution that
describes rolling of the tachyon away from the
maximum.

v A

Result:

The system evolves to a E_ressuuj_eles_g gas asymp-
totically. o

(Zero pressure and non-zero energy density)

——— e
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Case 1: The tachyon begins rolling at 7' = A,

Total energy of the system < 7T

Evolution of the energy momentum tensor:

&0 =‘§(1--;cos(2ni)) ]

1 4+ V229 sin?2 ()
1

1 4 e=V22%sin2(\r) -

1

J

A = A+ O()\?): a parameter labelling the total
energy density

As 20 3 o0, f(a9) 20 = Ty = ©
J-
ZERQ PRESSURE
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Case 2. The system begins rolling with a non-
zero velocity at the top of the potential.

e

T = 0, 8T = Xinitially

Total energy > Tp

Eﬂgg — ?-;E(l -+ COSh(Q'JTX))j

( Tﬁj 4 J,
Tio = 0, } [th 2f($0)61_7
T W
Vf(x -
/=7 1 + ev22%5inh2(Ar)

1

+ ——1
1 1 4 e~ V220 ginh2(An) 3

Again as z° — o, f(z®) =0




Note: in all these cases the final energy density
IS stored in the kmetlc term for the tachyon
field even though there is no physucal particle
associated with the tachyon.

Could such energy density be present in the
universe today as dark ‘matte_r?
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strmg theory.

Tachyon has mass? = —1 (in o’ = 1 unit)

Tachyon potential has a local minimum on one
side, but is unbounded from below on the other
side.

Initial condition T = A, 8T = 0 at 0 =

— T ~ Acosh(z0) to linear order (E < Tp)

. o e ——— ———

Initial condition T'=0, 8T = X at 2° =0

-+ Tz ~ Asinh(z®) to linear order (£ > Tp)

e e —
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RKRESULT,
THE SySTEMWM EVOLVES To A

PRESSURE LESS QAS RSYMPTOTICALLY

EVOLUT(ION OF Tr-'\" :

Too = D <:+<.u~..<2-n'i"\)

-
LR =0, T}_j """yP £Cx’) 85-.3
£C‘x.) - s 19 4‘ -{ -vi
[+ % An(ST) L@ X Ain(AT)
-
g o 2
Ae 2+ €001 : LABELS THE 7TOTAL

YA

INITIARL \fALUE

ENERGY DENSITY

OF TACHYonN F(ELD T



1 1

f(z%) = + -1

—

14+esin(Ar) 14 e sin(An)

—

Note: for A > 0, f(z%) = 0 as z° = oo

—) Press_ure vanishes

e i

For X < 0, f(z°) hits a singularity.

This corresponds to pushing the tachyon to the
wrong side where the potential is unbounded
from below.
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Case 2: E>Tp OBTAINED BY
=i, x—»x+3§

Too = %(1 + cosh(27))

T;; =:2f(330_)5ij_

l 0y — 1 i JR ‘I
A )_1+e=" S|nh(,\7r)+1—?—“’?sinh(7\w) !

e o ——

Again for A > 0 and sufficiently small, f(z°) —

— e S— ———— —

_gas;ro—mo

g

The system evolves to pressureless gas.

On the other hand for A < 0 and sufficiently
small, f(z°) hits a singularity at finite z°.

— corresponds to pushing in the direction in
which the potential is unbounded from below.
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An effective field theory descrlptnon

i ———— i ———

Take the following form of the tachyon action:

(?_ /dp‘*-la:V(T)\/l-l-q““B“Tau_l “’"f:“’“

 — ——

V(T) has a maximum at 7' = 0 and a minimum
at oo (in this particular parametrization) where
E"(T) = 0.

v
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This gives the energy momentum tensor
-

G: = -—V(;i:;:rc;;‘. ;{EA _ 1),@ (

{pr = Nuv + 3pTauTI
—
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For spatially homogeneous time dependent so-

e . i i mgi—— T A e e St ————

lutions for which 9;T = 0, we have

- g —

EAQQ - 1 +.(BOTB Aij = 0j; (A"D e Oj
This gives
ﬂp = Too=V(T)(1 - (aOT)z)_bl"‘2 {_7_112 = ‘

pbij = Tyj = —V(T) (1 - (37?26 |

p IS conserved

— as T approaches the minimum of the poten-

T ———— .

tial, o7" must approach its critica. value 1

p vanishes in this limit

e

— precisely what we have observed in the bound-
ary state analysis




Can we determine the form of V(T)7

Of course we cannot hope to have the effective
action description to be able to describe the
full stringy results, but one might hope that
the late time behaviour of the system may be
describable by an effective action.

——

At late time 95T — 0 for n > 2.

——— —

Thus if the action given above correctly ac-
counts for all the terms involving 9,7, then it
will be a valid description at |ate time.

Strategy:
_—

e Study the E:E_depe_r}_dencg of p for large 20,

e Find the potential V(7)) which reproduces
this 20 dependence of p. .
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CT)Q"HP( )

VT = - p(a°) |

Thus given p(z°) we can find T and V(T) as
function of z0.

Eliminate z° to find V(7).

e —— -_—

For large z9:

T —— —

p(z®) = —Ke™o*’

a = /2 for superstring and 1 for bosonic string.

E/(Tlii_am]
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Thus the proposed tachyon action near the
minimum of the Eotential iS:

. — — e

—/d”'*'l:ce'“wz\/— det A
- [@*1zemoT/2 \[1 4+ 0*8,T8,T,

e

r’-" — .
| A“y — Th_;p + 3;;T3;,,-T \

—— -

A Bonus:

We shall now show that this action automati-

L -

cally satisfies the condition that near the min-
imum there is no perturbative physical state.

(no plane-wave solution of the ‘linearized’ equa-
T it - » - o i
tions of motion)
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First we expand the action in powers of deriva-
tives and keep up to terms with two deriva-

tives.

This gives
— —

[S: - [dp'Hm e—oT/2(1 4 %nﬂ“a#TayT +..),]

J
iq& - e—aT/d» l

Define:

This gives

= 2
L / d*’“a:—(——n““ 8.0y P — j’—6¢2+...). I

o —

¢ descibes a particle of mass a/2v2

— related to the fact that there exists a plane-

wave solution o
E;‘) — aeik“ﬂ
for —nﬂ"kuku = a?/8.

-——
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We shall now show that this ceases to be a
solution of the equatlons of lTIOtIOﬂ when we
include terms with r_l_gher erivatives.

Full action written in terms of d)

&i: */dﬁlm‘i’z\/ ke 2¢_2ﬂ“”3n¢3v¢

This is homogeneous of degree 2 in .

Equations of motion:
,———Fu —
Y . . )
\/1 + 236~ 2" 8By
a2 o+ -qu—lnﬁ*"mwm

0 B = = 0.
8 /1 + 23620 0ug0ud

— I:l_g_r_nogenegus of degree 1
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Look for a plane-wave solution ¢ = ae'™*.

v =0
\/1 - ﬂl-gﬂ”ykpky

——

— no solution for finite k.

(By expanding it in powers of ku and keeping
up to second power we recover the previous
condition —k? = a?/8)

Note: even if we had found a solution, it is not
clear how we could superpose them to con-
struct real solution since the equations are not
linear (although homogeneous of degree 1)

Our analysis shows that even before we impose
the reality condition, the plane-wave solution
does not exist.
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Conclusion: The proposed action correctly de-
scribes the physics around the ta_(_:hyon vac-
uum.

——

Use this to see what kind of classical solutions
we have in the theory.

Need to work in the Hamiltonian formalism.

fo Med 0wy
Momentum conjugate to T(z): G b uens, Heed, Y
Coni— /
IN(z) = b
6(6pT(z)) !
—r — _—
Ham|ltonran
o B S S —-'I-._.-———‘
= f PaH, = (A x[Toa3Tw
R s e S gy £ ]
E; Too = \/”2+e‘“T\/1 +3T6T l

For large T we can ignore the e=*T term
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From this we get Hamilton's equation:

el 6}__['—‘_ 'Tl;f.lj 85’1'1{:) |
f"”(i)____m = B2 9, V1F O To,T |
B ‘?H - ForR
@(m) ~an(z) \/1 + aiTaiTz TGO Z O

= 9, Tx) Z O-
A possible solution:

SetEﬂi_T e Y SIaOT - 1_.5

Gives:
@ =1@] |1@ =2

f(&): any arbitrary function of the spatial co-
ordinates.

HE) = 12 |

— existence of classical solution with arbitrary

P e i ——

spatial distribution of energy density

A — — e — - ——

(Just like ordinary non-relativistic matter)

—> PosSSIBLE CAND/DATE For
DARK MATTER
- D
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| N FACT THE CLASSICRL EQUATIIN
O MOTLON C AN BE REWRITTEN
So THAT THE SYySTEM TDESCR(BES
STREAMLINE MoTLON OF
PERFECT DUST

DEFINE ° W, - . T, Ccx): T7(x)
2, T (x)

I N TEEMS OF THESE VAR IABLE

THE E Q UATLONS OF MmoTIoN

YA VE THE FOoR M :

7% w, U -1, 3.(eur) =0

'T’”v = P ’L(.,__ uv

~ STREALNE MoTION oF DusT

WITH LOCAW  4-VELOC(ITY W



Conclusion:

The dynamics of the tachyon is similar to that
of an ordinary scalar field theory near the top
of the potential, but is very different from that
of an ordinary scalar field near the bottom of
the potential. '

Hopefully a complete understanding of this dy-
namics will give us new insight into the cos-
mology in the early L-Jniverse-_ as well as in the
present universe.

IN PARTICULAR, WE NEED TO
STU DY How THE CLASSICAL
ANA LY <SIS (S MODIFIED sy
THE QUANTUM EFFECTS



WE SHMALL NOW DISCVSS
PERIVATION/VERIFICATION OF THFE
RESULTS QUOTED So FAR,

FiIRST W E SHALL Focus ON THE
STATLZ PRoOPERTIES

3 CONTECTURES FOR S, C¢T) ON
NON TBPS Djp- BRANE OR D-b-D-P

SYSTEM N O IOTR/IOIR :
O, V(R,) + & =0
4 . ENERG
MINTMUM NE y DENSITY OF

THE RBRANE S¥YSTEM AT T=
OF V(T

@ ABSENCE oF PuysICAL OPEN
STRING STATES AROUND T=T,
@ LOWER DIMENSIONAL TD-BRANES ARE

SoLiTonN SOLvuTIONS OF EQS. ©oF M™MOTIoN

DERIVED FROM  Seg(T)
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Similar conjectures exist for bosonic string the-
ory in (25+41)-dimensions.

(Although bosonic string theory is not of physi-
cal interest at present, it nevertheless providesa
simpler testing ground for these conjectures.)

Bosonic string theory has

1. Unoriented D-p-branes for every p with ten-
sion AR

1
To ==
. (277)1393

Z:: Eben D-p-brane has a single tachyonic mode
with mass -1.




Conjectures:

1. The effective tachyon potential V(T) has
a Iocal _minimum at T = Ty such that

{V(To)+7;—0}

Thus the total energy density vanishes at
T=Th B

2. T = Ty describes the closed string vacuum
without any D-brane.

Thus there are no Ehzsical open string ex-
citations around this vacuum.



®

3. Classical lump solutions involving T' repre-
sent lower dimensional D-branes.

Energy density concentrated around a codi-
mension 1 subspace (zF = 0)

—— o o

Represents a D-(p — 1)-brane.

Similar construction can be carried out for
higher codimension solitons.




Verification Qf tljese conjlectureg:

Various approaches:

3

2.

6.

2-dimensional conformal field theory

Renormalization group in 2-d&im

. Toy models, p-adic strings,---

. Non-commutative field theory

S

Boundary string field theory

Cubic string field theory

7. VAcuum STRING FieLp THEORY
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IN OUR TDISCUSSIODN ON THE STATIC
PRoPERTIES OF Segyg (M) WE SHALL
Focus Ex<TlLUVSIVELY ON:

@ BosoN I ETEING THEORY
@ ANALYSIS BASED ON CUBIC SFT
WHY BOSONIC STRING TXHEORYP

ALTHOUGH QUANTUM MECHANICALLY
SUPERSTRING THEDORY 1S ™MucH BETTER
BEHAVED, THE CLASSICAL PROPERTIES
OF UNSTRBLE D-BRANES N TWA/TOS
ARE VERY SIMILAR TO THOSE oF

BosonNIC STRiNG THEORY.

BoSon\C STRING. THEORY PROVIDES A
SIMPLER SETTING FOR STUDYING&

UNSTABLE D-BRANE SYSTEMS, AS Lo
RS WE FocCvsg ON CLRASSICAL DYNAMICS
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Why SFT? What is SFT? wWioten

The dynamlcs of the tachyon on a D-brane
cannot be studied without taking into account
its coupling with infinite number of other fields
living on the D- brane.

— associated with infinite number of states of
the open string.

Thus the classncal dynamlcs of the D-brane is
governed by a coupled system of infinite num-
ber of equations s of motion for the infinite num-
ber of fields.

— sjring field theory

The conjectures involving tachyon condensa-
tion should be interpreted as conjectures in-
volving properties of the solutions of these in-
finite number of coupled equations.




Task:

- —
1. Take a precise formulation of SFT.

A—

2. Make the set of conjectures into a set of
precise Eonjectu res about Elassical SFT equa-
tions of motion.

3. Verify these conjectures.

o

We shall begin by describing the basic formu-
lation of bosonic string field theory.

(good test problem for the more interesting
case of superstrings)
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First quantized bosonic string theory:

For a gwen space-time background which is a
solutlon of the classical ¢ equations of motion we
have a two dllTl&ﬂS!OﬂBl conformal field theory

LCFY ) of the matter-ghost system on Complex plae;
= QUQ“'E'UW'\

[CFTmatter ® CF ghost £heory ©oF
T closed Shrvvgs

C Fliatter has ¢ = 26

——

For string theory in flat space-time this is a
theory of 26 free scalar fields.

CFT 05t has ¢ = —26 and fields b, c. b, ¢

L

Conformal weights: (2,0), (-1,0), (0,2), (0,-1)




A D-brane in this space-time Eackground

< a 2-dimensional CFT on the upper haffp!a._r'_r_e
with specific conformally invariant boundary
condition on fields on the real axis

Qua_“{.uﬁ * heory

- _l?_gundary CFT (BCFT) -~ ot ohen Shrivgs

Different D-branes correspond to different bound-

N

ary conditions (b.c.).

e.g. for D-branes in flat space-time, the co-
ordinates transverse to the brane has Dirichlet
b.c., and the coordinates along the D-brane
has Neumann b.c.

Note: the ghost fields always has the same b.c.
(Neumann)

e == /0




Define H: vector space of states of:

{BCFTmattEr ® BCFTghost _\

10): unique SL(2,R) invariant state of this BCF T

.

V|¢) € H, there is a unique local vertex operator
#(z) on the real line such that:

o (60/0) =19) |

Definition of g_tht number:

.b has ghost no. —1

—

u_:_,_.__E"_ has ghost no. _l

Matter 53ctor operators have ghost no. O

|0): has ghost no. O

Hn: subspace of H with ghost number

n.
-
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Physical states of the fﬂ'st q_uantized open string
on a D-brane.

States |¢) in H; satisfying:

I i
!

1. Qpl¢) =0

Qp: a nilpotent operator of ghost number
1 (BRST charge) PRSI S
S— CoNSTRUCTED FRoM b C,§
(_(1?3)2 = T AND M™MATTER V(RASORO
= nENE RQATORS

2. Two states |¢) and |¢’> are considered equiv-
alent if: S

(16) - 1) = QpIA)

for some state |A) in Hp.
N — —_—

Thusﬁphysucal states < cohomology of Q B—j

The perturbative S-matrix involving arbitrary
number of external physical states can be com-
puted using ‘Polyakov prescription’.
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Open String Field Theory (SFT): A field the-
ory such that:

e e

— e — e

s Inequwalent solytgn_s of the linearized equa-
tions of motion are in 1 «& 1 correspon-
dence with the Eh:isical states of the open

string.

2. S-matrix computed using the Feynman rules
| of SFT reproduces the S-matrix computed
using Polyakov prescription to EII orders in

‘ perturbation theory.
L\h = -

ﬁ
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Formulation of cubic open string field the-
ory:

In describing SFT one has to first specify what
corresponds to a general off-shell string field
Egnfiguration

Usually when we go from the first — second
quantized formulation, the field configurations
of the second quantized formulation can be
identified as wave-functions / states of the first
quantized theory.

(not just physical states /i.e. wave-functions
which sa satisfy Schroedlnger equation)

In the case of SFT a general field configuration
of SFT is taken 1 to be a state |®) in H;, not

necessarily satisfying the physical state e condi-
tion.

(a state of ghost no. 1in ECFTmatter®BCFTg;mst)

e ———
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Why does |®) represent fields in (p+1)-dimension?

— =

Choose a basis of states in Hy: {lxa)}

—

Then we can expand.:

[T‘b} =) ¢a|X€>‘X

boas\is
The index a: runs over all the states in Hq

— ~

.

— includes the (p+1) dimensional momentum
of the open string states living on a D-p-brane.

Thusﬁz-{{k;},r}j

&E}: (p + 1)-dimensional momentum

r. infinite set of discrete labels.
"—'-"—-_

—

Thus {cb__f_} = {b(k,}r} = f_ﬁ- Ck,; _k_!l}

¢k, }r- Fourier transform of a field ¢r(x) in
p + 1)-dimensions. R

e ———




Reality condition on |®): |®) = |®°)

€. an antilinear operation in #H;

In terms of components:

ffﬁ& = aﬁ‘f’ﬁp]

for some suitable (known) matrix Kqp.

o

TWIST




