@

JTIME DEPENDENT SoLUTION,;

FocusS onN BoSONIC STRING THEORY

FOR DEFINITENESS,
\"4

WE WANT To STUPY SoluTIloNS
DESCRIBING RolLING OF THE

TACHYON TOWARDS THE ™MINIMUM

OF THE POoTENTIAL

RESULT: THE SYysTEM EVolLVES To
A GAS oF Z2ERO PRESSURE AS THE

TACH YoN RoOLLS TOWARDS THE

MINIMUM  OF V(CT)
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Derivation of these results:

General strategy for studying time depend_en_t_:
solution in any theory:

1. Begin with a static solution that depends

on some spatial coordinate z.

2. Replace z by iz® where 20 is the time co-
ordinate.

3. The new configuration is bound to be (for-
mally) a solution of the equations of mo-
tion.

4. But there could be problems e.g.

The solution may not be _r_g_a_l_.

The solution may hit a singularity.
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BEQIN WITH LINEARIZED EQ. OF MOTION:

@:‘4-“\2)'11 = O

v = -1 CFOoR BOSONIC STRING THEM®

RIVE N

m- AT tBEe *

) T A, 3, T=0 AT %x°:0 aIVES:
TCxR") & XémiCx")

2) =0, 3J,P=2X AT x°=0 G&G\VES
TCx®) 2 A Alnh (X°)

BOTH SoLUTIoNS ARE VALID FoR

I £<L 1, x & 1
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W E SHALL FocusS ON THE SoLUTION
T(x°) ¥ X Cosk (x")

FoR DEFINITE NESS

-~ CoRRESPoNDS TO0O ADDING A BouNDARRY

PERTURBATION TO TME CFT:-

P~ DIMENS'ION
> (dk cosh {x°W®)) /7
/

) \_// 1 OPERATOR

PARAMETER LABELLING THE REAL

AxIS OF WUPPER YALF PLANE

CAN WE FIND A SoLuTlion  TO THE
FuLL EQUATIONS OF ™MopTieN (N

eTRING. FIELD THEORY RS A PowWER

SERIES ~N A ?

W E CAN = THE ARoVE BOUNDRRY

)

PERTURBATION (S ExACTLY MARQUNAL

1S 1\ T8 E&ACTLY MARGINAL Y
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o TO THE W\ICk ROTATED THEORY
xX° = tX
PERTURBAT(ON S8EComES

2 (ak Cos Cx4))

T H1S LE KN OWN TO BE AV E xACTLY

MAR AQINAL DE FoemMmATION

3 A SolUTIoON OFfF SFT EQuUuATIonS

OoF MOTION

(b, () —> 2 x)}
FoUR \ER TRS
A ~
g ("] ' & (-Xx°) s A <oLuTioW
OF THE ., EQS. ©OF MOoTioN

ONE CAN C HECK ExPLICITLY

3 .
THAT o _(x°) 1S REAL
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THIS SHOWS THE EXISTENCE o©oF R4/
FAM Ly oF TIME PTEPENDENT SoluTlionsS

Fa

PARAME TRIZED BY .

IN STUDYING PROPERTIES OF THXESE
SOLUTLONS, T 1S ™MORE CoONVENIENT
TO D(RECTLY WORK WITH THF

DE FOR ME D RoOUNDARY CFT
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Consider the case T ~ ) cosh(z°)

Corresponds to a bondary deformation by:

E\/dt cosh(X9(¢t))
E)’. = ,\jr O(A\2) }

A~

A > O corresponds to pushing the tachyon in
a direction in which the potential has a |ocal
minimum.

For A > 0, the boundary term is positive defi-
nite and hence we might expect the theory to
be sensible.

— —

A < 0 corresponds to pushing the tachyon in a
direction in which the potential is unbounded
from below.

For A < 0, the boundary term is negative defi-
nite and hence we might expect the theory to
be sick.
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CAN WE SAY SOME THING MoRE QUANTITARTIVE

FoOR THIS BCFT?

€.9. Mow TDOES THE ENERQY- MOMENTVM

TENSOR T FEVoOLVE WITHK TImE ?

STUDY THE BCUNDARY STATE

WE SHALL <TUDY THE SO0uUN DARY
STATE N THE WICK ROTATED THEeey

AND THEMN MAKE K-> - 7%x° QEPLACEMENT

BOUNDARY STATE 18D ASSoCIATED WITH A BFr
i A CLo9RD STRING <STATE of~

= HROST No. 3

<BIVY ! ONE PoiNT FUnNeECTIioN oOF

THE ccloseD STRING VERTEX of V(©)

APP RO PRIATE
T To BCFT

> 5 i pon
<RBIN> x\fC)?D Jo)

ON THE UNIF DISK b.C.



THE BounNDARY STATE ASSOCIATED WITH
A D-BRANE TELLS VS W HAT TYPF
SF SoURCE THE D-BRANE IS FOR
THE CLOSED STRING FILELD

CO®<ED STRING FIELD (4%
A - STATE OF THME FIRST
QUANTIZED CLOSED STRING. OF GHoSY

NUMB E KR L.

LINEARIZED EQ. OF MoTioN OF 1907
LN THE PRE SENCE oOF A D-BRANE :

f\@'a*-{;\) .7 = |82

\—a Sou NDARY STATE

M '}_#"U

lv.> - gck R [iﬁ&m o, R) X K

+ - - ] e C kD> \ GQRAVITON

cCLoSED STRING. TACHYON

ALl A 3

Cla)s 6.2 ; el Ta. &

-
X" (% T) =x*“¢p"“§2«%'2?#§(%n .
*+0o
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SINCE (B> CoNTAINS SoURCE TERM
FoR hpw , '|T  XAS (INFORMATION
RBouUuT ENERGY MOMENTUM TENSOR T,

EEFENERAL For™M OF I18>:
(8« $AMWTHS R Oy SN

+B(R) (b, 2., +b.,.2.,)}----]1@.+C.) &.T &>

CLOSED STRING FIELD EQ.

— £E¢. RELATING hpw WITHR Ay, 28

- CAN BE COMPARED W ITH
CINE ARLZE D EINSTEINS F£FQ. TO
CoMP UTFE THE &F T

A DIFFERENT METMOD:
WeE NEED (RQe+C)IB>=0
= hv(ﬁfw*"zhfg)-:o = ahCA»v""‘ZHB)ﬂ

¢
= mw': QHL.KZ,P“B QP\T‘W A @
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T™HE BounNnDARY STATE IN THE Wi

RoTATED THEORY CAN BE CoMPUTED

(Kecknagdd | Schererve)
WoORLD - SHEET ACTION

:‘-1;_&33% [ 2, % 9zX] +2(dk Cos X (+1)

{. — o = e
25 oTHER SCALAR Fiaw
RESULT
P~
T, (x) =-5 T, (& s (3W))
T™: 20, T+ = Ty $43) 43

£e¢x) = 1 4.2(_;\ Q‘-“‘“"W\ { +e 3

WICK RoTATE x: -1%

£ Etd) '“ff(“ (en 3w (¢ +€ )
p

:F('X.'.} s \ + ) B =

L+ X AR AT WO i O & |

|

- GIVES THE RESULT QUOTED FEARLIER



Sty - + fonsi -1
1+ %hm Im 1+ e X AaniT
RS x°— oo | £(x*) = O
THE SYSTEM EVOLVES To A

PRE SSURE LESS &AS
CASFE OF PERTUR BATION 8Y

AN dk Aink (X))
- RELATED TO THE PREVIoUS CASE
BY
K W IW. K=

5 F0x) = - A
4™ senh (1) 1= € % soni@n)

m™ . T, {14+ osh(23))

oo
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SIMILAR RE SULTS XoLD FOR
UNSTABLE D-BRANES /DD SysTEM:S
N SUPER STRING TXHEORY

V(1)
U»h




Begin with the linearized equations of motion:

[(:38 +hm2)T =0 J

PR
2———1/2 \
Gives

e S

{T Ae °/f+Be-"f°N-l

) A= 60'1“—031::1: = 0 gives

i

LT(mol =3 cosh(mO/\/ﬁ)_}

2) T= 0 0T = ,\jat :1: = 0 gives
frr(mo) = Asinh(z°/v/2) J
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We shall focus on the solution

iT(mo) ~ A cosh(mojﬁ)j

— corresponds to adding a boundary pertur-

——— —

bation <o +he <cfFT \ \

e e P

[ X [ dt (40 sinh(X°/V2)soundary ® o1 ] ‘-

(X=2+002] S

v

»9: world-sheet superpartner of z° N2 .

- = Ober S riaa
tyor(d- Shaek

o1. Chan-Paton factor

— e - s

Can we find a solution to the full set of equa-
tions of motion in string field theory as a power
— — — S by

L ——

series in A7 o

We can, if the above boundary perturbation is
exactly marginal.

Is it exactly marginal?

e NS




Go to the Wick rotated theory

———— -

[ifu—mX ¢0 —» m,bj

Perturbation becomes
T e Rt R ey 5 _'\
'(_f dt [¢ S'H(Xf‘/_)]boundary Qo

e ——

= — g —

This is known to be an exactly marginal defor-
mation via fermionization of__)_{_ A.S.

On the Eoquary'
[‘X"’F ~ (£ +in)

£, n are Majorana fermions.

Thus perturbation becomes proportional to:

.:\ f dt [d"ﬂ]boundary ® UIJ

— a solvgble CFT




The relevant part of the boundary state for

computation of Tj,.:
e ——

Bo) o< [ oY1 /2 Aw(X0(0))
+ (B_1/27-1/2 = B_1/27-1/2)B(X°(0))|12) ,

s — = " E

e

B,v: bosonic superconformal ghosts

§2): the ghost number 3, picture number-2
vacuum

@ :(Co + 50;1516—¢(0)5—5(0)|0} '

S —

¢. bosonized ghost

—

Energy momentum tensor:

Ty —— il

(1% = Az + B(mD)@

4
(Follows from the requirement that ?.2 |Bg) =

e

‘0 should reproduce 9#T,, = 0)
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Results for A, and B can be obtained by pick-

up the appropriate terms in the boundary
state of the Wick rotated theory and then per-
formlng an inverse Wick rotation.

ﬁ_—.ﬁ‘l—_—

Reck nagel
Result { F.{.ln!-é'l.rg R'ﬂhﬂﬁ-ﬁd Sck-“rul GLM“(_L ‘

——

(Ag0 = o(z0), A= 1@y, B =10 §
( 9(z%) =1 + cos(2mA) — f( 0y l

f(:::o) 1 + Z( ' % i Slnzﬂ'(x\ﬂ)
n=1
L x(VE VR
_ iy
1 4 eV22° sin?(\r)
1

| =il

(Note: Ej_‘____‘/f__"in comes from inverse Wick rota-
tion of e'V27) o TR XN 15y o LhewWED

_.-'-'_

This gives us back the answer quoted earlier.

T — o,




The result for T(z°) ~ Asinh(z°/v/2) can be

i i St

obtained by the replacement

E/\—!* —1A, g ID—)ED-*-I'TI'/\/iH




Ras letls As. 2.k
@ \..Q’ Goethe

Grost, Toyler

Vacuum string field theory (VSFT)

Suppose |®g) denotes the tachyon vacuum so-
lution

(1w) = @) - |®) € #a)
(S(w)) = 5(%0) + -5(w))]

S(w)) = - [<w|Q|W> (ww w)]}

Ealfﬁ *QB|A> T [P0y TA) B(_1)"A/A) » |¢o>]

Q satisfies a set of identities (E):

S ——
-

(1) 02 =0

2) (QAIB) = (-1)"4(A|QIB) |

3) Q(4) *|B)) = (QIA) * |B) + (~1)"4|4) «
L(21B))

= -t

e e —

—» guarantees gauge invariance of S(|W)).




Conjecture & Q has vgnishing_gohomology

At present we know the form of |®g) and hence
of Q_Only numerically.

Strategy:

Try to guess the form of 2 which

§atisfieg all the requirements.

r'_'

Proposal:
redefinition which leaves the cubic coupling un-

- )
It is Bossible, via an appropriate field

changed

to bring Q into a form made purely

of ghost fields.

k—__._

Insight: beginning with any BCFT, we should
end up in the same vacuum.

A —

(vacuum without any D-brane)

Thus SFT around the tachyon vacuum should
be insensitive to the choice of initial BCFT.

Q being made of ghosts — mdependent of the
choice of BCFT.




Note however that |W) € H;, — the vector
space of states of BCFT.

— there is still some implicit dependence on
BCFT. -

. ™ W

All physical results should be independent of
the choice of BCFT (need to be shown)
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Is there a choice of Q which is made purely of
ghosts, satisfies the required identities E, and
has vanishing cohomology?

Yes.

{Q; B o (‘”““—;)J

an. arbitrary coefficients.

Each of these _Q_ satisfies the @entities E

What about the cohomology of Q7

Suppose am # 0 for some m.

DefineEBﬁ = %a..;,,l (bm + (—1)™b_m)
Then({Q,B} =1)
Thus if Q|A) = 0, then |A) = QB|A)

— any Q-closed state |A) is also Q-exact.

— Q has trivial cohomology.




We now need to verify that:

3%

s 4

—

The action

)S(lwn——f——[ (i) + %wnww}”

has a classical solutlon representing the orig-
mal D-brane assocnated with BCFT.

—) conjectuvre 1

It has classical solution representing any
other D-brane in the same space-time back-
ground, associated with some other bound-
ary CFT BCFT'.

(the lump solutions)

—_> Canj::“:uh& 3
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Equations of motion:

(QIV) + W) «[w) =0)

Look for factorized solution:

(1¥) = 1vg) @ W) |

g — ghost part, m — matter part

(QV) ®1Wm) + W+ W5) © Wi + Wim) = 0 |

This gives
21vy) +. + MWy = W) =0
[ Vim + W) = N W)

N arbitrary normalization constant

For such a SOlUtIOﬂ the value of the action is

5(jw)) = -é(wgfmw @;wnﬂ
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Universality ansatz: different D-branes are de-
scribed by the same ghost part |wg) but by
different matter parts |Wm).

—

BCFT D-brane — |V) = |\l_f_g} R |Wm)

e

BCFT' D-brane — |V) = Wg) ® |W),)

Note: both |W.,) and |W‘r ) belong to the same
state space H; (of BCF‘T)

Ratio of the D-brane energies*

B _ 5(V) _ (Wil Vi |
E  S(v))  (Wm|Wm)m

(A|B)m: inner product in the matter sector
only

Thus we can compute the ratio E'/E even
without knowing the form of Q, and compare
with the known ratios of tensions of D-branes.

————




— R
‘|wm*wm)— W), j [w’ *w:n)_mw’}

— projectors of the x-algebra in the matter
sector.

Candidate projectors describing different D-branes
have been constructed.

Computatuon of (Win|Win)m/(Wm|Wm)m gives
the correct ratios of energies of different D-
branes.

— verification of conjectures 1 and 2.

Ele
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One can also construct solutions represent-
iIng a configuration of arbitrary number of D-

Ty~ o ——

branes at arbitrary positions and orientations.

T e

Strategy: Principle of superposition

If |Wm) and v } denote two different projec-
tors descrlblng two different D-branes then one
can show that

ﬂwm*w:n}=o, Vwmw )m_o]

Thus[|’¢fm) + |\U ]ls also a projector and de-
scribes a solution_ representing the superposi-
tion of two D-branes.

This can be generalized to construct superpo-

A —— e

sition of arbitrary number of D- br_aneg.
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So far our analysis has been insensitive to the
choice of_g_.

What is Q7

Strategy for finding Q:

1. Take a general form

Q= Z an(cn + (“1)ﬂﬂ—rt;]
n=0

2. Fix Siegel gauge bg|W) = 0.

The equations of motion in this gauge take the
form:

FDIW} + E;r;l\; *TU} =9 j

3. Then determine Q by requiring that the
solution to the above equation satisfies the full
set of equations of motion:

@Lw)ﬂlv*u:) _—Tf)j




@

It turns out that among the class of operators
linear in ¢n, the only consistent choice is

iQ = Kleo+ Y (~1)"(cantc—2n)] = g[cw—cuﬂ

K: a normalization constant

We can determine K by requiring that the so-
lution |W) of the form |Wg) ® |Wm) representing

S

the original D-p-brane must have

(81w)) = ~TpVpt1 |

It turns out that in order to satisfy this condi-
tion we must have K = oo.

Conclumtj: Vacuum string field theory must
be related to the original SFT by a singular
field redefinition.




Can we identify what field redefinition relates

. =

VSFT to the original SFT?

A complete answer will require the knowledge
of the solution LQLO.) which represents the tachyon
vacuum in the original SFT.

However one can guess the singular part of
the field redefinition that is responsible for the
singular nature of__g_ in VSFT.

Consider a reparametrization of the string that
Is symmetric about the mid-point.

g f(o) with f(mr — o) == — f(0o).

Suppose further that the effect of this reparametriza-
tion is to squeeze most of the string to its

i.e. f(o) ~ /2 for most of the range of o.

Under such a reparametrization the coefficient
of any negatwe dimension operator at the mid-
point will g grow Iarge
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Thus if initially @ contained a piece of the form

K [ dg&})c(@j

for some finite function g(cr) then after this
reparametnzatlon the dommant contribution
to Q will be of the form

(K(c(z) - c(—mj

with infinite coefficient K.

This mechanism not only explains the origin
of the singularity in the VSFT action, but also
provides a natural mechanism for obtaining a
Q made of pure ghosts.

Even if to begin with Q contained matter pieces,
after this reparametnzation the ghost part in-
volving c(+1i) gives the dominant contribution.

T i
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LOoONCLUSION,

DYNAMICS OF UNSTABLE TD-BRANE

QLY/STEMS I N STRING TXEORY

E X HI BT MANY NoVEL FEATURES

FURTXER STUDY OF T HIS DYNAMIG
IS LIKELY TO IMPROVE OUE
UNDER STANDING OF FoeMAL
ARSPECTS O STRING THEORY AND
ALS o FPossi8BLE COSMoLOGLCAL
ASPECTS OF <TRING THEORY



