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Introduction

The difficulties in describing Ramond-Ramond backgrounds are well known and sometimes it’s still
said that it’s not possible to describe them as a Conformal Field Theory. This is not true, although
the CFT needed is different from the usual ones. To quantize the CFT in a ten dimensional super-
Poincaré covariant way, the only option known so far is the Pure Spinor Formalism. The Green-
Schwarz formalism can be used to describe these backgrounds classically, but it has quantization
problems that will not be discussed here.

This talk is about interesting features of the pure spinor approach in the presence of Ramond-
Ramond backgrounds. One doesn’t have to have Ramond-Ramond backgrounds to use the pure
spinor formalism. The formalism was originally written in a flat background, where it has manifest
D=10 super-Poincaré invariance, but it was generalized to any background that satisfies the ten
dimensional supergravity equations of motion, in particular AdS5 × S5. AdS5 × S5 is the most
symmetrical Ramond-Ramond background and, in this background, the pure spinor action has
manifest PSU(2, 2|4) symmetry.

In a flat background the theory is free and once the CFT is quantized, scaterring amplitudes can
be immediately computed. In AdS5 × S5 background the situation is more complicated since the
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two dimensional theory is interacting, but we can, at least, describe the rules to compute scattering
amplitudes, even if actually performing the calculation is difficult. And it turns out that the rules
are surprisingly different from the flat space case. Specifically, the rules for functionally integrating
over the pure spinor variables are different from the flat space case and it is suspected that AdS5×S5

is special not because it is so symmetrical but because it is a Ramond-Ramond background. The
PSU(2, 2|4) symmetry can’t be smoothly connected to D = 10 super-Poincaré and it’s possible that
those features of the AdS5×S5 background also appear in other less symmetrical Ramond-Ramond
backgrounds.

The first obvious difference in the AdS5×S5 background is the presence of a dimensionful parameter:
the radius of AdS5 which allows us to ask about certain properties of the theory at various values of
this parameter. When this radius is small, this theory is well understood in terms of perturbative
N = 4, D = 4 super Yang-Mills although, until now, no one could quantize this theory in this
regime to compare both theories. The quantization at large radius has been carried on and it is
no more complicated than the flat space case, but the zero mode structure is quite different even
for the simplest three-point tree level amplitude. Due to this difference, some non-renormalization
theorems that are easily proved in a flat background haven’t yet been proved in the AdS5 × S5

background.

Review of the pure spinor formalism

In flat background, the type IIB pure spinor superstring has the following fields:

• xm: 10 dimensional vector

• θα, θ̂α̂: 10 dimensional fermionic spinors with same chirality

• λα, λ̂α̂: 10 dimensional bosonic spinors with same chirality satisfying the pure spinor con-
starint λγmλ = λ̂γmλ̂ = 0.

Only 22 components of λ and λ̂ are independent due to the pure spinor constraint. The action is
very simple:

S =

∫

d2z
(

∂xm∂̄xm + pα∂̄θα + p̂α̂∂θ̂α̂ + ωα∂̄λα + ω̂α̂∂λ̂α̂
)

(1)

where p, p̂ and ω, ω̂ are the conjugate momenta to θ, θ̂ and λ, λ̂. Due to the pure spinor constraint,
the ω, ω̂ are defined up to the gauge transformation:

δωα = Λm (γmλ)α δω̂α̂ = Λ̂m(γmλ̂)α̂ (2)
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There is no Majorana-Weyl solution for the pure spinor constraint, so the λ’s parameterize the 11
dimensional complex space (after Wick-rotation):

λα ∈
SO(10)

U(5)
× C (3)

where the first part picks, dinamically, a complex structure and the second part is the λ ghost
number.

The idea in a curved background is to contract the indices with a general metric and introduce
vielbeins. We also have to generalize the pure spinor action demanding that it is not only conformal
invariant, but also BRST invariant. The BRST operator has the structure:

Q =

∫

dz λαdα +

∫

dz̄ λ̂α̂d̂α̂ (4)

where, in the flat background, dα = pα − 1
2

(

∂xm + 1
4θγ∂θ

)

(γmθ)α and correspondingly for the
anti-holomorphic part. In a curved background, the action will not be quadratic and it is more
convenient to write the action directly in terms of dα, where it is defined as the operator that
(anti)commutes with the supersymmetry generator {

∫

q, d} = 0.

Ramond-Ramond backgrounds

In Ramond-Ramond background the action of the sigma model will present a coupling of the p’s
(written here in terms of d’s):

S =

∫

d2z Gmn(x, θ)∂xm∂xn + Fαβ̂(x, θ)dαd̂
β̂

+ · · · (5)

where the lowest component of the superfield Fαβ̂ is the Ramond-Ramond field strength. This
means that if we work in a background in which F is invertible, we can integrate out the d’s and
write the whole action as a function of x, θ, θ̂, λ, λ̂, ω, ω̂, but not p, p̂. The integration over the
zero modes of the p’s will not be present, though the information of their existence remains on the
fact that the θα’s and θ̂α’s are not (anti)holomorphic anymore and the number of zero modes has
changed. Something similar happens with the λ’s

When calculating the three-point massless tree amplitude, the answer won’t depend on where the
vertex operators are located on the sphere and the only thing that has to be done is to integrate
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over the zero mode. In the massless supergravity case, the vertex operator is expressed in terms of
a gauge superfield:

V = λαλ̂β̂A
αβ̂

(6)

In a flat background, the terms with zero and one θ or θ̂ can be gauged away, writing the vertex op-
erator schematically as V ≃ θθ̂(NS fields)+θ2θ̂(gravitinos)+θθ̂2(gravitinos)+θ2θ̂2(RR fields).
In a Ramond-Ramond background, it’s no longer true that the vertex operator begins with the θθ̂
term, exactly due to the interaction between d and d̂ in the action. So there are fields that will
appear at order zero in the θ expansion.

The answer for the three point amplitude in a flat background is the trilinear coupling between the
gravitons that comes by expanding the Einstein-Hilbert term:

∫

d10x (g∂mg∂ng) (7)

This immediately tells how many θ’s need to be pulled out to have a non-vanishing answer. Since
each derivative has the same dimension as 2 θ’s, the answer has to contain 10 θ’s (5 θ’s and 5 θ̂’s).
The correct integration measure for the zero modes turns out to be:

〈|(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)|2〉 = 1 (8)

This result can also be derived from functional integration:

∫

d10x

∫

d16θ d16θ̂

∫

d11λd11λ̂ (λλ̂A)3 (9)

Naively, this would give
∫

d10x
∫

d5θ d5θ̂ A3 (011∞11). The correct way to regularize this prescrip-
tion and obtain the previous result is to introduce non-minimal fields:

• (λ̄α, ω̄α)

• (ˆ̄λα̂, ˆ̄ω
α̂
)

• (r̄α, s̄α)
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• (ˆ̄rα̂, ˆ̄s
α̂
)

such that λ̄γmλ̄ = rγmλ̄ = ˆ̄λγm ˆ̄λ = r̂γm ˆ̄λ = 0. and introduce the regulator N = 1 + {Q,Λ} =

e−{Q,χ} = e−(λλ̄+λ̂ˆ̄λ+rθ+r̄θ̄) in the functional integral. Those non-minimal fields act as a contractible
pair and, to not affect the cohomology of the BRST operator, Q has to be modified as:

Q =

∫

dz λd + ω̄r (10)

In flat space, it’s natural to interpret λ̄ as the complex conjugate to λ and χ = θλ̄ + θ̂ˆ̄λ introduces
a gaussian regulator to the functional integral. N does nothing to the amplitude since it is almost
BRST trivial but when we integrate also over the non-minimal variables, we get a well defined
expression.

To calculate loop amplitudes it’s necessary to introduce a b ghost. Since the pure spinor doesn’t
come from a reparametrization invariant action, the b ghost is not an original field from the action
but a composite field, defined such that {Q, b} = T . The expression for the b ghost in a flat
background is

bflat =
2λ̄αγm(γmd)α − λ̄αNmn(γmn∂θ)α

4(λ̄λ)
+ · · · (11)

In a Ramond-Ramond background, things will be simpler as the AdS5 × S5 case prototypically
shows (the plane wave case is worked out in the paper)

AdS5 × S5 background

The simplification that occurs in the AdS5 × S5 background can be already seen by taking the
supersymmetry variation of the lagrangian. In a flat background qLflat = ∂(· · ·) where the total
derivative comes from the Wess-Zumino term of the action. This is directly related to the fact
that the scattering amplitude is only spacetime supersymmetric on-shell. On the other hand, in
an AdS5 × S5 background the lagrangian is PSU(2, 2|4) invariant without total derivatives. This
means that we must be able to write vertex operators and integration measure that are PSU(2, 2|4)
invariant, not only up to BRST exact terms. This doesn’t mean that it is known how to compute
off-shell amplitudes with string theory, but it implies at least that the prescription is PSU(2, 2|4)
invariant for any state.

The action of the pure spinor superstring in AdS5 × S5 is constructed as a sigma model for the
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coset PSU(2, 2|4)/(SO(4, 1) × SO(5) as originally done by Metsaev-Tseytlin [hep-th/9805028] in
the context of GS superstring. PSU(2, 2|4) has 30 bosonic generators and 32 fermionic generators:

• Pm: translation generators

• J[ab]: “lorentz” generators for SO(4, 1) and SO(5) - coset out.

• Qα, Q̂α̂: “supersymmetry” generators

The action will be written in terms of the left-invariant currents JA = (g−1dg)A where the index
takes value in the Lie algebra psu(2, 2|4): A = ([ab], a, α, α̂). The global PSU(2, 2|4) transforma-
tions will act as a left transformation g → Λg. The action, after integrating out d and d̂, is:

S =

∫

d2z [
1

2
(ηabJ

aJ̄b + η
αβ̂

JαJ̄ β̂ + η
αβ̂

J̄αJ β̂) −
1

4
η

αβ̂
(JαJ̄ β̂ − J̄αJ β̂)

+(−ωα∇̄λα + ω̂α̂∇λ̂α̂ − η[ab][cd]N
abN̂ cd)] (12)

where ∇ = ∂ + J[ab]ω
[ab]. Different from the flat space case, there exists a metric element which

contracts non-hatted with hatted spinor indices ηαα̂ = (γ01234)αα̂. In flat space, this would break
the ten dimensional Poincaré invariance, but here it is consistent with all the symmetries of the
action. Although strange, it can be shown that this is the only BRST invariant action where, using
the equations of motion to d, d̂, the BRST operator is:

Q =

∫

dz λαdα +

∫

dz̄ λ̂α̂d̂α̂ =

∫

dz ηαα̂λαJ α̂ +

∫

dz̄ ηαα̂λ̂α̂Ĵα (13)

And the field g in the action transforms as:

Qg = g(λαTα + α̂Tα̂) (14)

where T, T̂ are the PSU(2, 2|4) matrices corresponding to the supersymmetry generators Q, Q̂. –

Second Half –

Vertex Operator
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We will work out here only the simplest case, but the general massless case has been worked out by
Mikhailov [arXiv:0903.5022]. The simplest vertex operator can be constructed as in bosonic string
by taking the BRST variation of the lagrangian:

QL = ∂f̄ + ∂̄f ⇒ Qf̄ = ∂̄v, Q̄f = −∂v (15)

where v is the unintegrated vertex operator at zero momentum. For the bosonic string, this gives
v = cc̄∂xm∂̄xm, while for the flat pure spinor superstring this gives v = (λγmθ)(λ̂γmθ̂). This last
expression is only supersymmetric invariant up to a BRST trivial term and this is again related to
the fact that the action shifts by a total derivative.

For the AdS5 × S5, the unintegrated vertex operator related to the lagrangian is no longer the
product of two fermions, but has a part that is purely constructed out of λ’s:

v = ηαα̂λαλ̂α̂ (16)

This operator is automatically in the cohomology since it is related to an integrated vertex operator.
This is not in the cohomology of the flat background BRST operator since (ηλλ̂) = Q(ηθλ̂). The
presence of this term in the cohomology will simplify the rules to compute functional integration.

In an AdS5 × S5 background, it is natural to associate λ̄ = ηαα̂λ̂α̂ as the complex conjugate to λα.
This means that on a two-dimensional Euclidean worldsheet, the left-movers and right-movers are
complex conjugates and the action is real. Note that in a flat background, it is more natural to
associate the non-minimal variable λ̄α as the complex conjugate to λα, meaning that if the product
λ̄λ is zero then all the components of λ is zero. In a flat background, this association means that
the regulator provides a Gaussian cutoff. However, in an AdS5 × S5 background, there is no need
to introduce non-minimal variables or regulators, and the right-moving pure spinor ghosts can be
associated with the complex conjugates of the left-moving pure spinor ghosts.

Having made this association, the vertex operator ηλλ̂ only makes sense if we remove the point
where λα = 0. To compute the three-point amplitude in AdS5 × S5, we can start with the naive
definition:

〈(λλ̂A)2〉 =

∫

d10x

∫

d11λd11λ̄ δ(λλ̂ − c)

∫

d16θ d16θ̂ E(x, θ, θ̂)(λλ̂A)3 (17)

If we integrate over
∫

d16θ d16θ̂ in flat background, this would give zero by dimensional analysis.
The typical term would be

∫

g∂ag∂bg with a + b = 13 and there is no way to contract the indices
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to get a non-vanishing expression since, by momentum conservation, ki · kj = 0. In AdS5 × S5,
however, we have the dimensionful radius parameter R that allows us to write

∫

(g∂g∂g)/R11 .

There are many checks that this is the correct answer:

• The prescription is PSU(2, 2|4) invariant. For 3-point massless tree amplitudes, PSU(2, 2|4)
invariance uniquely determines the amplitude up to an overall constant.

• The b-ghost, defined such that {Q, b} = T = ηabJ
aJb/2 + ηαα̂JαJ α̂ + ωα∇λα is the obvious

generalization of the first term in the flat space case:

b = (ηλλ̂)−1λ̂α̂[
1

2
γ

aα̂β̂
JaJ β̂ +

1

4
(γab)

β̂
α̂ η

ββ̂
NabJβ +

1

4
ηαα̂JghJα] (18)

Of course, the definitive way to check if this is the correct prescription is to actually calculate
scattering amplitudes, but this hasn’t been done so far.
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