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Abstract

These are notes based on the talk given at the 7th Simons Workshop in
Mathematics and Physics, Stony Brook, July 27-Aug 21 2009.

1 Wilson loops in N = 4 SYM

In these notes I will give an overview of several results concerning a certain family
of supersymmetric Wilson loop operators in N = 4 SYM theory and their string
theory duals in AdS5×S5. These operators were introduced in [1–3] and further
studied in [4, 5]. I will take the gauge group to be SU(N), and I will mostly
consider the gauge theory to be defined on Euclidean R4 (but by conformal
invariance we may also do a conformal transformation to e.g. S4 or R× S3).

One motivation to study such Wilson loops is for example the general classi-
fication of supersymmetric non-local operators in SUSY gauge theories. Another
interesting motivation is that in certain cases supersymmetric Wilson loops may
provide examples of exactly calculable physical observables, interpolating be-
tween weak and strong coupling. In particular one can perform this way precise
and non-trivial tests of the AdS/CFT correspondence.

In any gauge theory one can define the standard Wilson loop as the holonomy
of the gauge field around a closed loop C. In a supersymmetric gauge theory,
it is natural to generalize this definition by adding couplings to the scalar fields
which belong to the same multiplet of the gauge field. In the N = 4 theory, we
couple the Wilson loop to the six real scalars as

WR(C) = trR Pexp
∮
C
ds
(
Aµẋ

µ + iΘI(s)ΦI
)
, I = 1, . . . , 6, (1.1)

where R is a choice of representation of the gauge group, and ΘI(s) is, at this
point, an arbitrary curve on R6. A similar definition applies to theories with
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lower supersymmetries. For example, in an N = 2 theory, one can couple the
loop operator to the two real scalars of the N = 2 vector multiplet.

Consider now the supersymmetry variation of the operator WR(C). By “su-
persymmetry”, we mean here the full 32 fermionic symmetries of the supercon-
formal group PSU(2, 2|4), namely the 16 Poincare plus the 16 superconformal
supercharges. The variation of the gauge field and scalars can be written as

δAµ = Ψγµε(x) , δΦI = ΨρIε(x) . (1.2)

Here Ψ is the 16-component gaugino, γµ, ρI are Dirac matrices and ε(x) is the
conformal Killing spinor

ε(x) = ε0 + xµγµε1 , (1.3)

where ε0 and ε1 are 16-components constant spinors corresponding respectively
to the Poincare and superconformal supercharges. The variation of the Wilson
loop operator gives then

δWR(C) ∝
(
ẋµγµ + iΘI(s)ρI

)
ε(x) . (1.4)

From the form of this variation, one can see that a necessary condition for su-
persymmetry is that ΘI is a unit vector

ΘIΘI = 1 (1.5)

i.e. it describes a curve on S5. Indeed in this case the operator acting on ε(x)
squares to zero (for simplicity, we have chosen a loop parameterization such that
|ẋ| = 1), and can be used to project out half of the components of the spinor.
However, in general the operator will only be “locally BPS”, since the projector,
and hence the preserved spinor, depends on the point along the loop. The Wilson
loop will be truly globally supersymmetric only if it preserves the same fraction of
supersymmetry independently of the point along the loop. This can be achieved
by suitably choosing the couple

(
xµ(s),ΘI(s)

)
defining the operator.

2 Example: The 1/2 BPS circle

A simple and well-known example of supersymmetric Wilson loop can be ob-
tained as follows: take the loop xµ(s) to be a circle, e.g. on the (x1, x2) plane,
and take ΘI to be a constant unit vector, e.g. ΘI = (1, 0, . . . , 0). By conformal
invariance, we can take the radius of the circle to be one. The corresponding
operator couples to one of the scalar fields with constant strength

WR = trR Pexp
∮
ds(Aµẋµ + iφ1) . (2.1)

The supersymmetry variation (1.4) vanishes provided ε0 and ε1 are related by

iρ1ε0 = γ12ε1. (2.2)
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This is a single equation relating ε0 and ε1, hence the operator preserves 16
linear combinations of Poincare and superconformal supercharges, i.e. half of
the supersymmetries of the vacuum 1.

As conjectured by Erickson, Semenoff and Zarembo [6] and Drukker and Gross
[7], and recently proved by Pestun [8], the expectation value of this operator is
exactly captured by the following Hermitian Gaussian matrix model

〈WR〉 = 〈trR eX〉m.m. =
1
Z

∫
DX e

− 2
g2

trX2

trR eX , (2.3)

where X is an hermitian N×N matrix, g is the Yang-Mills coupling constant and
Z is the matrix model partition function. As written above, the result applies
to U(N) gauge group. For general gauge group G, the integral is taken over the
Lie algebra of G.

The prove of Pestun is based on conformally mapping the theory to S4 and
then studying localization of the path integral on supersymmetric configurations
(by conformal invariance, the expectation value of WR on R4 around the trivial
conformal vacuum < φI >= 0 is equal to the expectation value of WR on S4).
In short, the idea of the proof is as follows: if Q is one of the supersymmetries
preserved by WR, one can deform the Yang-Mills action by

SYM → SYM + tQV (2.4)

where t is a parameter and V is a suitably chosen functional which is Q2-invariant
(Q does not square to zero, but it squares to a bosonic symmetry). Then by stan-
dard arguments one can see that the expectation value of Q-closed observables,
such as WR, is t-independent. In particular one can take the limit t → ∞, in
which the path integral localizes to the configurations solving QV = 0, weighted
by the one-loop determinant for fluctuations around the localization locus. By
studying the explicit action of the supersymmetry Q, one can argue that the
localization locus is given by φ1 = const and all other fields set to zero. The
one-loop determinant turns out to be trivial in the N = 4 theory, and one di-
rectly gets that the whole path-integral localizes to the above matrix model (the
Gaussian potential comes from the conformal coupling of the scalars to the S4

curvature). The same 1/2 BPS operator (2.1) can be studied in N = 2 theories
(in this case φ1 is one of the two real scalars of the N = 2 vector multiplet).
Pestun’s localization calculation applies to this situation as well, but in this case
the one-loop determinant is non-trivial and there is also a non-trivial instanton
contribution 2. Then one gets the considerably more complicated matrix model

〈WR〉N=2 =
1
Z

∫
DX e

− 2
g2

trX2

Z1-loop(X)|Zinst(X)|2 trR eX , (2.5)

1One may also consider a straight line coupled to a single scalar in the same way. In this case the
operator preserves separately 8 Poincare and 8 superconformal supersymmetries.

2The instantons are point-like instanton/anti-instantons localized at the north/south pole of the
S4. Their contribution turns out to be trivial in the N = 4 theory.
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where Zinst(X) is Nekrasov’s instanton partition function.
Going back to the N = 4 theory, since the matrix model is Gaussian, it can be

easily solved exactly. In particular, for the case of the fundamental representation
and taking the planar limit, one readily gets 3

〈WF 〉
N→∞=

2√
λ
I1(
√
λ) =

1 + λ
8 + λ2

192 + . . . λ� 1√
2
π
e
√
λ

λ
3
4

(1− 3
8
√
λ

+ . . .) λ� 1
, (2.6)

where I1(x) is a modified Bessel function of the first kind, and λ = g2N is the
‘t Hooft coupling. As displayed in the equation above, this result nicely interpo-
lates between a perturbative Feynman diagram expansion and a strong coupling
expansion at large λ. All currently available results, both from perturbation
theory and from string theory, agree with the exact matrix model prediction.

A natural question is now: can we find interesting generalizations to operators
preserving less supersymmetries which may still be exactly calculable?

3 Zarembo’s supersymmetric Wilson loops

An earlier general construction of supersymmetric Wilson loops is due to Zarembo
[9]. The construction goes as follows: take an arbitrary loop on R4, and pick 4
out of the 6 scalars, φµ, µ = 1, . . . , 4. Then we can define the following loop
operator by coupling φµ to the tangent vector to the loop

WR(C) = trR Pexp
∮
C
dsẋµ (Aµ + iφµ) . (3.1)

By studying the supersymmetry variation, one finds that for arbitrary loop this
operator preserves one Poincare supercharge. Supersymmetry can be enhanced
for loops of special shape or lying in lower dimensional subspaces of R4. It turns
out that due to the preserved Poincare supersymmetry, all these operators have
trivial expectation value

〈WR(C)〉 = 1 (3.2)

to all orders in g,N . This has been successfully checked both on the gauge theory
and string theory side.

Note that the 1/2 BPS circle discussed earlier is not included in Zarembo’s
loops. We would like to find a new family of supersymmetric loop operators
which have non-trivial vev’s and include the 1/2 BPS circle as a special case.
This is discussed in the next section.

3It is also easy to get the answer at finite N , which turns out to be 〈WF 〉 = 1
NL

1
N−1(−g2/4)eg2/8,

where L1
N−1(x) is a Laguerre polynomial.
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4 The loops on S3

Our construction of supersymmetric Wilson loops on S3 [1, 3] goes as follows.
Take an S3 subspace of R4 defined by xµxµ = 1 (for simplicity we can take the
sphere to have unit radius, the radius does not matter by conformal invariance),
and an arbitrary loop xµ(s) on S3. Then pick 3 out of the 6 scalars, Φi =
(Φ1,Φ2,Φ3) and define the following loop operator

WR(C) = trR Pexp
∮
C
ds
(
Aµẋ

µ + iσiµνx
µẋνΦi

)
. (4.1)

Here σiµν are ’t Hooft symbols, or equivalently the components of the S3 left-
invariant one-forms in Cartesian coordinates. They can be taken to be

σijk = εijk , σi4j = −σij4 = δij . (4.2)

Note that the construction associates to a given loop on S3 a “dual” loop Θi =
σiµνx

µẋν on a S2 in the scalar field space.
Studying the supersymmetry variation (1.4), one finds that the loop depen-

dence drops out, and for arbitrary curve on S3 the operator (4.1) preserves 2
linear combinations of Poincare and superconformal supercharges, i.e. it is 1/16
BPS. Since the shape of the loop does not matter for supersymmetry, one may
also consider several loops on S3, and the combined system will still be 1/16
BPS.

It is easy to realize that the 1/2 BPS circular loop is contained in this general
family as a special case: simply take the loop to be a great circle of the S3, then
σiµνx

µẋν = const and one obtains the operator (2.1) discussed before.
As the 1/2 BPS circle, all these operators have non-trivial expectation values,

and it is natural to ask whether they may be exactly calculable. While the most
general case is not well understood yet, there is a special (infinite) subfamily of
loops for which we have conjectured exact results in terms of 2d YM, as will be
discussed next.

5 The 1/8 BPS loops on S2 and 2d YM

Take a great S2 of the S3 defined above, e.g.

xµxµ = 1 , x4 = 0 . (5.1)

On this S2 we can put loops of arbitrary shapes and couple them to the 3 scalars
as prescribed in the previous section. In this case the Wilson loop (4.1) may be
written as (specializing to x4 = 0)

WR = trR Pexp
∮
ds
(
Aiẋ

i + i(~x× ~̇x) · ~Φ
)
, i = 1, 2, 3 (5.2)
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We see that the vector ~Θ = ~x× ~̇x coupling to the 3 scalars may be thought of as
the angular momentum of a point particle running along the loop xi(s). From
this point of view, it is clear that a great circle corresponds to the 1/2 BPS loop,
since for a great circle the angular momentum is constant and orthogonal to the
plane of the circle.

The analysis of the supersymmetry reveals that for arbitrary loops on this
great S2 ⊂ S3 SUSY is doubled and the loops are in general 1/8 BPS. Loops of
special shape may have enhanced supersymmetry: for example a latitude circle
is a 1/4 BPS operator for general latitude angle (and becomes 1/2 BPS at the
equator).

Motivated by several evidences both at weak coupling and from string theory,
we conjectured that the expectation values and correlation functions of these
operators on S2 may be computed exactly in terms of the standard Wilson loops
of 2d Yang-Mills on S2, or more precisely of a peculiar “perturbative” truncation
of 2d YM which consists in dropping the contributions of the non-trivial 2d
instantons on S2

〈WR(C)〉4d = 〈trR Pe
∮
C A2d〉0-inst

YM2
. (5.3)

The “zero-instanton” sector of 2d YM is in turn related to a Hermitian Gaussian
matrix model with coupling constant rescaled by an area-dependent factor

〈trR Pe
∮
C A2d〉0-inst

YM2
=

1
Z

∫
DX e−

2N
λ′ trX2

trR eX , λ′ =
4A1A2

A2
λ (5.4)

where A1,2 are the areas of the two regions of S2 singled out by the loop, and
A = A1 + A2. The relation between the “zero-instanton” sector of 2d YM and
the Hermitian matrix model was clarified in a series of papers by Bassetto et al,
see e.g. [10, 11]. In general, 2d YM exact results may be written as integrals over
the group manifold of the gauge group G. Dropping the non-trivial instantons
corresponds to neglecting the global structure of the group G and approximating
it with its Lie algebra, i.e. the Hermitian matrices in the case of G = U(N).
The simple area dependence is as expected in 2d YM because of the well-known
invariance under area preserving diffeomorphisms, but it is a very non-trivial fact
from the point of view of the 4d N = 4 SYM theory.

Similarly, one can obtain exact results for correlators of several Wilson loops
on S2. In this case the “zero-instanton” sector reduces to a Gaussian multi-
matrix model

〈WR1(C1)WR2(C1) · · ·WRk(Ck)〉 = 〈trR1 e
X1 trR2 e

X2 · · · trRk e
Xk〉k-m.m. , (5.5)

where the potential of the k-matrix model is a quadratic form in the X1, . . . , Xk

with area dependent coefficients.
As a consistency check of the conjecture (5.3), note that for the case of the

1/2 BPS great circle, for which A1 = A2 = A/2, we fall back to the matrix model
(2.3), which has been proved to be correct.
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A first simple evidence in favor of the conjecture comes from computing the
expectation value of WR in perturbation theory. At first order in λ, one has
to compute a simple Feynman diagram in which a combined gauge field-scalar
propagator is exchanged between two points along the loop, schematically

〈WR(C)〉 = 1 + λ

∫
C
ds1ds2 ẋ

i
1ẋ
j
2Gij + . . . , (5.6)

where Gij is the combined gauge field-scalar propagator. Surprisingly, despite
coming from 4d fields, this propagator turns out to be a Green’s function for a
gauge field on S2. Hence, at this order of perturbation theory, the calculation
is equivalent to a standard Wilson loop calculation in 2d YM and one easily
gets, e.g. by Stokes theorem (here for concreteness we specialize to the case of
fundamental representation)

〈WF (C)〉 = 1 +
4A1A2

A2

λ

8
+ . . . (5.7)

in agreement with the perturbative expansion of the matrix model (5.4), see eq.
(2.6). At next order of perturbation theory the calculation is considerably more
complicated, as one encounters diagrams involving the interaction vertices of the
N = 4 SYM lagrangian. However, the explicit calculation of [12], [13] shows
again agreement with the 2dYM/matrix model conjecture (5.3)-(5.4).

A result in support of the conjecture has also been recently obtained by
Pestun [14] using the localization framework. Generalizing the work on the 1/2
BPS circle to the case of our 1/8 BPS loops on S2, he finds that in this case
the path-integral localizes not directly to a matrix model, but to a 2d theory on
S2 which can be argued to be perturbatively equivalent to 2d YM. The one-loop
determinant (as well as possible instanton corrections) were not computed in [14],
so the conjecture was not yet proved. However further non-trivial evidence in
favor of our proposal comes from string theory in AdS5×S5, where all available
results are in agreement with the strong coupling limit of the conjecture (5.3)-
(5.4).

6 Wilson loops in AdS

According to the well understood AdS/CFT dictionary, a Wilson loop in the
fundamental representation along a curve C is described in AdS space by a fun-
damental string worldsheet ending at the boundary of AdS on C 4. Let us take
the AdS5 × S5 metric as (we set the radius to one)

ds2 =
1
z2

(
dz2 + dxµdxµ

)
+ dΩ2

5 , (6.1)

4In the planar limit, one considers a surface with topology of a disk. Non-planar corrections
correspond to higher genus worldsheets with one boundary.
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where dΩ2
5 is the S5 metric. The boundary of AdS5 is at z = 0 and it is the R4

on which the gauge theory is defined.
The string worldsheet dual to the Wilson loop is a minimal surface, i.e. a

solution to the classical equations of motion of the string σ-model on AdS5×S5,
with boundary conditions

XM (τ, σ)|z=0 =
(
xµ(τ),ΘI(τ)

)
, (6.2)

where XM collectively denotes the AdS5×S5 coordinates, and τ, σ are the world-
sheet coordinates. Here xµ(τ) and ΘI(τ) are identified respectively with the loop
C on R4 and the curve on S5 which couples to the scalars, as given in the definition
of the Wilson operator (1.1).

The AdS/CFT prediction for the Wilson loop expectation value is obtained
by computing the string partition function around this classical solution. At
leading order in the α′ expansion, which is equivalent to a 1/

√
λ expansion on

the gauge theory side, this is just given by the exponential of the string on-shell
action (i.e. the worldsheet area), suitably regularized to subtract the divergence
due to the infinite length of the string (since it reaches the boundary)

〈W 〉 = ZF1
α′→0' e−S

reg
F1 . (6.3)

As an example, the solution to the minimal area problem for the 1/2 BPS
circular loop is particularly simple. Taking the loop to be a unit circle on the
x1, x2 plane, the dual string worldsheet in AdS is given by

x2
1 + x2

2 + z2 = 1 , x3 = x4 = 0 , (6.4)

while the worldsheet is taken to be pointlike on S5, corresponding to the fact
that the gauge theory operator couples to a single scalar field, see eq. (2.1).
Geometrically, this surface is an AdS2 embedded in AdS5 × S5. Its regularized
area can be easily computed to be (here we use the relation α′ = 1/

√
λ)

Sreg

F1 =

√
λ

4π

∫
d2σ
√
ggαβ∂αX

M∂βX
NGMN + Sbdy = −

√
λ , (6.5)

where Sbdy is the boundary term needed to subtract the divergence according to
a well understood and general prescription [15]. Note that the regularized area
turns out to be negative. The strong coupling prediction for the Wilson loop
expectation value is then

〈W 〉 ' e
√
λ . (6.6)

This agrees with the strong coupling limit of the matrix model prediction (2.6).
The factor of λ−3/4 in (2.6) can be also argued to be consistent with the fact
that there are 3 ghost zero modes on the disk (each zero mode carries a factor
of λ−1/4 =

√
α′) [7]. On the other hand, the overall numerical prefactor and the

higher order corrections in (2.6) should be obtained by computing one-loop and
higher loop corrections in the string σ-model. This is an open problem.
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7 Supersymmetric Wilson loops as pseudo-

holomorphic surfaces in AdS

In general it is difficult to find explicit solutions to the minimal area problem
with given boundary conditions, but for supersymmetric Wilson loop it is actually
possible to give a general characterization of the dual string worldsheets.

In the case of susy operators, one should require that the string solution,
besides satisfying the boundary conditions (6.2), should also preserve exactly
the same fraction of supersymmetries as the dual gauge theory operator. The
supersymmetries preserved by a string solution are obtained by studying the
κ-symmetry projection equation

ΓεAdS = εAdS , Γ =
√
gεαβ∂αX

M∂βX
NΓMN

i∂αXM∂αXNGMN
, (7.1)

where ΓM are 10d Dirac matrices, and εAdS is the AdS5×S5 Killing spinor, which
reduces at the boundary z = 0 to the R4 conformal Killing spinor (1.3). This
equation projects out some of the components of εAdS and tells us how many and
which supersymmetries are preserved by the string solution.

Consider the case of the general Wilson loops on S3 defined in section 4. First
of all, since the operators only couple to 3 of the 6 scalars, we can restrict the
string surface to lie on a AdS5 × S2 subspace of AdS5 × S5. On this space, it
will be convenient to take the metric

ds2 =
1
z2
dxµdxµ + z2dyidyi , z−2 ≡ yiyi , i = 1, 2, 3 (7.2)

This is related to the more familiar product form of the AdS5 × S2 metric (in
Poincare patch) after separating out the radial part of the yi coordinates. On
this 7d space consider the 6d subspace M defined by

M =
{

(xµ, yi) ∈ AdS5 × S2|xµxµ + z2 = 1
}
. (7.3)

It is easy to see that this is just AdS4 × S2, with the boundary of AdS4 being
the S3, defined by xµxµ = 1, on which the Wilson loops live. It is then a
natural guess that the strings dual to our Wilson loops on S3 will lie in this
6d subspace. Indeed, by carefully studying the κ-symmetry projection (7.1) and
matching the supersymmetries of strings and gauge theory operators, we find that
the solutions do lie inside M, and on this subspace they satisfy the first-order
differential equation

JMN∂αX
N =

√
gεαβ∂

βXM , (7.4)

where XM = (xµ, yi) are the AdS5 × S2 coordinates (constrained by (7.3)), and
JMN is a 7 × 7 matrix which turns out to be an almost complex structure on
M = AdS4 × S2, i.e.

J : TM→ TM , J2 = −1 on TM . (7.5)
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The condition (7.4) is known as the statement that the string surfaces are pseudo-
holomorphic with respect to the almost-complex structure J . It can be proved
that solutions of (7.4) are automatically classical solutions of the AdS5 × S5 σ-
model. A similar result was obtained by Dymarsky et al [16] while studying the
string theory duals of the Zarembo’s supersymmetric Wilson loop.

The almost-complex structure we have found is not integrable, and it is closely
related to the almost-complex structure of S6. Recall that the S6 is the only
sphere besides S2 to admit an almost-complex structure (in the case of S2 the
complex structure is of course integrable). Let us recall the construction of the
S2 complex structure in terms of the 3d vector product. If we think of S2 as the
subspace of R3 given by xixi = 1, i = 1, 2, 3, the complex structure on S2 can be
defined in terms of the embedding coordinates as

J ij = εijkx
k . (7.6)

In vector notation, J acts on a vector ~p ∈ TS2 as J(~p) = ~x× ~p, it clearly maps
TS2 to TS2 and J2 = −1 on TS2. For S6 one has a similar construction in terms
of the vector product of the imaginary octonions. Embedding S6 into R7 with
coordinates xa, a = 1, . . . , 7, the almost-complex structure of S6 is given by

Jab = φabcx
c , (7.7)

where φabc are the components of the G2 associative 3-form (these are the struc-
ture constants for the imaginary octonions). The almost complex structure of
AdS4 × S2 related to our Wilson loops takes basically the same form as (7.7),
modulo conformal z-factors. Its components may be written explicitly as

Jµν = z2σiµνy
i, Jµi = z2σiµνx

ν = −z4J iµ, J ij = −z2εijky
k . (7.8)

From the pseudo-holomorphicity equations (7.4) it also follows that the string
solutions are calibrated by the 2-form with components JMN = GMPJ

P
N , i.e.

their area is simply given by

A(Σ) =
∫

Σ
J . (7.9)

However note that, unlike a standard calibration, the 2-form J is not closed
in our case (this is related to the fact that our Wilson loops have non-trivial
expectation values).

7.1 The 1/8 BPS loops on S2

To study the string theory duals to the 1/8 BPS loops on S2 one simply restricts
the general analysis done in the previous section to the x4 = 0 subspace of
AdS4×S2. This is just AdS3×S2, and the boundary of AdS3 is the S2 on which
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the operators of section 5 are defined. In this case the pseudo-holomorphicity
conditions (7.4) may be written in the simpler form

z2∂α (~x× ~y) =
√
gεαβ∂

β~x

∂α (~x · ~y) = 0 .
(7.10)

Explicit analytic solutions of these equations are currently known only for two
special examples of loops on S2: a latitude circle at arbitrary latitude angle
θ0 and a loop made of two arcs of longitude with an opening angle δ [3]. For
example, the solution for a latitude circle is a relatively simple generalization of
the 1/2 BPS solution described before, see eq. (6.4). The profile on S2 ⊂ S5 is
now non-trivial, since the operator couples to 3 scalars. The coupling ~Θ = ~x× ~̇x
to the scalar fields describes in this case a “dual” latitude on S2 ⊂ S5 at angle
π/2 − θ0, and the projection of the worldsheet on S2 ⊂ S5 is a spherical cap
ending on this circle. The dominant solution is the one corresponding to the
smaller cap, and its regularized area turns out to be

Areg = −
√
λ sin θ0 = −

√
4A1A2

A2
λ , (7.11)

where in the second equality we have used that A1,2 = 2π(1∓ cos θ0) for the lati-
tude loop. This is in precise agreement with the 2d YM/matrix model conjecture
(5.3)-(5.4). Interestingly, the string surface wrapping the larger spherical cap on
S2 ⊂ S5 (and with identical profile on AdS3) is also a solution and it preserves
the same supersymmetries. So it is a different saddle point which is dual to the
same Wilson loop operator. This solution is unstable and its regularized area is
equal and opposite to the one found above

Aunstable
reg = +

√
λ sin θ0 = +

√
4A1A2

A2
λ . (7.12)

This solution is clearly subdominant at strong coupling, but it is interesting that
the presence of this additional unstable saddle point is also in precise agreement
with the matrix model prediction. In fact, the asymptotic expansion of the Bessel
function gives

2√
λ′
I1(
√
λ′)

λ�1'
√

2
π

e
√
λ′

λ′3/4
(1 + . . .)− i

√
2
π

e−
√
λ′

λ′3/4
(1 + . . .) , (7.13)

where λ′ = 4A1A2
A2 λ as before. It can be argued that the presence of two string so-

lutions with equal and opposite regularized areas is in fact a general phenomenon
which follows from the structure of the pseudo-holomorphicity equations (7.10)
[4].
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8 Invariance under area-preserving diffeomor-

phisms at strong coupling

Although we cannot find explicit analytic solutions of (7.10) for arbitrary loop,
one can argue that the string action evaluated on pseudo-holomorphic solutions
is invariant under deformations of the boundary loop C which preserve its area
[4]. This is another non-trivial evidence for the conjectured relation to 2d YM.

Consider an arbitrary loop C ⊂ S2 and imagine that we have found the corre-
sponding pseudo-holomorphic string solution Σ solving (7.10). Now consider an
arbitrary deformation of the loop C → C+δC such that the deformed loop still lies
on S2. Correspondingly, the string worldsheet will be deformed to a new solution
Σ+δΣ of the susy equations. We would like to determine how the string regular-
ized area changes as a function of the loop variation δC. Since Σ and Σ + δΣ are
solutions, the difference of their on-shell action is a boundary term. To evaluate
this boundary term, it is sufficient to solve the pseudo-holomorphic equations
(7.10) perturbatively close to the boundary. This turn out to be possible for
arbitrary loop, and the result is that [4]

SF1[Σ + δΣ]− SF1[Σ] = −c δA1 (8.1)

where δA1 is just the variation of the area of the loop C at the boundary, and c is a
constant. Therefore deformations of the loop which preserve areas leave the string
worldsheet action invariant, and hence any two boundary loops with the same
area correspond to string solutions with the same on-shell action (though the
two explicit string solutions will be of course different in general). In particular,
from the knowledge of the explicit solutions for circles of arbitrary radius (the
latitudes described above), we can conclude that the regularized area of a given
string solution (which may not be explicitly known) dual to a loop on S2 of area
A1 will take the form

Sreg

F1 = ∓
√

4A1A2

A2
λ , (8.2)

as predicted by the 2d YM/matrix model. It should be stressed that the result
(8.1) crucially depends on the structure of the pseudo-holomorphic equations
(7.10), and it certainly does not hold for general non-supersymmetric string so-
lutions.

9 Correlators of two Wilson loops on S2

As mentioned earlier, we can also study correlators of several Wilson loops. Con-
sider for example two loops C1 and C2 on S2. To compute the connected correlator
〈W (C1)W (C2)〉c from string theory, we are instructed to look for a solution to the
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supersymmetry equations (7.10) with topology of a cylinder whose boundaries
are the two loops C1, C2.

For simplicity let us consider the case in which the two loops are two latitude
circles on S2 at angles θ1 and θ2. Making use of the circular symmetry of the
problem, it is not difficult to see that actually there are no solutions of (7.10)
with the topology of a smooth cylinder joining the two latitudes [4]. The only
possibility is a “degenerate” cylinder made up of two disks, corresponding to
two single latitude solutions, joined by a zero-area tube 5. Physically, the zero-
area tube corresponds to exchange of light supergravity modes between the two
worldsheets. At leading order in the α′ expansion, the connected correlator is
approximated by the exponential of the classical area of this degenerate cylinder,
which is just equal to the sum of the areas of the two disks, as given in eq. (7.11)

〈W (C1)W (C2)〉c ' exp
(√

λ sin θ1 +
√
λ sin θ2

)
. (9.1)

The exchange of supergravity modes between the two disks will contribute as a
prefactor to the exponential and we do not compute it here. Using the invariance
under area preserving diffeomorphisms discussed in the previous section, one can
argue that the same conclusion (9.1) will hold for loops of arbitrary shape, with

sin θ1 →
√

4A1(A−A1)
A2 .

We can now try to check whether the string theory prediction agrees with our
2d YM/matrix model conjecture. In the present case, the truncation of 2d YM to
the zero-instanton sector leads to the following Gaussian Hermitian two-matrix
model

〈WR1(C1)WR2(C2)〉 =
1
Z

∫
DX1DX2 trR1 e

X1 trR2 e
X2 e

− A
2g2

tr
(

1
A1
X2

1+ 1
A12

(X1−X2)2+ 1
A2
X2

2

)
.

(9.2)
Here A1, A12 and A2 are the three areas singled out by the two loops on S2.
This matrix model can be solved in the large N limit using e.g. the results of
[17]. The end result for the connected correlator, in the case of R1 = R2 = fund.
takes the form

〈W (C1)W (C2)〉c
N→∞=

∞∑
n=1

nρnIn

(√
λ
′
1

)
In

(√
λ
′
2

)
λ
′
1 =

4A1(A−A1)
A2

λ , λ
′
2 =

4A2(A−A2)
A2

λ , ρ = ρ(A1, A2, A12) .

(9.3)

Note that ρ is a function of the areas but not of the ’t Hooft coupling. In the
large λ limit, one can then extract the following strong coupling prediction

〈WR1(C1)WR2(C2)〉c
λ�1' exp

(√
λ
′
1 +

√
λ
′
2

)[
(λ
′
1λ
′
2)−1/4ρ

2π(1− ρ)2
+ . . .

]
. (9.4)

5It is very likely that a solution of the equations of motion with topology of a smooth cylinder
with boundaries on the two latitudes does exist. However it will not be supersymmetric, i.e. it will
not solve (7.10).
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We see that the exponential saddle point agrees with the string picture of “dis-
connected” disks described above, see eq. (9.1). The prefactor to the exponential,
as well as the higher order corrections, should be compared on the string theory
side to the exchange of supergravity modes and to quantum fluctuations of the
disks themselves. This is an interesting open problem.

10 Local operators and Wilson loops on S2

We have seen that on S2 we can put any number of Wilson loops of the form
(5.2) so that the system is 1/8 BPS. It is actually possible to insert on the same
sphere also an arbitrary number of local operators OJ(x) such that the combined
system still preserves some supersymmetry [5].

These local operators are defined as follows. Take the 3 scalars Φ1,Φ2,Φ3

which couple to the Wilson loops, and any one of the 3 remaining scalars, say
Φ4. Then the local operators of interest are

OJ(x) = tr
(
xiΦi + iΦ4

)J
, xi ∈ S2 . (10.1)

These operators are chiral primaries, since they take the form tr(u·Φ)J with u2 =
0. However notice the slightly unusual feature that the vector uI in scalar space is
taken to be x-dependent. Being chiral primaries, each operator OJ(x) preserves
half of the Poincare supersymmetry, but operators inserted at different points
preserve a different set of supersymmetries. However, it can be easily proved
that the system of any number of operators (10.1) inserted at different points
on the S2 preserves at least 4 supersymmetries (4 combinations of Poincare and
superconformal supercharges). Moreover, the combined system of any number
of Wilson loops (5.2) and any number of local operators (10.1) still preserves 2
common supersymmetries, i.e. it is 1/16 BPS.

One of the two common supersymmetries is precisely the supercharge used
by Pestun [14] in the localization calculation applied to the 1/8 BPS loops on
S2. Since OJ(x) are Q-closed, localization to the 2d theory can be applied to
mixed local-Wilson correlation functions of the form

〈OJ1(x1)OJ2(x2) · · ·WR1(C1)WR2(C2) · · · 〉 . (10.2)

The localization equations found in [14] imply the following 4d-2d identification

OJ(x)↔ (i ∗2d F2d(x))J , (10.3)

i.e. our local operators are mapped in the 2d theory to insertions of powers of
the YM field strength. Extending the conjecture stated earlier for Wilson loops,
we then propose that the mixed correlation functions (10.2) can be computed
exactly by the following correlator in the zero-instanton sector of 2d YM on S2

〈(i ∗2d F2d(x1))J1 (i ∗2d F2d(x2))J2 · · · trR1 Pe
∮
C1
A2d trR2 Pe

∮
C2
A2d · · · 〉0-inst

YM2
.

(10.4)
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A simple non-trivial example is the case of the correlator of one local operator
and one Wilson loop. From 2d YM, we expect that the correlator will only
depend on the area of the loop. Moreover it should be almost independent on
the insertion point of the local operator, i.e. it only depends on whether the
operator is inserted “inside” or “outside” the loop (i.e. in the region containing
the north or south pole). The truncation to zero-instantons in 2d YM produces
in this case the following Gaussian Hermitian two-matrix model

〈OJ(x)WR(C)〉 =
1
Z

∫
DXDY trY J trR eXe

− A
2g2

(
A1
A2

trY 2− 2i
A2

trXY
)
, (10.5)

where we assumed that x sits in the region with area A1 (if x sits in the region
of area A2 one simply exchanges A1 ↔ A2 and includes a factor (−1)J in the
above equation). As a consistency check of this conjecture, notice that if we do
not insert the local operator, then we can integrate out Y exactly and we recover
the matrix model for a single loop (5.4).

It is easy to check that the above two-matrix model agrees with the leading
order Feynman diagram computation in N = 4 SYM. Furthermore, the matrix
model can be solved exactly, see [5] for details, and in particular we can extract
the strong coupling behavior and compare to string theory. In the planar limit
and at large λ, we obtain from (10.5) the following prediction in the case of Wilson
loop in the fundamental (the normalization by 〈W (C)〉 is for convenience)

〈OJ(x)W (C)〉
〈W (C)〉

λ→∞∼
√
Jλ

(
A2

A

)J+1
2
(
A1

A

)−J+1
2
(

1 +O(
1√
λ

)
)
. (10.6)

This result can be successfully reproduced by a string theory calculation, includ-
ing all numerical factors. In string theory, the local operators are dual to the
J-th KK-mode on S5 of a certain supergravity scalar field which is a linear com-
bination of fluctuations of the metric and the Ramond-Ramond 4-form potential
[18][19]. The correlator at strong coupling is computed by evaluating the ampli-
tude for the process in which the supergravity mode dual to OJ(x) is emitted
from the insertion point x at the boundary and then absorbed at a point on
the string worldsheet dual to the Wilson loop. Schematically, the string theory
answer takes the form

〈OJ(x)W (C)〉
〈W (C)〉

=
√
λ

∫
Σ
d2σVJ(X(τ, σ);x)GJ(X(τ, σ);x) (10.7)

where X(τ, σ) denotes the string solution, VJ is a “vertex operator” which is
obtained by computing how the supergravity mode dual to OJ couples to the
worldsheet, and finally GJ is the standard bulk-to-boudnary propagator, de-
scribing the propagation of the supergravity mode from the string worldsheet to
the insertion point at the boundary. The integral (10.7) can be computed in the
case of the explicitly known solutions (the “latitude” and “two-longitudes” loops
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mentioned in section 7.1), and the result precisely agrees with the prediction
(10.6). In particular, it is quite non-trivial from the string theory calculation
that the correlator turns out to be (almost) independent on the insertion point
x of the local operator, as implied by the 2d YM conjecture.
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