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Guiding Question

What is the low energy gauge theory description of a stack of
D-branes probing a Calabi-Yau singularity?

Important question:

1. Strongly coupled gauge theories from geometry

2. String theory in curved backgrounds from gauge theory

3. D-branes



Strongly Coupled Gauge Theories

Placing D3- and D5-branes at the tip of the conifold
∑4

i=1 z2
i = 0

led to the Klebanov-Strassler solution and a geometric notion of

I chiral symmetry breaking as deformation

I confining flux tubes as fundamental strings

I renormalization group flow as extra RR flux

Faith that more is waiting to be discovered. The solutions I discuss
today are all cousins of Klebanov-Strassler.



Flux Vacua

Thinking of the singularity as a local feature of a compact
manifold, and replacing the D-branes by fluxes leads to warped flux
compactifications of type IIB supergravity with all complex
structure moduli stabilized.

Stabilizing the Kähler moduli as well (instantons, α′ corrections,
etc.), one has a “realistic” string theory vacuum that might model
real world physics.

In this sense, Klebanov-Strassler (and by analogy its cousins)
underlies the string theory landscape.



Outline

1. A bestiary of singular Calabi-Yaus

2. An argument for Exceptional
Collections

3. An application – the Lp,q,r
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A Bestiary of Singular Calabi-Yaus

Place a stack of D-branes at the tip of a six dimensional
Calabi-Yau cone X in type IIB string theory

Y
N X

I D3-brane = R3,1+ point

I D5-brane = R3,1+ complex curve

I D7-brane = R3,1+ complex surface



The Bestiary Continued

Three sets of examples where the gauge theory can be derived

I X is an orbifold, i.e. C3/Γ where Γ is a discrete subgroup

I X is toric – 3 U(1) isometries (can be related to Abelian
orbifolds)

I X is a C-cone over a del Pezzo



First Came the Orbifolds

I X = C3 leads to N = 4 U(N) super Yang-Mills theory

I Use representation theory to understand C3/Γ where
Γ ⊂ SU(3) is a discrete group

I Douglas and Moore, Sardo-Infirri, . . .

SU(N)

SU(N) SU(N)

Figure: The quiver for the C3/Z3 orbifold.



Toric Methods

I X has 3 U(1) isometries

X =
Cq − F∆

(C∗)q−3

I Partial resolution of C3/Zn × Zn looks like a Higgsing
procedure on the gauge theory side

I Algorithmic dimer methods: For toric manifolds, the quiver
can be drawn on a torus whose dual graph is a dimer model!

I Morrison, Plesser, Greene, Hanany, . . .



Exceptional Collections

Finding a good basis of D-branes

I any case where the singularity can be partially resolved by
blowing up a possibly singular compact C-surface

I originally developed for the del Pezzos

I can handle many toric cases as well, e.g. the Lpqr spaces of
Cvetic, Lu, Page, and Pope
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Figure: Different non-compact Calabi-Yau singularities



A Suggestive Theorem

The set of X is truly vast as demonstrated by a theorem due to
Tian and Yau.

Let f (x1, x2, x3, x4) be a polynomial in four complex variables xi

such that under the scaling xi → λwi xi , f transforms
homogenously: f → λd f . If

∑
i wi − d > 0, then the manifold f=0

is Calabi-Yau. (The associated variety in weighted projective space
must be Kähler-Einstein.)

Examples

I f = x + y + z + w gives C3

I f = x2 + y2 + z2 + w2 yields the conifold



Gauge Theories from D-branes

I D-branes placed at a singularity break up into pieces – the
fractional branes.

I For each stack of n fractional branes, we get a U(n) gauge
theory

I Where one stack overlaps another (massless open strings), we
get bifundamental matter fields



Between String Field Theory and a Cartoon

What is the minimum information about the D-brane we need to
retain to derive this gauge theory rigorously?

1. 1st-pass: D-branes as vector bundles?

2. 2nd-pass: D-branes as sheaves?

3. 3rd-pass: D-branes as complexes of sheaves?



1st pass: D-branes as vector bundles

A D-brane is some submanifold and on that submanifold we have a
gauge field strength

BUT,

I we want a definition on X , not for M ⊂ X

I we want a definition for bound states of branes of different
dimension



Between String Field Theory and a Cartoon

What is the minimum information about the D-brane we need to
retain to derive this gauge theory rigorously?

1. 1st-pass: D-branes as vector bundles? NO

2. 2nd-pass: D-branes as sheaves?

3. 3rd-pass: D-branes as complexes of sheaves?



2nd pass: D-branes as sheaves

Sheaves provide a natural way of combining vector bundles of
different rank (read D-branes of different dimension).

O,OD ,Opt

0 → O(−D) → O → OD → 0

BUT, we need anti-branes in addition to branes



Between String Field Theory and a Cartoon

What is the minimum information about the D-brane we need to
retain to derive this gauge theory rigorously?

1. 1st-pass: D-branes as vector bundles? NO

2. 2nd-pass: D-branes as sheaves? NO

3. 3rd-pass: D-branes as complexes of sheaves?



3rd pass: D-branes as complexes of sheaves

For E a sheaf,

δE ≡ · · · → 0 → 0 → E → 0 → · · ·

δE [1] ≡ · · · → 0 → E → 0 → 0 → · · ·

For a brane A, the antibrane is A[1].
After carefully worrying about which complexes are equivalent as
D-branes, we arrive at Db(X ).



Categorical Description

I A category is a set of objects and maps between those objects

I These fractional branes (A1,A2, . . . Am) can be defined as
objects in the derived category of coherent sheaves on X ,
Db(X ).

I The bifundamental matter fields are the maps between these
objects (so called Ext maps or generalized sheaf cohomology).



The Open Strings

Bifundamental matter:

1. First pass: thinking massless ∼ topological, one might guess
that for two holomorphic vector bundles V and W

Hq(X ,V ∗ ⊗W ) q = 0, 1, 2, 3

2. Second pass: While E ∗ of a sheaf is not so well defined, one
has instead ExtqX (E ,F ) where for vector bundles V and W
corresponding to sheaves E and F

ExtqX (E ,F ) = Hq(X ,V ∗ ⊗W )

3. Third pass: For objects in Db(X )

ExtkX (E ,F ) = Homk−p+q
Db(X )

(δE [p], δF [q])



The Fractional Branes

Moral definition:

I We should be able to reassemble any collection of D3-, D5-,
and D7-branes from our complete set of fractional branes.

I The branes should be mutually supersymmetric.

I There should be a gauge field living on each fractional brane.

Definition: A set of fractional branes A = (A1,A2, . . . ,An) on X
satisfy the following properties

I For any A ∈ A, Hom0
Db(X )(A,A) 6= 0.

I For any A,B ∈ A, A 6= B, Homq
Db(X )

(A,B) = 0 for q = 0 and

q = 3.

I The set A generates Db(X ).



Finding the Fractional Branes

Exceptional collections provide a way of finding a set of fractional
branes.

Claim: Assume we can partially resolve X while keeping X
Calabi-Yau. In the case where the resolution involves blowing up a
complex surface, if we can find a (strong) exceptional collection of
coherent sheaves on that surface, the collection lifts to a set of
fractional branes on X .

Example: For the C3/Z3 orbifold, the singularity can be completely
eliminated by blowing up a P2. There is a strong exceptional
collection on P2 of the form O,O(1),O(2) which lifts to the quiver
gauge theory of before.



The Definition of an Exceptional Collection

Recall that for line bundles

Hq(X ,O(−E + F )) = ExtqX (O(E ),O(F ))

Def: An exceptional sheaf E has

I Ext0(E ,E ) = C
I Extq(E ,E ) = 0 for q > 0

Def: For an exceptional collection E = (E1,E2, . . . ,En)

I Ei is exceptional ∀i
I Extq(Ei ,Ej) = 0 for i > j

For a strong exceptional collection, additionally

I Extq(Ei ,Ej) = 0 for i < j and q > 0



The Labc manifolds

1. A toric Calabi-Yau 3-fold singularity can be described by a set
of n coplanar vectors Vi ∈ Z3.

2. The Labc manifolds correspond to the case where n = 4 such
that

aV1 + bV3 = cV2 + dV4

where a + b = c + d and the a, b, c and d are positive
integers.

3. Explicit metrics on these manifolds were recently discovered
by Cvetič, Lu, Page, and Pope.



Some Simple Examples

Figure: The cones for L263 and L152.



Continuing with L152.
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Figure: We blow up the surface V corresponding to the red dot. The
surface is described by the vectors vi on the left. Note that v4 = v1 + v3.



An exceptional collection for L152.

Removing the vector v4 from the fan corresponds to blowing down
a S2 on our surface, resulting in P(1, 1, 3):

1v

v

v

2

3

where v2 + v3 + 3v1 = 0.
An exceptional collection on P(1, 1, 3) is

O,O(1),O(2),O(3),O(4)

A strong exceptional collection on V is then

O,O(E ),O(1),O(2),O(3),O(4)

where E is the divisor corresponding to the S2.



Calculating the quiver for L152

We compute

Sij = dim Hom(Ei ,Ej) =



1 1 2 3 5 7
0 1 1 2 4 6
0 0 1 2 3 5
0 0 0 1 2 3
0 0 0 0 1 2
0 0 0 0 0 1


The inverse matrix encodes the maps between the Ai in the quiver:

S−1 =



1 −1 −1 1 0 1
0 1 −1 0 −1 1
0 0 1 −2 1 −1
0 0 0 1 −2 1
0 0 0 0 1 −2
0 0 0 0 0 1





The L152 quiver
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Figure: The quiver for the L152 singularity.



Conclusion

Hope to have left you with three ideas:

1. Figuring out the gauge theory description of D-branes probing
a singularity is an important task.

2. Exceptional collections are, at the moment, the best way of
deriving these gauge theories.

3. A general appreciation for the kind of arguments that lie
behind the collections.


