Gauge Theories from Exceptional Collections

Christopher Herzog

University of Washington

October 2005

Guiding Question

What is the low energy gauge theory description of a stack of D-branes probing a Calabi-Yau singularity?

Important question:

- 1. Strongly coupled gauge theories from geometry
- 2. String theory in curved backgrounds from gauge theory
- 3. D-branes

Strongly Coupled Gauge Theories

Placing D3- and D5-branes at the tip of the conifold $\sum_{i=1}^{4} z_i^2 = 0$ led to the Klebanov-Strassler solution and a geometric notion of

- chiral symmetry breaking as deformation
- confining flux tubes as fundamental strings
- renormalization group flow as extra RR flux

Faith that more is waiting to be discovered. The solutions I discuss today are all cousins of Klebanov-Strassler.

Flux Vacua

Thinking of the singularity as a local feature of a compact manifold, and replacing the D-branes by fluxes leads to warped flux compactifications of type IIB supergravity with all complex structure moduli stabilized.

Stabilizing the Kähler moduli as well (instantons, α' corrections, etc.), one has a "realistic" string theory vacuum that might model real world physics.

In this sense, Klebanov-Strassler (and by analogy its cousins) underlies the string theory landscape.

Outline

- 1. A bestiary of singular Calabi-Yaus
- 2. An argument for Exceptional Collections
- 3. An application the $L^{p,q,r}$

C. H., R. Karp, "Exceptional collections and D-branes probing toric singularities," hep-th/0507175C. H., "Seiberg duality is an exceptional mutation," hep-th/0405118

A Bestiary of Singular Calabi-Yaus

Place a stack of D-branes at the tip of a six dimensional Calabi-Yau cone X in type IIB string theory

- D3-brane = $\mathbb{R}^{3,1}$ + point
- D5-brane = $\mathbb{R}^{3,1}$ + complex curve
- D7-brane = $\mathbb{R}^{3,1}$ + complex surface

Three sets of examples where the gauge theory can be derived

- X is an orbifold, i.e. \mathbb{C}^3/Γ where Γ is a discrete subgroup
- ➤ X is toric 3 U(1) isometries (can be related to Abelian orbifolds)
- X is a \mathbb{C} -cone over a del Pezzo

First Came the Orbifolds

- $X = \mathbb{C}^3$ leads to $\mathcal{N} = 4 \ U(N)$ super Yang-Mills theory
- Use representation theory to understand \mathbb{C}^3/Γ where $\Gamma \subset SU(3)$ is a discrete group
- Douglas and Moore, Sardo-Infirri, ...

Figure: The quiver for the $\mathbb{C}^3/\mathbb{Z}_3$ orbifold.

Toric Methods

► X has 3 U(1) isometries

$$X = \frac{\mathbb{C}^q - F_{\Delta}}{(\mathbb{C}^*)^{q-3}}$$

▶ Partial resolution of C³/Z_n × Z_n looks like a Higgsing procedure on the gauge theory side

,

- Algorithmic dimer methods: For toric manifolds, the quiver can be drawn on a torus whose dual graph is a dimer model!
- Morrison, Plesser, Greene, Hanany, ...

Finding a good basis of D-branes

- any case where the singularity can be partially resolved by blowing up a possibly singular compact C-surface
- originally developed for the del Pezzos
- can handle many toric cases as well, e.g. the L^{pqr} spaces of Cvetic, Lu, Page, and Pope

Inter-relationships

Figure: Different non-compact Calabi-Yau singularities

A Suggestive Theorem

The set of X is truly vast as demonstrated by a theorem due to Tian and Yau.

Let $f(x_1, x_2, x_3, x_4)$ be a polynomial in four complex variables x_i such that under the scaling $x_i \rightarrow \lambda^{w_i} x_i$, f transforms homogenously: $f \rightarrow \lambda^d f$. If $\sum_i w_i - d > 0$, then the manifold f=0 is Calabi-Yau. (The associated variety in weighted projective space must be Kähler-Einstein.)

Examples

Gauge Theories from D-branes

- D-branes placed at a singularity break up into pieces the fractional branes.
- ► For each stack of *n* fractional branes, we get a U(n) gauge theory
- Where one stack overlaps another (massless open strings), we get bifundamental matter fields

What is the minimum information about the D-brane we need to retain to derive this gauge theory rigorously?

- 1. 1st-pass: D-branes as vector bundles?
- 2. 2nd-pass: D-branes as sheaves?
- 3. 3rd-pass: D-branes as complexes of sheaves?

A D-brane is some submanifold and on that submanifold we have a gauge field strength

BUT,

- we want a definition on X, not for $M \subset X$
- we want a definition for bound states of branes of different dimension

What is the minimum information about the D-brane we need to retain to derive this gauge theory rigorously?

- 1. 1st-pass: D-branes as vector bundles? NO
- 2. 2nd-pass: D-branes as sheaves?
- 3. 3rd-pass: D-branes as complexes of sheaves?

Sheaves provide a natural way of combining vector bundles of different rank (read D-branes of different dimension).

 $\mathcal{O}, \mathcal{O}_D, \mathcal{O}_{\textit{pt}}$

$$0
ightarrow \mathcal{O}(-D)
ightarrow \mathcal{O}
ightarrow \mathcal{O}_D
ightarrow 0$$

BUT, we need anti-branes in addition to branes

What is the minimum information about the D-brane we need to retain to derive this gauge theory rigorously?

- 1. 1st-pass: D-branes as vector bundles? NO
- 2. 2nd-pass: D-branes as sheaves? NO
- 3. 3rd-pass: D-branes as complexes of sheaves?

3rd pass: D-branes as complexes of sheaves

For E a sheaf,

$$\delta E \equiv \cdots \rightarrow 0 \rightarrow 0 \rightarrow E \rightarrow 0 \rightarrow \cdots$$

$$\delta E[1] \equiv \cdots \rightarrow 0 \rightarrow E \rightarrow 0 \rightarrow 0 \rightarrow \cdots$$

For a brane A, the antibrane is A[1]. After carefully worrying about which complexes are equivalent as D-branes, we arrive at $D^b(X)$.

Categorical Description

- A category is a set of objects and maps between those objects
- These fractional branes (A₁, A₂, ..., A_m) can be defined as objects in the derived category of coherent sheaves on X, D^b(X).
- The bifundamental matter fields are the maps between these objects (so called Ext maps or generalized sheaf cohomology).

The Open Strings

Bifundamental matter:

1. First pass: thinking massless \sim topological, one might guess that for two holomorphic vector bundles V and W

$$H^q(X, V^* \otimes W) \quad q = 0, 1, 2, 3$$

2. Second pass: While E^* of a sheaf is not so well defined, one has instead $\operatorname{Ext}_X^q(E, F)$ where for vector bundles V and W corresponding to sheaves E and F

$$\operatorname{Ext}_X^q(E,F) = H^q(X,V^*\otimes W)$$

3. Third pass: For objects in $D^b(X)$

$$\operatorname{Ext}_{X}^{k}(E,F) = \operatorname{Hom}_{D^{b}(X)}^{k-p+q}(\delta E[p], \delta F[q])$$

The Fractional Branes

Moral definition:

- We should be able to reassemble any collection of D3-, D5-, and D7-branes from our complete set of fractional branes.
- The branes should be mutually supersymmetric.
- There should be a gauge field living on each fractional brane.

Definition: A set of fractional branes $\mathcal{A} = (A_1, A_2, \dots, A_n)$ on X satisfy the following properties

- For any $A \in \mathcal{A}$, $\operatorname{Hom}^{0}_{D^{b}(X)}(A, A) \neq 0$.
- For any $A, B \in \mathcal{A}$, $A \neq B$, $\operatorname{Hom}_{D^{b}(X)}^{q}(A, B) = 0$ for q = 0 and q = 3.
- The set \mathcal{A} generates $D^b(X)$.

Finding the Fractional Branes

Exceptional collections provide a way of finding a set of fractional branes.

Claim: Assume we can partially resolve X while keeping XCalabi-Yau. In the case where the resolution involves blowing up a complex surface, if we can find a (strong) exceptional collection of coherent sheaves on that surface, the collection lifts to a set of fractional branes on X.

Example: For the $\mathbb{C}^3/\mathbb{Z}_3$ orbifold, the singularity can be completely eliminated by blowing up a \mathbb{P}^2 . There is a strong exceptional collection on \mathbb{P}^2 of the form $\mathcal{O}, \mathcal{O}(1), \mathcal{O}(2)$ which lifts to the quiver gauge theory of before.

The Definition of an Exceptional Collection

Recall that for line bundles

$$H^{q}(X, \mathcal{O}(-E+F)) = \operatorname{Ext}_{X}^{q}(\mathcal{O}(E), \mathcal{O}(F))$$

Def: An exceptional sheaf E has

•
$$\operatorname{Ext}^{0}(E, E) = \mathbb{C}$$

•
$$\operatorname{Ext}^q(E, E) = 0$$
 for $q > 0$

Def: For an exceptional collection $\mathcal{E} = (E_1, E_2, \dots, E_n)$

► E_i is exceptional ∀i

•
$$\operatorname{Ext}^q(E_i, E_j) = 0$$
 for $i > j$

For a strong exceptional collection, additionally

•
$$\operatorname{Ext}^q(E_i, E_j) = 0$$
 for $i < j$ and $q > 0$

The *L*^{abc} manifolds

- 1. A toric Calabi-Yau 3-fold singularity can be described by a set of *n* coplanar vectors $V_i \in \mathbb{Z}^3$.
- 2. The L^{abc} manifolds correspond to the case where n = 4 such that

$$aV_1 + bV_3 = cV_2 + dV_4$$

where a + b = c + d and the *a*, *b*, *c* and *d* are positive integers.

3. Explicit metrics on these manifolds were recently discovered by Cvetič, Lu, Page, and Pope.

Some Simple Examples

Figure: The cones for L^{263} and L^{152} .

Continuing with L^{152} .

Figure: We blow up the surface V corresponding to the red dot. The surface is described by the vectors v_i on the left. Note that $v_4 = v_1 + v_3$.

An exceptional collection for L^{152} .

Removing the vector v_4 from the fan corresponds to blowing down a S^2 on our surface, resulting in $\mathbb{P}(1,1,3)$:

where $v_2 + v_3 + 3v_1 = 0$. An exceptional collection on $\mathbb{P}(1, 1, 3)$ is

 $\mathcal{O}, \mathcal{O}(1), \mathcal{O}(2), \mathcal{O}(3), \mathcal{O}(4)$

A strong exceptional collection on V is then

 $\mathcal{O}, \mathcal{O}(E), \mathcal{O}(1), \mathcal{O}(2), \mathcal{O}(3), \mathcal{O}(4)$

where *E* is the divisor corresponding to the S^2 .

Calculating the quiver for L^{152}

We compute

$$S_{ij} = \dim \operatorname{Hom}(E_i, E_j) = \begin{pmatrix} 1 & 1 & 2 & 3 & 5 & 7 \\ 0 & 1 & 1 & 2 & 4 & 6 \\ 0 & 0 & 1 & 2 & 3 & 5 \\ 0 & 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

The inverse matrix encodes the maps between the A_i in the quiver:

$$S^{-1} = \begin{pmatrix} 1 & -1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -1 & 0 & -1 & 1 \\ 0 & 0 & 1 & -2 & 1 & -1 \\ 0 & 0 & 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

The L^{152} quiver

Figure: The quiver for the L^{152} singularity.

Conclusion

Hope to have left you with three ideas:

- 1. Figuring out the gauge theory description of D-branes probing a singularity is an important task.
- 2. Exceptional collections are, at the moment, the best way of deriving these gauge theories.
- 3. A general appreciation for the kind of arguments that lie behind the collections.