
Physics 305, Fall 2008

Fermi-Dirac and Bose-Einstein Distributions

Studying for the graduate preliminary examination here at Princeton many years ago, it
seemed to me that all of statistical physics from an undergraduate problem set solving point
of view could be boiled down to the following equation

〈O〉 =

∫ ∞
0

D(ε)f(ε)O(ε)dε . (1)

This equation computes the average value of some observable O for a statistical ensemble of
physical systems. The quantity D(ε) is the density of states as a function of energy. Thus
D(ε)dε is the number of available states between ε and ε+dε. The distribution f(ε) gives the
average number of particles in those states. By integrating O(ε) with respect to this measure
D(ε)f(ε)dε, we are computing an average value for the ensemble of systems. For example,
if we take O(ε) = 1, we are computing the average number of particles in the system. Or if
we take O(ε) = ε, we are computing an average energy. Clearly, there is more to statistical
physics than Eq. (1). To pick an obvious inadequacy, if we were interested in computing
momentum dependent quantities, it would be a good idea to take a step backward and
convert the integral into an integral over the allowed momenta of the system. Nonetheless,
I have found Eq. (1) to be a useful starting point for focusing my thoughts, and it has the
advantage of being logical and fairly easy to remember.

The point of these notes was to discuss the distribution functions f(ε), presenting an
alternate derivation to the one in Griffiths 5.4. There are two extremely important cases in
statistical physics, the Fermi-Dirac and Bose-Einstein distributions,

fFD(ε) =
1

e(ε−µ)/T + 1
, (2)

fBE(ε) =
1

e(ε−µ)/T − 1
. (3)

The Fermi-Dirac distribution describes the average number of fermions in a quantum state
of energy ε; note 0 ≤ fFD ≤ 1. The Bose-Einstein distribution describes the average number
of bosons in a quantum state of energy ε; note fBE ≥ 0 and occasionally fBE is much greater
than one.

To derive, fFD and fBE, my first step will be to derive the Boltzmann factor in the grand
canonical ensemble. The Boltzmann factor is the probability that a state with energy ε and
N particles is occupied at a given temperature T and chemical potential µ:

P ∼ e−ε/T+Nµ/T .

(I work in units where the Boltzmann factor kB = 1 and thus find that temperature is
measured in units of energy.) I have just used a lot of words without defining them. Most
of you have an intuitive sense of what T is. The chemical potential and the grand canonical
ensemble are more elusive notions which we will presently make more precise. We will also
provide a precise if unintuitive notion of temperature.
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I want to consider a large reservoir with energy εr and Nr particles. By exchanging energy
and particles, this reservoir is allowed to come into equilibrium with a small system of energy
εs and Ns particles. By large and small, I mean more precisely that εr � εs and Nr � Ns.
The ensemble of systems produced in this way is usually referred to as the grand canonical
ensemble. If one insists that only energy and no particles can be exchanged between the
system and reservoir, the ensemble of systems is called instead the canonical ensemble.

Consider P (εr, Nr, εs, Ns), the total number of states with energies εr and εs and Nr and
Ns particles. Clearly

P (εr, Nr, εs, Ns) = Pr(εr, Nr)Ps(εs, Ns)

where Pr and Ps are the numbers of states in the reservoir and system respectively. We expect
the total energy and particle number are conserved. Hence N = Nr + Ns and ε = εr + εs.
If we could count up all the different possible P with a fixed ε and N , then dividing this
particular P by the total number of states would yield a probability.

By equilibrium, we mean we expect the reservoir to occupy the most probable set of
states. The condition for equilibrium is thus the requirement that P be at a maximum
subject to the constraints on total energy and particle number. Because the logarithm is a
monotonic function, the condition P be a maximum is the same as the condition lnP be a
maximum. Let’s define the entropy of the system to be S ≡ lnP and maximize S instead.
We will use the method of Lagrange multipliers. Define

Q ≡ Sr(εr, Nr) + Ss(εs, Ns) + (N −Nr −Ns)α + (ε− εr − εs)β .

The conditions for a critical point are

∂Q

∂εr
=
∂Q

∂εs
= 0 and

∂Q

∂Nr

=
∂Q

∂Ns

= 0 .

Thus we find that
∂Sr
∂εr

= β =
∂Ss
∂εs

(4)

and
∂Sr
∂Nr

= α =
∂Ss
∂Ns

. (5)

Now we are ready to give formal definitions of temperature and chemical potential. The
temperature is related to the Lagrange multiplier that enforces energy conservation:

T ≡ 1

β
.

The chemical potential is related to the Lagrange multiplier that enforces particle number
conservation:

µ ≡ −αT .

Physically, Eq. (4) is the requirement that at equilibrium, the system and reservoir be at
the same temperature while Eq. (5) is the requirement that at equilibrium, the system and
reservoir be at the same chemical potential.
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Given these requirements for a maximum, we can now derive the Boltzmann factor:

P = Pr(ε− εs, N −Ns)Ps(εs, Ns)

= exp (Sr(ε− εs, N −Ns) + Ss(εs, Ns))

≈ exp

(
Sr(ε,N) + Ss(εs, Ns)− εs

∂Sr
∂ε
−Ns

∂Sr
∂N

)
= exp (Sr(ε,N) + Ss(εs, Ns)) exp (−εs/T +Nsµ/T ) .

The factor eSr is a constant given that energy and particle number are fixed. The factor of
eSs(εs,Ns) is essentially the density of states factor D(ε)dε in Eq. (1). We are free to look at a
system with a single state, in which case eSs = 1, and the main variation in the probability
comes from the Boltzmann factor P ∼ e(−εs+Nsµ)/T . We emphasize again this expression for
P is not properly normalized; we have to add up the P ’s for all the different εs and Ns and
divide by this number to get a probability.

With the Boltzmann factor, we can derive the distributions fFD and fBE. Consider first
the Fermi-Dirac distribution. We take our system to be a single quantum state of energy ε,
dropping the subscript s. From the Pauli exclusion principle, the state can contain either
one fermion or zero fermions. Thus, the average number of particles in the state is

fFD = 〈N〉 =
e−ε/T+µ/T

1 + e−ε/T+µ/T
=

1

e(ε−µ)/T + 1
.

For the Bose-Einstein distribution, the calculation is only slightly more complicated.
Take again our system to be a single quantum state of energy ε. Now this state can have an
arbitrary number n of bosons in it. The average number of particles is

fBE = 〈N〉 =

∑∞
n=0 ne

−εn/T+µn/T∑∞
n=0 e

−εn/T+µn/T
.

To evaluate these sums, note first the familiar result for geometric series

∞∑
n=0

e−nα =
1

1− e−α
.

Now the series in the numerator of our expression for fBE can be identified as a derivative
of the series in the denominator:

∞∑
n=0

ne−nα = − ∂

∂α

∞∑
n=0

e−nα =
∂

∂α

(
1

e−α − 1

)
=

e−α

(e−α − 1)2
.

Thus we obtain our final result for the Bose-Einstein distribution:

fBE =
1

e(ε−µ)/T − 1
.

Conservation of energy and particle number in the above discussion played a crucial
role. What makes particle number conserved in our non-relativistic treatment is the mass
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of the particle. It is extremely unlikely, given the Boltzmann suppression, to pop a particle
with rest energy mc2 out of the vacuum provided mc2 � T . At very high temperatures,
where T � mc2, particle number is no longer conserved. However there may be charges, for
example electric charge, which are. Even at extremely high temperatures, a single electron
cannot pop out of the vacuum. However, an electron-positron pair may since then the total
electric charge remains unchanged.

A photon gas is an important example where particle number is not conserved at any
temperature. Photons are massless and thus fundamentally relativistic. One cannot work in
the grand canonical ensemble for a photon gas. The chemical potential is not well-defined.
Thus one works in the canonical ensemble and sets µ = 0 in the distribution fBE above.
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