
Physics 305, Fall 2008
Problem Set 3

due Thursday, October 2

1. Degenerate Stars (40 pts): If a star is in a certain mass and age range, it
reaches a stage where the fusion of its nuclei nearly stops and it is supported
against gravitational collapse by the zero-point kinetic energy of its electrons. If
it has a high enough density, it will be fully ionized with all of its electrons mov-
ing freely, not bound to nuclei. Model such a star as being electrically neutral,
with equal numbers of electrons, protons and neutrons (the nuclei present are
mostly helium-4, carbon-12 and oxygen-16). Assume it is a sphere of uniform
density and total mass M and radius R, and, for now, that the velocities of the
electrons are well below c.

a. Neglecting the Coulomb interactions, calculate the total energy of the
ground state of this model white dwarf star. This energy consists of the
gravitational potential energy and the kinetic energy of the electrons. Ap-
proximate the electrons as a noninteracting and nonrelativistic Fermi gas.
[Note: the kinetic energy of a Fermi gas of many particles is set by its
density and does not depend on its shape, so you do not have to solve for
the states of a particle in a spherical box here.] Why is the kinetic energy
of the nuclei small compared to that of the electrons?

b. Determine the radius R that minimizes this total energy. What is the
Fermi energy of the electrons?

Estimate the range of validity of the approximations you have made: We have
assumed the Fermi energy is high enough that all the electrons are unbound
from the nuclei (and the Coulomb interactions can then be neglected). The
binding energy of the inner electrons to a carbon nucleus (Z=6) is roughly 500
eV.

c. For what mass range (give it in multiples of the Sun’s mass, which is 2 ×
1030 kg) is the Fermi energy of this cold star more than 500 eV? If M is
such that the Fermi energy is well below 500 eV and many of the electrons
are strongly bound to the nuclei, is a star of this M larger or smaller than
your estimate of its radius from (b)?

In (a) and (b) you also assumed the electrons are nonrelativistic. This stops
being true when the Fermi energy approaches the rest energy of the electron,
mec

2.

d. For what mass range (again, in multiples of the Sun’s mass) is the Fermi
energy of this cold star that you obtained in part (b) less than mec

2? If M
is such that the Fermi energy is near or above mec

2, so that many of the
electrons are moving relativistically, is a star of this M larger or smaller
than your estimate of the radius from (b)?
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e. If the electrons are moving highly relativisticaly, then their rest mass is a
small part of their energy, so we can take the approximation of ignoring it
Repeat parts (a) and (b), approximating the electrons as a massless Fermi
gas, and see if there is a range of M that gives a stable cold star with
highly relativistic electrons.

[Most of problem (1) could be repeated for neutron stars, which consist of just
neutrons that can also be approximated as a cold Fermi gas. If a star exceeds
the mass that allows stability of its ground state, then once it cools sufficiently
it will collapse gravitationally and become a black hole.]

2. Trapped Atoms and BEC (30 points): Cornell, Ketterle, and Wiemann
shared the 2001 Nobel prize for producing Bose-Einstein condensates of 23Na
(Ketterle) and 87Rb (Cornell and Wiemann) atoms. Treating the 87Rb and
23Na atoms as non-interacting, we will attempt to calculate the temperature at
which this BEC occurs. We model the behavior of a dilute gas of N atoms in a
spherical (three dimensional) harmonic trap with frequency ω as a function of
temperature T . At low temperatures, a macroscopic number of particles come
to occupy the ground state. Work in the grand canonical ensemble. Assume
that the atoms are all in the same spin state and that you have either 87Rb or
23Na in your trap.

a. Explain why 87Rb and 23Na are bosons.

b. What is the allowed range of chemical potential µ? Assuming there are
a large number of atoms in the ground state of the trap, solve for µ to
leading order in 1/N0.

c. Show that the number of particles in the trap can be written

N0 +
1

2

∞∑
m=1

∞∑
n=1

(n+ 2)(n+ 1)xme−~ωmn/T

where we have defined a modified fugacity x = exp((µ− 3~ω/2)/T ).

d. In the limit ~ω � T , the sum over n may be approximated by an integral:

∞∑
n=1

(n+ 2)(n+ 1)e−~ωmn/T ≈
∫ ∞

0

n2e−~ωmn/Tdn .

Defining Ne = N−N0 to be the number of atoms in excited states, use this
approximation and the result from part (b) to calculate Ne near the tem-
perature Tc at which the system Bose condenses. Extract Tc and deduce
a formula for N0/N as a function of temperature.

d. Using the values N = 106 and ω = 200 Hz, calculate the critical tempera-
ture Tc at which BEC occurs. (Hint:

∑∞
n=1 n

−3 ≈ 1.20206).
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