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Entanglement and the Density Matrix

Definition of a Qubit

A qubit is the simplest quantum mechanical system, namely one with only two states. Two
ways to realize a qubit experimentally are to use the spin states of a spin 1/2 particle or
the polarizations of a photon. We could write spin states using the kets | ↑〉 and | ↓〉 or the
polarization states using | l〉 and | ↔〉. The most general state of such a system, which we
will label A, is

|ψ〉A = a0| ↑〉A + a1| ↓〉A
= a0| l〉A + a1| ↔〉A ,

where a0 and a1 are complex numbers such that |a0|2 + |a1|2 = 1. In analogy with the two
possible values of a classical bit in an ordinary computer, we will henceforth label the kets
|0〉 and |1〉:

|ψ〉A = a0|0〉A + a1|1〉A . (1)

More information is needed to specify the state of a qubit than to specify the state of a
classical bit. A classical bit can be on or off, while a qubit can be in a linear superposition
of states specified by two complex numbers with a normalization constraint. Much of the
promise of quantum computing lies in this crucial difference in the underlying mechanism
for storing information.

We can measure the state of a qubit by measuring the eigenvalue of some Hermitian
operator O that acts on the Hilbert space of the qubit. The most general Hermitian operator
O that can act on our state |ψ〉A takes the form

O = v0Id +
3∑

j=1

vjσj (2)

where the coefficients v0 and the vj must be real numbers. The σj are the Pauli spin matrices.
The σj themselves measure (up to a prefactor ~/2) the coefficient of spin in the j direction.
Measuring σ3 is called reading the qubit. The outcome of the measurement is a classical bit.
The numbers |a0|2 and |a1|2 give the probabilities that the measurement yields as outcome
the corresponding classical bit.

Two Qubit States

Consider now a system consisting of two qubits A and B. One possible state of such a system
is a product state

|Ψproduct〉 = |ψ〉A|φ〉B
=

(
a0|0〉A + a1|1〉A

)(
b0|0〉B + b1|1〉B

)
.
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It must be emphasized that a product state is not the most general state of such a system.
For example, the EPR state, made famous by Einstein, Podolsky, and Rosen,

|ΨEPR〉 =
1√
2

(
|0〉A|1〉B − |1〉A|0〉B

)
,

cannot be written in such a factorized form. States that do not factorize into a product form
we call entangled. Entangled states have the property that the outcome of a measurement
of system B affects the state of system A. A more general definition of entanglement will be
given below.

N Qubit States

Now consider a system of N qubits, ~x = {s0, s1, . . . , sN} where si can be zero or one. The
number of possible states has risen exponentially to 2N . The most general linear superposi-
tion of these states |~x〉 takes the form

|Ψ〉 =
∑

~x

c~x|~x〉 subject to
∑

~x

|c~x|2 = 1 . (3)

To specify such a superposition, we need 2N complex numbers c~x subject to a single normal-
ization constraint. In contrast, to specify a product state, of the form

|Ψproduct〉 =
N∏

j=1

(
a0j|0〉j + a1j|1〉j

)
we would only need 2N complex numbers subject to a single normalization constraint. This
vast amount of extra information in a general state |Ψ〉 is encoded in the entanglement
between the different qubits.

Entanglement with the Environment

The notion of entanglement is important in any realistic description of a quantum system
A that is in contact with some other quantum system B. This other system B is in fact
always present, since any finite quantum system A will not be completely isolated from
its environment. For example, the environment may include the measuring apparatus with
which we plan to measure the quantum system A. Let us call the system B the environment
of system A.

Up to now, we have considered situations where the state of the quantum system and its
environment factorizes into a product state

|Ψproduct〉 = |ψ〉A|φ〉B . (4)

In this situation, we can ignore the environment. Given an operator OA that acts just on
the quantum system A (and not on B), we have

〈Ψproduct|OA|Ψproduct〉 = A〈ψ|OA|ψ〉A .
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In such a situation, the quantum system A is said to be in a pure state.
Now let |i〉A be a basis of the Hilbert space for system A and |j〉B be a basis for the

environment. We can decompose

|ψ〉A =
∑

i

ai|i〉A , |φ〉B =
∑

j

bj|j〉B ,

|Ψproduct〉 =
∑
i,j

aibj|i〉A|j〉B (5)

for some set of amplitudes ai and bj. As we indicated before, product states of this form are
special and live in a small corner of the product Hilbert space of the two systems.

The most general quantum state of systems A and B has the form

|Ψ〉 =
∑
i,j

cij|i〉A|j〉B (6)

where cij are arbitrary complex amplitudes. For the product state, cij = aibj, but in general,
cij can not be factorized in this way. If cij cannot be factorized, we say that the system A
and its environment B are entangled. In this case, the quantum system A is said to be in
a mixed state. We would like to find a way of describing a mixed state without having to
include the environment in our description.

The Density Matrix

We will see that the density matrix can be used to give a complete characterization of a
system in a mixed state. Let |i〉 label some basis of the Hilbert space of system A. We write
the matrix as

ρ =
∑
ij

|i〉ρij〈j| , (7)

with complex entries ρij. We require the matrix satisfy three properties:

1. The matrix is Hermitian:
ρ† = ρ

or equivalently ρij = ρ∗ji.

2. The matrix has trace one:
tr ρ = 1 ,

or equivalently
∑

i ρii = 1.

3. The matrix is positive semi-definite. In other words, all of its eigenvalues are non-
negative.

The expectation value of an operator for a system described by ρ is defined to be

〈O〉 =
∑
ij

ρij〈j|O|i〉 = tr(ρO) . (8)
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Given that the density matrix is Hermitian, we can find a special basis |n〉 such that ρ is
diagonal:

ρ =
∑

n

|n〉ρnn〈n| . (9)

The non-negativity of the eigenvalues ρnn and the condition that tr ρ = 1 then imply that
0 ≤ ρnn ≤ 1. We define

pn ≡ ρnn

to be the probability for the system to be in the state |n〉. A density matrix thus describes a
statistical mixture — in sharp distinction to a quantum superposition — of quantum states
where

∑
pn = 1. In this diagonal basis, the expectation value of O takes the form of a

statistical average

〈O〉 =
∑

n

pn〈n|O|n〉 .

Pure States and Mixed States

A quantum system in a pure state is described by a wave function

|ψ〉 =
∑

i

ai|i〉 . (10)

The expectation value of an operator O then reads

〈O〉 = 〈ψ|O|ψ〉 =
∑
ij

aia
∗
j〈j|O|i〉 .

From the definition (8), the density matrix associated to this pure state is

ρ =
∑
ij

|i〉aia
∗
j〈j| = |ψ〉〈ψ| .

Comparing with (9), we see that the density matrix of a pure state |ψ〉, when diagonalized,
has one single eigenvalue pn = 1 (for |n〉 = |ψ〉) while pm = 0 for all other m 6= n. In
consequence, the density matrix of a pure state has the special property that ρ2 = ρ. In
general,

tr(ρ2) = 1 for a pure state,

tr(ρ2) < 1 for a mixed state.

Mixed States from Entanglement

Let us return to the general entangled state (6) for the two quantum systems A and B. We
want to compute the density matrix that describes the mixed state of system A. Consider
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an operator OA that acts within the Hilbert space of A only. Its expectation value can be
evaluated as

〈O〉 = 〈Ψ|O|Ψ〉
=

∑
ijkl

cijc
∗
kl B〈l|j〉B A〈k|O|i〉A

=
∑
ik

(∑
j

cijc
∗
kj

)
A〈k|O|i〉A .

From here, we read off that the density matrix for the quantum system A is

ρA
ik =

∑
j

cijc
∗
kj . (11)

For the product state (5), the entries of the density matrix can be factored ρik = aia
∗
k, which

describes a pure state. However for general cij, the density matrix (11) cannot be written in
this pure state form. In this more general case, A is said to be in a mixed state.

Measurement and Decoherence

The notion of pure states and mixed states plays an important role in the description of a
quantum mechanical measurement. Again, consider a quantum system A. To do a mea-
surement on A, we must put it in contact with a measuring device B. Let us assume that,
initially, system A is in a pure state (10). The measuring apparatus is in some other state
|φ〉B that initially is uncorrelated with the state of A. So before the measurement starts,
the combined system is in a product state of the form (4), or when written out in some
eigenbasis, as in Eq. (5).

To perform the measurement, we assume that the measuring device has a basis of states
that correlates with the basis of states of system A. This correlation is such that, when
system A is in the eigenstate |i〉A, then the measuring apparatus will go in a measurement
state that says: “I have just measured the system A is in the state |i〉A.” We denote such a
state of the measuring apparatus by |i〉B.

The measurement process is described by the Schrödinger equation of system A together
with the measuring device B. The total Hamiltonian will have an interaction term that acts
on the combined Hilbert space of A and B. For a well designed measuring apparatus, this
Hamiltonian is such that after a while, the combined state looks as follows

|Ψafter〉 =
∑

i

ai|i〉A|i〉B . (12)

In other words, the combined system is in a maximally entangled state where there is a one-to-
one correlation between the state of the quantum system A and that of the measuring device
B. For an ideal measurement, the amplitudes ai of |Ψafter〉 are identical to the amplitudes
ai of the initial pure state (10). After the measurement, however, system A is no longer in
a pure state, but in a mixed state with a diagonal density matrix

ρA
after =

∑
i

|i〉A pi A〈i| such that pi = |ai|2 . (13)
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In complete accord with the familiar description of quantum mechanical measurement, the
probability that system A ends up in state |i〉 is pi = |ai|2. What has happened, however, is
that after the interaction with the measurement device, the different states |i〉 and amplitudes
ai are no longer added up coherently as in the pure state (10), but they are added as in
a statistical ensemble with classical probabilities pi. The time-evolution from the initial
product state (4) to the final entangled state (12), or equivalently, from the initial pure state
(10) to the final mixed state (13), is known as decoherence.
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