Physics 403, Spring 2011 Problem Set 1

due Thursday, February 10

- 1. Parts of the Spectral Theorem (20 pts): Let $V = \mathbb{C}^n$ be a finite dimensional vector space over the complex numbers \mathbb{C} of dimension n with the usual inner product. Let N be a normal operator, i.e. $N^{\dagger}N = NN^{\dagger}$, that maps V to itself.
 - a) Show that if $|x\rangle$ is an eigenvector of N with eigenvalue λ , then $|x\rangle$ is also an eigenvector of N^{\dagger} but with eigenvalue λ^* .
 - b) For H a Hermitian operator, demonstrate that the eigenvalues of H are real. For U a unitary operator, demonstrate that the eigenvalues of U have modulus 1, i.e. $|\lambda| = 1$.
 - c) If $|x\rangle$ and $|y\rangle$ are both eigenvectors of N with eigenvalues $\lambda_x \neq \lambda_y$, demonstrate that $\langle x|y\rangle = 0$.
 - d) Why must any linear operator T on V have at least one eigenvalue and one eigenvector?
- 2. Orthogonal Polynomials (15 pts): Given the linearly independent vectors $x(t) = t^n$, for n = 0, 1, 2, ..., use the Gram-Schmidt process to find the orthonormal polynomials $e_0(t)$, $e_1(t)$, and $e_2(t)$
 - a) when the inner product is defined as $\langle x|y\rangle = \int_{-1}^{1} x^*(t)y(t)dt$.
 - b) when the inner product is defined with a nontrivial weight function:

$$\langle x|y\rangle = \int_{-\infty}^{\infty} e^{-t^2} x^*(t) y(t) dt$$
.

- c) What names are traditionally associated with these polynomials?
- 3. The Derivative Operator (15 pts): Consider $\mathcal{P}_2^c[t]$, i.e. polynomials in the variable t of degree less than or equal to two with complex coefficients.
 - a) In the basis $\{1, t, t^2\}$, write the derivative operator D = d/dt as a 3 × 3 matrix.
 - b) Using the inner product from 2(a), construct a matrix representation of the adjoint operator D^{\dagger} . Why is D^{\dagger} not the conjugate transpose of D?
 - c) Using the $e_i(t)$ from 2(a), construct D and D^{\dagger} .
- 4. Heisenberg Uncertainty Principle (20 pts): Denote the expectation value of an operator A in a state $|\psi\rangle$ by $\bar{A} = \langle A \rangle = \langle \psi | A | \psi \rangle$. The uncertainty or deviation in state $|\psi\rangle$ of the operator A is given by

$$\Delta A = \sqrt{\langle \psi | (A - \bar{A})^2 | \psi \rangle}$$

a) Show that for any two hermitian operators A and B, we have

$$|\langle \psi | AB | \psi \rangle|^2 \le \langle \psi | A^2 | \psi \rangle \langle \psi | B^2 | \psi \rangle .$$

[Hint: Use the Schwarz inequality.]

b) Show that

$$|\langle \psi | [A, B] | \psi \rangle|^2 \le 4 \langle \psi | A^2 | \psi \rangle \langle \psi | B^2 | \psi \rangle .$$

- c) Define operators $A' \equiv A \alpha$ Id and $B' \equiv B \beta$ Id, where α and β are real numbers. Show that A' and B' are hermitian and that [A', B'] = [A, B].
- d) Prove the uncertainty relation

$$(\Delta A)(\Delta B) \ge \frac{1}{2} |\langle \psi | [A, B] | \psi \rangle |$$
.