1. **Irreps of SU(3)** [15 pts]: The quarks, anti-quarks, and gluons of QCD transform respectively under the fundamental, anti-fundamental and adjoint representations of SU(3).

 (a) In order for a quark to be able to absorb a gluon, there needs to be a fundamental representation in the tensor product of a fundamental and adjoint representation. Use the graphical method we discussed in class to express $3 \otimes 8$ as a direct sum of irreps of $su(3)$.

 (b) One way that QCD is very different from QED is that unlike photons, gluons can interact with each other. In order for a gluon to decay into two gluons, there needs to be an adjoint representation in the tensor product of two adjoint representations. Express $8 \otimes 8$ as a direct sum of irreps of $su(3)$.

2. **The Little Group of a Massless Particle** [15 pts]:

 (a) Consider a massless particle with momentum $k = (1, 1, 0, 0)$ and the 4×4 matrix where

 \[
 g = \begin{pmatrix}
 1 + \zeta & -\zeta & \alpha & \beta \\
 \zeta & 1 - \zeta & \alpha & \beta \\
 \alpha & -\alpha & 1 & 0 \\
 \beta & -\beta & 0 & 1 \\
 \end{pmatrix}
 \begin{pmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & \cos \theta & \sin \theta \\
 0 & 0 & -\sin \theta & \cos \theta \\
 \end{pmatrix}.
 \]

 For what value of ζ is g an element of $SO^{+}(3,1)$? Show that $gk = k$. Argue that elements of the type g constitute the little group of a massless particle.

 (b) Argue that an arbitrary element of the Lie algebra of the little group can be written as

 \[
 \alpha A + \beta B + i \theta J_3 = \begin{pmatrix}
 0 & 0 & \alpha & \beta \\
 0 & 0 & \alpha & \beta \\
 \alpha & -\alpha & 0 & \theta \\
 \beta & -\beta & -\theta & 0 \\
 \end{pmatrix}.
 \]

 Construct the commutators of A, B, and J_3.

1