Physics 403, Spring 2011
Problem Set 5
due Thursday, March 24

1. **A Quantum Paradox** [15 pts]: Consider a particle in an infinite potential well on the interval $x \in [0,a]$. Physical considerations impose the boundary conditions $\psi(0) = \psi(a) = 0$. Assume the Hamiltonian operator $H = -\frac{d^2}{dx^2}$ (setting $\hbar = 1$ and $m = 1$) is self-adjoint.

 (a) Solve the eigenvalue equation $H \psi = E \psi$ associated to the boundary conditions $\psi(0) = \psi(a) = 0$. Deduce the spectrum and an orthonormal basis of eigenfunctions.

 (b) Consider the wave function given by $\psi(x) = \mu x(a-x)$ where μ is a normalization factor so that $\langle \psi | \psi \rangle = 1$. Show that $\langle H \psi | H \psi \rangle > 0$. Isn’t it the case however that $H^2 \psi = 0$ and hence $\langle \psi | H^2 \psi \rangle = 0$? What’s going on?

 (c) Decompose H^2 using the eigenfunction basis computed in (a). Use this “matrix” representation of H^2 to compute $\langle \psi | H^2 \psi \rangle$.

2. **The Inverse of the Kinetic Energy Operator** [15 pts]: Consider again the operator $H = -\frac{d^2}{dx^2}$ on the domain $D_H = \{ f, f'' \in L^2(0,1) : f(0) = f(1) = 0 \}$. We would like to construct $(H - \omega^2)^{-1}$.

 (a) Find an orthonormal basis of eigenvectors for H. Use this basis to construct $(H - \omega^2)^{-1}$.

 (b) Construct solutions f_1 and f_2 of the equation $(H - \omega^2)f(x) = 0$ such that $f_1(0) = 0$ and $f_2(1) = 0$. Use these homogeneous solutions to find a general solution $f(x)$ to the inhomogeneous equation $(H - \omega^2)f(x) = g(x)$ that satisfies the boundary conditions $f(0) = f(1) = 0$.

 (c) Show that the inverse operators constructed in parts (a) and (b) are the same.

3. **Critical Mass** [15 pts]: An infinite slab of fissile material has thickness L. The neutron density $n(x,t)$ in the material obeys the equation

 \[
 \frac{\partial n}{\partial t} = D \frac{\partial^2 n}{\partial x^2} + \lambda n + \mu ,
 \]

 where $n(x,t)$ is zero at the surface of the slab at $x = 0$ and L. Here D is the neutron diffusion constant, the term λn describes the creation of new neutrons by induced fission, and the constant μ is the rate of production per unit volume of neutrons by spontaneous fission.

 (a) Expand $n(x,t)$ as a series

 \[
 n(x,t) = \sum_m a_m(t) \varphi_m(x) ,
 \]

 where $\varphi_m(x)$ are a complete set of functions you think suitable for solving the problem.
(b) Find an explicit expression for the coefficients $a_m(t)$ in terms of their initial values $a_m(0)$.

(c) Determine the critical thickness L_{crit} above which the slab will explode.