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In the canonical formulation of quantum mechanics, the time evolution of the wavefunc-

tion is governed by Schrödinger’s Equation:

ih̄
d|ψ〉
dt

= H|ψ〉 . (1)

This equation was in fact one of our postulates, an unsatisfactory state of affairs for those of
us who prefer axioms to be simple — a straight line segment can be drawn joining any two
points, any straight line segment can be extended indefinitely in a straight line, etc. One can
motivate the form of this equation from a careful consideration of plane waves, as Bransden
and Joachain do in Chapter 3 of their book. But there is another powerful way of thinking
of the origins of this equation.

Before getting to the path integral itself, I need to make a few preliminary remarks about
time propagation and the Schrödinger and Heisenberg pictures of quantum mechanics. In the
previous “Group Theory Remarks”, we discussed how, for a time independent Hamiltonian,
one could write down a unitary operator U(T ) = e−iHT/h̄ that propagated a wave function
forward in time an amount T :

U(T )ψ(x, t) = e−iHT/h̄ψ(x, t) = ψ(x, t+ T ) . (2)

To describe time evolution in quantum mechanics, one could in fact replace Schrödinger’s
equation with (2). To demonstrate this equivalence, take a derivative of ψ(x, t) = U(t)ψ(x, 0)
with respect to t. We find

dψ

dt
=
dU

dt
ψ(x, 0) = −iH

h̄
U(t)ψ(x, 0) = −iH

h̄
ψ(x, t) .

In this class, we have for the most part thought of states as being time dependent and
operators as being time independent. This last paragraph suggests that there may well be
circumstances in which this separation, often called the Schrödinger picture, is not useful
and even confusing. There is an alternate version of quantum mechanics, the Heisenberg
picture, in which states are time independent and operators are time dependent:

Schrödinger Heisenberg
states time dependent time independent
operators time independent time dependent

To translate between these two pictures is very simple using the unitary operator U(t) given
above. We use the subscript S to indicate Schrödinger picture and the subscript H to
indicate Heisenberg picture. We have

|ψ(t)〉S = e−iHt/h̄|ψ〉H and OS = e−iHt/h̄OH(t) eiHt/h̄ .

One way of thinking about a Heisenberg state is as a Schrödinger state at time t = 0:
|ψ(0)〉S = |ψ〉H .
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Figure 1: A particular path joining xi and xf .

The path integral formulation begins with a strange and beautiful result for the proba-
bility amplitude of a particle initially at position xi at a time ti to end up at a position xf
at time tf . The claim is that

〈xf , tf |xi, ti〉 = N
∫
Dx exp

(
i

h̄

∫ tf

ti
L(x, ẋ)dt

)
. (3)

To explain eq. (3), we first have to describe more precisely what we mean by the state |x, t〉.
We are used to the definition of the wavefunction, that 〈x|ψ(t)〉S = ψ(x, t). In the Heisenberg
picture, we would have 〈x|e−iHt/h̄|ψ〉H = ψ(x, t) which suggests defining

|x, t〉 ≡ eiHt/h̄|x〉 ,

such that 〈x, t|ψ〉H = ψ(x, t). Thus, we may write our probability amplitude in the form

〈xf , tf |xi, ti〉 = 〈xf |e−iHtf/h̄eiHti/h̄|xi〉 = 〈xf |e−iHT/h̄|xi〉 ,

where T = tf − ti.
The right hand side of eq. (3) is where the real conceptual meat lies. Here L(x, ẋ) is

the classical Lagrangian for the particle, and thus
∫
Ldt = S is the classical action.1 The

factor N is a constant that turns out to be irrelevant for many physical questions. This
funny integral over Dx sums over all possible paths between xi and xf . It is an example
of a functional integral, i.e. an integral over all possible functions x(t) with the boundary
conditions x(ti) = xi and x(tf ) = xf . Graphically, we can think of breaking up the integral
into many short time segments τ and then summing over all x for each of these short time
segments. A particular term in the sum is shown in Figure 1.

At the end of these notes, we will demonstrate the equivalence of Schrödinger’s equation
and this path integral formulation, but I want to show you first a beautiful feature of the path

1Recall that the Hamiltonian is related to the Lagrangian via a Legendre transform H = pẋ− L where

p ≡ ∂L

∂ẋ
.
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integral: The path integral provides a conceptually simple way of taking the classical limit
of quantum mechanics. To set up this discussion, we begin with the method of stationary
phase for evaluating oscillatory integrals. (It is a method with close connections to saddle
point integration and the method of steepest descent.) Consider an ordinary integral

I =
∫ ∞
−∞

eiS(x)dx

where S(x) is real and eiS(x) is a highly oscillatory function. Because of the oscillations, the
integral cancels out almost everywhere except where S ′(x) = 0, i.e. where the phase becomes
stationary. Thus, we expect the largest contribution to the integral to come from x0 where
S ′(x0) vanishes. We expand the exponent

S(x) = S(x0) +
1

2
S ′′(x0)(x− x0)2 + . . .

and approximate the integral as

I ≈ eiS(x0)
∫ ∞
−∞

exp
(
i

2
S ′′(x0)(x− x0)2

)
dx .

This integral becomes Gaussian and can be carried out after the change of variables x−x0 =
eiπ/4u:

I ≈ eiπ/4eiS(x0)
∫ ∞
−∞

exp
(
−1

2
S ′′(x0)u2

)
du

≈ eiπ/4
√

2π

S ′′(x0)
eiS(x0) .

(This change of variables is a little bit of a cheat; we’ve been careless about the limits of
integration and dropped a contour at x = ∞. The result can be justified with a little of
complex analysis and a little bit of thought.)

We can treat the path integral in eq. (3) in an equivalent way. This condition S ′(x0) = 0
becomes in the path integral context that the variation of the action vanishes, δS = 0,
under a variation in the path x → x + δx. However, we know from classical mechanics
that δS/δx = 0 is the condition that x be a solution to the classical equations of motion!
Evaluating the path integral by the method of stationary phase yields the classical limit of
quantum mechanics.

How does a quantum mechanical particle know where to go? It doesn’t. It tries every
possible path, but each path gets weighted by a phase eiS/h̄. Most of the paths interfere
destructively with one another. The classical trajectory gives the dominant contribution to
the path integral.

We calculate the action S for a solution to the equations of motion in order to figure out
what the equivalent of the leading eiS(x0) phase is in this functional integral context. For a
simple mechanical system with a Lagrangian of the form

L =
m

2
ẋ2 − V (x) ,
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we know there is a conserved energy

E =
m

2
ẋ2 + V (x) .

We can write the action in the form∫ tf

ti
Ldt =

∫ tf

ti

(
m

2
ẋ2 − V (x)

)
dt =

∫ tf

ti

(
mẋ2 − E

)
dt =

∫ xf

xi

p dx− ET .

Thus, ignoring the equivalent of the S ′′(x0) dependent normalization, we find that

〈xf , tf |xi, ti〉 ∼ exp
(
i

h̄

∫ xf

xi

p dx− iET

h̄

)
.

This result should be familiar from the WKB approximation. For a particle of energy E, we
have the usual time dependence e−iET/h̄ represented by the second term. But there is also
the familiar WKB

∫
p dx term in the exponent.

Deriving the path integral

To derive (3), we begin by splitting up the time propagation into n steps,

〈xf , tf |xi, ti〉 =
∫
· · ·

∫
dx1 dx2 · · · dxn 〈xf , tf |xn, tn〉〈xn, tn|xn−1, tn−1〉 · · · 〈x1, t1|xi, ti〉 .

Next we consider the propagation over an infinitesimal time step τ = T/(n+ 1):

〈xj+1, tj+1|xj, tj〉 = 〈xj+1|e−iHτ/h̄|xj〉

= 〈xj+1|1−
i

h̄
Hτ +O(τ 2)|xj〉

= δ(xj+1 − xj)−
iτ

h̄
〈xj+1|H|xj〉+O(τ 2)

=
1

2πh̄

∫
dp exp

[
i

h̄
p(xj+1 − xj)

]
− iτ

h̄
〈xj+1|H|xj〉+O(τ 2) .

We now restrict to Hamiltonians of the form H = p̂2/2m + V (x), and we evaluate
〈xj+1|H|xj〉. For the kinetic energy piece, we decompose the result into plane waves, using

〈x|p〉 =
1√
2πh̄

eipx/h̄ .

We have

1

2m
〈xj+1|p̂2|xj〉 =

1

2m

∫
dp dp′ 〈xj+1|p′〉 〈p′|p̂2|p〉 〈p|xj〉 ,

=
1

2m

∫ dp dp′

2πh̄
exp

[
i

h̄
(p′xj+1 − pxj)

]
p2 δ(p− p′)

=
∫ dp

h
exp

[
i

h̄
p(xj+1 − xj)

]
p2

2m
. (4)
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For the potential energy piece, we have

〈xj+1|V (x)|xj〉 = V
(
xj + xj+1

2

)
〈xj+1|xj〉

= V
(
xj + xj+1

2

)
δ(xj+1 − xj)

=
∫ dp

h
exp

[
i

h̄
p(xj+1 − xj)

]
V (x̄j) , (5)

where in the last line, we defined x̄j ≡ (xj+1 + xj)/2. Putting the kinetic and potential
energy pieces, (4) and (5), together, we find that

〈xj+1|H|xj〉 =
∫ dp

h
exp

[
i

h̄
p(xj+1 − xj)

]
H(p, x̄j) . (6)

Note that the momentum p inH(p, x̄j) is now interpreted as a number and not as an operator.
For the propagation over a short time interval τ , we thus find that

〈xj+1, tj+1|xj, tj〉 =
1

h

∫
dpj exp

[
i

h̄

(
pj(xj+1 − xj)− τH(pj, x̄j)

)]
+O(τ 2) .

We think of pj as the momentum p between times tj and tj+1. In the limit n→∞, for the
total amplitude, we find that

〈xf , tf |xi, ti〉 = lim
n→∞

∫  n∏
j=1

dxj

 n∏
j=0

dpj
h

 exp

 i
h̄

n∑
j=0

(
pj(xj+1 − xj)− τH(pj, x̄j)

) (7)

where we think of x0 = xi and xn+1 = xf . Symbolically, we write this integral as a path
integral:

〈xf , tf |xi, ti〉 =
∫ DxDp

h
exp

[
i

h̄

∫ tf

ti
dt
(
pẋ−H(p, x)

)]
.

When the Hamiltonian H = p2/2m + V (x), we can do the Gaussian integrals over the pj.
Consider the integral over just one of the pj:

∫ dpj
h

exp

[
i

h̄

(
pj(xj+1 − xj)− τ

p2
j

2m

)]
=

√
m

ihτ
exp

[
iτ

h̄

m

2

(
xj+1 − xj

τ

)2
]
.

Multiplying the n+ 1 of these pj integrals together, we find that

〈xf , tf |xi, ti〉 = lim
n→∞

(
m

ihτ

)(n+1)/2 ∫  n∏
j=1

dxj

 exp

iτ
h̄

n∑
j=0

(
m

2

(
xj+1 − xj

τ

)2

− V (x̄j)

)
= N

∫
Dx exp

[
i

h̄

∫ tf

ti
L(x, ẋ) dt

]
.
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