String Theory, Fall 2012
 Problem Set 2
 due Wednesday, October 31

1. Tachyon Vertex Operator. Verify that the normal ordered operator $: e^{i k \cdot X}$: has conformal weights $h=\tilde{h}=\alpha^{\prime} k^{2} / 4$.
2. The Schwarzian Derivative. Given that the stress tensor transforms as

$$
\left(\frac{\partial z^{\prime}}{\partial z}\right)^{2} T^{\prime}\left(z^{\prime}\right)=T(z)-\frac{c}{12}\left\{z^{\prime}, z\right\}
$$

where the Schwarzian derivative is defined to be

$$
\{f, z\} \equiv \frac{2 \partial_{z}^{3} f \partial_{z} f-3 \partial_{z}^{2} f \partial_{z}^{2} f}{2 \partial_{z} f \partial_{z} f}
$$

verify
a) the infinitesimal version of the transformation law

$$
\delta T=-\frac{c}{12} \partial^{3} v-2(\partial v) T-v \partial T
$$

where $z^{\prime}(z)=z+v(z)$.
b) that the finite version of the transformation rule composes correctly.
3. Commuting and Anticommuting Ghosts. Calculate the singular terms in the $T(z) T(0)$ operator product expansion both for the $b c$ system and for the $\beta \gamma$ system. Assume $h_{b}=h_{\beta}=\lambda$ and $h_{c}=h_{\gamma}=1-\lambda$.
4. Linear Dilaton. Consider the following modified energy momentum tensor for a scalar field:

$$
\begin{aligned}
& T(z)=-\frac{1}{\alpha^{\prime}}: \partial X^{\mu} \partial X_{\mu}:+V_{\mu} \partial^{2} X^{\mu}, \\
& \tilde{T}(\bar{z})=-\frac{1}{\alpha^{\prime}}: \bar{\partial} X_{\mu} \bar{\partial} X^{\mu}:+V_{\mu} \bar{\partial}^{2} X^{\mu} .
\end{aligned}
$$

a) Calculate the central charges c and \tilde{c}.
b) Deduce the infinitesimal conformal transformation δX^{μ} from the OPE of the energy momentum tensor with X^{μ}.

