Singlet-Stabilized Minimal Gauge Mediation

David Curtin

arXiv:1011.2766
In Collaboration with Yuhsin Tsai

Cornell University
Cornell Institute for High Energy Phenomenology

Particle Theory Seminar
Center for the Fundamental Laws of Nature, Harvard University

March 1, 2011
1. Review & Motivation

2. Singlet-Stabilized Minimal Gauge Mediation

3. Stabilizing the Uplifted Vacuum
Review & Motivation

SUSY

Gauge Mediation

metastable SUSY

massive SQCD (ISS)

uplifted ISS
Supersymmetry

SUSY solves the Hierarchy Problem

1. How is SUSY-breaking transmitted to SSM?

2. How is SUSY broken?
Gravity Mediation: always there

\[m_{\text{soft}} \sim \frac{F}{M^*_\text{pl}} \]

Problems:
- Flavor
- Calculability

Gauge Mediation
- Flavor universal soft masses
- Requires lower SUSY-breaking scale
- Often calculable
Gauge Mediation

- **Minimal Gauge Mediation**

 \[W_{\text{eff}} = X\bar{\phi}\phi \quad \text{where} \quad \langle X \rangle = X + \theta^2 F \quad \Rightarrow \quad m_{\text{soft}} \sim \frac{\alpha F}{4\pi X} \]

- **Direct Gauge Mediation**
 - G_{SM} embedded in flavor group of SUSY-breaking sector
 - Very compatible with ‘dynamical SUSY-breaking’ ideal!
How is SUSY broken?

- Want a model where $m_{\text{SUSY}} \ll M_{\text{pl}}$ is dynamically generated: Dynamical SUSY Breaking (DSB).

- Known example of small dynamical mass scale in nature: Λ_{QCD} (due to logarithmic running of gauge coupling).
 \Rightarrow Will probably need nonperturbative physics!

- **True SUSY very difficult!** (Witten Index Argument).
 - No SUSY-vacua \rightarrow either chiral or contain massless matter
 - 3-2, 4-1, ITIY, . . .
 - Difficult to make into realistic DGM model
How about metastable SUSY?

Allowing the existence of SUSY-vacua removes many restrictions.

⇒ now just need to make sure that there is an uplifted local minimum of the potential.

Of course the false vacuum should have a lifetime longer than the age of the universe!
Another very good reason for metastable SUSY (apart from increased model building freedom/simplicity).

- Problem\(^1\): in Direct Gauge Mediation often get \(m_\lambda \ll m_\tilde{f}\)
- Little Hierarchy Problem!
- Can show that this is due to global vacuum structure of the theory.
- \(m_\lambda\) vanishes to LO in SUSY if we live in lowest-lying vacuum of the renormalizable theory (Komargodski, Shih 2009). (Making SUSY maximal does not help.)

\(\Rightarrow\) metastable SUSY!

\(^1\)first noticed by Izawa, Nomura, Tobe, Yanagida (1997)
Remark

It is useful to elaborate slightly on this.

Many models of dynamical SUSY breaking can be described by a generalized O’Raifeartaigh model at low energies.

Such a model always has a field that is undetermined at tree-level but gets a potential at 1-loop: **Pseudomodulus (PM)**.

If this model implements Direct Gauge Mediation, then messengers which are

- *tachyonic* for some values of the PM contribute to m_λ
- *stable everywhere* do not contribute to m_λ

![Diagram showing the difference between tachyonic and stable messengers in the context of SUSY breaking.](image)
Metastable SUSY Models

Some earlier models:
- Dine, Nelson, Nir, Shirman 1995
- Arkani-Hamed, March-Russell, Murayama 1997
- Luty, Terning 1998
- Banks 2005
- ...

Turns out metastable SUSY is generic!

Simplest example:
SUSY-QCD with small quark mass

(Intriligator, Seiberg, Shih 2006).
Start with $SU(N_c)$ SUSY-QCD with N_f vector-like quarks:

<table>
<thead>
<tr>
<th></th>
<th>$SU(N_c)$</th>
<th>$SU(N_f)$</th>
<th>$SU(N_f)$</th>
<th>$U(1)_B$</th>
<th>$U(1)_R$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>$\frac{N_f - N_c}{N_c}$</td>
</tr>
<tr>
<td>\bar{Q}</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>-1</td>
</tr>
</tbody>
</table>

$N_f < 3N_c \rightarrow$ asymptotically free \rightarrow strongly coupled for $E < \Lambda$

For $N_c + 1 \geq N_f \geq 3/2N_c$ the strongly coupled IR-physics is described by another SUSY-QCD which is IR-free

<table>
<thead>
<tr>
<th></th>
<th>$SU(N_f - N_c)$</th>
<th>$SU(N_f)$</th>
<th>$SU(N_f)$</th>
<th>$U(1)_B$</th>
<th>$U(1)_R$</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>\bar{q}</td>
<td></td>
<td>1</td>
<td></td>
<td>$\frac{N_c}{N_f - N_c}$</td>
</tr>
<tr>
<td>\bar{q}</td>
<td>\bar{q}</td>
<td></td>
<td>1</td>
<td></td>
<td>$-\frac{N_c}{N_f - N_c}$</td>
</tr>
<tr>
<td>M</td>
<td>1</td>
<td></td>
<td></td>
<td>0</td>
<td>2$\frac{N_f - N_c}{N_f}$</td>
</tr>
</tbody>
</table>

$W = \text{Tr} q \bar{M} q$
SUSY-QCD & Seiberg Duality

FREE ELECTRIC PHASE

- electric $SU(N_c)$
 - IR free

FREE MAGNETIC PHASE

- magnetic $SU(N_F-N_c)$
 - UV free

Coupling in IR gets stronger

Conformal window (same IR fix point)

$W_{\text{ADS}} = (N_c - N_F) \left[\frac{\Lambda^{3N_c-N_F}}{\det M} \right]^{\frac{1}{N_c-N_F}}$

NO DUAL

Cornell University

David Curtin

Singlet-Stabilized Minimal Gauge Mediation
The ISS Model

Consider SQCD in free magnetic phase with small quark mass:

\[SU(N_c) \text{ with } W = mQ\bar{Q} \Rightarrow SU(N_f)^2 \rightarrow SU(N_f) \]

where \(m \ll \Lambda \) (does not affect duality).

- magnetic theory: \(SU(N) \) with \(W = h\text{Tr}qM\bar{q} - h\mu^2\text{Tr}M \sim \Lambda m \)

(Define \(N = N_f - N_c \))

- Notice apparent \(R \)-symmetry \(R(q, \bar{q}, M) = 0, 0, 2 \)

- **SUSY-breaking** by rank condition: \(F_{Mj} = hq^i\bar{q}_j - h\mu^2\delta^i_j \)
 \[\text{rank } N \leq \text{rank } N_f \geq 3N \]
Where is the SUSY-vacuum?

- We know this theory has a SUSY-minimum. Where is it in the magnetic description?

- Consider large meson VEVs: \(W = h \text{Tr} qM\bar{q} - h\mu^2 \text{Tr} M \)

- squarks get large mass \(\rightarrow\) integrate out
 \(\rightarrow\) pure SYM
 \(\rightarrow\) gaugino condensation
 \(\rightarrow\) SUSY minimum (nonperturbative SUSY-restoration!)

\[
q = \bar{q} = 0, \quad M = \Lambda_m \left(\frac{\mu}{\Lambda_m} \right)^{2N/(N_f-N)}
\]

- \(R\)-symmetry was accidental! It is weakly but explicitly broken by gauge anomaly \(\Rightarrow\) meta-stable SUSY-breaking!
“Semi-Dynamical” Meta-Stable SUSY-Breaking

ISS is not true dynamical meta-stable SUSY-breaking due to the small quark mass put in by hand.

However, its simplicity & non-perturbative mechanism make it an instructive model-building sand box!

Use it to build a model of Direct Gauge Mediation.
\[\langle q\bar{q} \rangle = \begin{pmatrix} \mu^2 & N_{F-N} \\ 0 & 0 \end{pmatrix} \rightarrow SU(N) \times SU(N_f) \downarrow SU(N)_D \times SU(N_f-N) \]

- Decompose fields into representations of unbroken symmetries:

\[M = \begin{pmatrix} N & N_{F-N} \\ V & Y \\ \bar{Y} & Z \end{pmatrix} \rightarrow q = \begin{pmatrix} \mu + \chi_1 \\ \rho_1 \end{pmatrix}, \quad \bar{q} = \begin{pmatrix} \mu + \bar{\chi}_1 \\ \bar{\rho}_1 \end{pmatrix} \]

Pseudomodulus: no potential at tree-level. Loop effects stabilize it at the origin \(\Rightarrow U(1)_R \) is unbroken!

Embed \(G_{SM} \) in \(SU(N_f - N) \): vectors could be messengers of DGM!
ISS Vacuum

 pseudomoduli space of ISS vacuum

 messengers stable everywhere

 Loop corrections stabilize pseudomodulus at origin
Problems

- Unbroken R-symmetry forbids gaugino masses (violations from NP effects too small) → must give the pseudomodulus Z a VEV!

$$M = \begin{pmatrix} N & N_F-N \\ V & Y \\ Y & Z \end{pmatrix}^N_{N_F-N}$$

- Even if we break R-symmetry spontaneously the ISS vacuum is still the lowest-lying vacuum in the renormalizable theory → suppressed gaugino mass!

⇒ Need to break R-symmetry explicitly!
Deforming the ISS Model

There are many ways to break the magnetic R-symmetry \textit{spontaneously}, but to break it \textit{explicitly} we must add terms of the form

$$
\delta W_{el} \sim \frac{1}{\Lambda_{UV}} Q\bar{Q}Q\bar{Q} \quad \rightarrow \quad \delta W_{mag} \sim \epsilon \mu M^2 \quad \text{where} \quad \epsilon \sim \frac{\Lambda^2}{\mu \Lambda_{UV}} \ll 1
$$

This introduces new SUSY-vacua at $M \sim \mu / \epsilon$!

Good:
- Get gaugino mass at LO in SUSY

Bad:
- strong tension between reasonable m_λ and lifetime of false vacuum
- deformation can be non-generic or contrived
In the ISS vacuum, $\langle q\bar{q} \rangle$ has maximum rank N.

Let’s expand around a configuration with fewer squark VEVs instead:

$$\text{rank} \langle q\bar{q} \rangle = k < N$$

At tree-level there will be tachyonic stuff but just run with it for now!

Different symmetry breaking pattern:

$$SU(N) \times SU(N_f) \times U(1)_R \times U(1)_B \rightarrow SU(N-k) \times SU(k) \times SU(N_f-k) \times U(1)' \times U(1)''$$
New Idea: Uplift the ISS Model

\[M = \begin{pmatrix} k & N_F-k \\ V & Y \\ Y & Z \end{pmatrix} \]

\[q = \begin{pmatrix} k & N_F-k \\ \mu + \chi_1 & \rho_1 \\ \chi_2 & \rho_2 \end{pmatrix} \]

\[\overline{q} = \begin{pmatrix} k & N-k \\ \mu + \overline{\chi}_1 & \overline{\chi}_2 \\ \overline{\rho}_1 & \overline{\rho}_2 \end{pmatrix} \]

Direct Gauge Mediation: Embed \(G_{SM} \) in \(SU(N_f - k) \)

- flat at tree-level: pseudomodulus
- messengers stable everywhere: do not help with \(m_\lambda \)
- these messengers are tachyonic for \(|Z| < \mu \Rightarrow \) generate gaugino mass at LO!
ISS Vacuum

- **pseudomoduli space of ISS vacuum**
- **messengers stable everywhere**
- **Loop corrections stabilize pseudomodulus at origin**
Uplifted Vacuum

Fields roll towards the ISS vacuum!

pseudomoduli space of uplifted vacuum

messengers

tachyonic

stable

squarks
Shift meson VEV: everything is stable!
GKK Model (Giveon, Komargodski, Katz 2009)

- Magnetic theory: \(W = h \text{Tr} q_\bar{q} M \bar{q} - h \mu^2 \text{Tr} M \), \(M = \left(\begin{array}{ccc} V & Y \\ \bar{Y} & Z \end{array} \right) \)

- Need to give meson a VEV \(\langle Z \rangle > \mu \)

- Problem: in a renormalizable WZ model can’t have SUSY vacuum if one of the VEVs \(\gg \) mass scales in Lagrangian.

- Possible Solution: Split quark masses:

\[
\mu^2 \times 1 \rightarrow \begin{pmatrix} k & N_F-k \\ \mu_1 & \mu_2 \end{pmatrix}^k \quad \text{where} \quad \mu_1 \gg \mu_2
\]

- \(\rho_2, \bar{\rho}_2 \) messengers tachyonic for \(|Z| < \mu_2 \)

Leaves possible window for SUSY minimum: \(\mu_2 \ll |Z| \ll \mu_1 \)
To shift Z-VEV, again break R-symmetry explicitly by adding extremely finely tuned meson deformations

$$\delta W_{mag} = \epsilon_1 \mu_2 \text{Tr}(Z^2) + \epsilon_2 \mu_2 (\text{Tr}Z)^2$$

Good:
- It works! Get reasonable gaugino masses.
- Very important proof-of-principle!

Bad:
- Extremely contrived form of deformations
- Non-generic couplings
- Imposed mass hierarchies
- Requires enormous flavor symmetries, at least $SU(24)$
 \Rightarrow Landau Pole of SM gauge couplings below M_{GUT}
Our Goals

We want to build new & improved ISS model!

- Needs to be uplifted to solve gaugino mass problem
- Want hidden sector to be minimal, i.e. $SU(5)$ flavor symmetry. This will avoid the Landau Pole.

Also would like minimal clutter (contrived deformations, nongeneric couplings).
Singlet-Stabilized
Minimal Gauge Mediation
Start Building Our Model

Choose Magnetic Gauge Group $SU(N)$

Possible number of squark VEVs: $\text{rank} \langle q\bar{q} \rangle = k = 0, 1, \ldots N$

⇒ make minimal choice $N = 1$

⇒ trivial magnetic gauge group

Only two pseudomoduli spaces: ISS ($k = 1$) and uplifted ($k = 0$)

Choose Flavor Group $SU(N_f)$

Want minimal hidden flavor group to avoid Landau Pole.

Uplifted ISS has unbroken flavor group $SU(N_f - k)$, with $k = 0$ here.

⇒ Choose $N_f = 5$.

Start Building Our Model

Ansatz for magnetic theory: “$SU(1)_c \times SU(5)_f$"

\[W = h\bar{\phi}_i M^i_j \phi^j - hf^2 M^i_j. \]

<table>
<thead>
<tr>
<th></th>
<th>$SU(5)$</th>
<th>$U(1)$</th>
<th>$U(1)_R$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ^j</td>
<td>\Box</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\bar{\phi}_j$</td>
<td>\Box</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>M</td>
<td>Adj + 1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Identify $SU(5)$ flavor group with G_{SM}

Both these fundamentals will be tachyonic for small $|M|$ in the uplifted pseudomoduli space

\Rightarrow **A Single Pair Of Minimal Gauge Mediation Messengers!**

Need to stabilize the meson at nonzero VEV.
Deform the model to generate an effective potential (tree + loop) which pushes the meson away from the origin.

Meson Deformations: \(\delta W_{\text{mag}} \sim \epsilon f M^2 \)?
From GKK we know this can’t work for our small flavor group.

Baryon Deformations: \(\delta W_{\text{el}} \sim \frac{1}{\Lambda_{\text{UV}}^2} Q^5 \rightarrow \delta W_{\text{mag}} \sim m_{\phi}\phi \)?
Only works for \(SU(7)_f \rightarrow SU(2)_f \times SU(5)_f \). Very non-renormalizable in electric theory.

Add A Singlet Sector Coupled To The Meson!
(Witten 1981; Dine & Mason 2006; Csaki, Shirman & Terning 2006)
Take an O’Raifeartaigh Model that SUSY. It will have a pseudomodulus X.

If there are no gauge interactions, the effective potential at 1-loop will look like

$$V_{\text{tree}} = M^4 \lambda^2 \quad \longrightarrow \quad V_{\text{eff}} = M^4 \lambda^2 \left[1 + b \frac{\lambda^2}{8\pi^2} \log \frac{|X|^2}{\Lambda^2} \right]$$

SUSY-breaking scale, tree contribtion, 1-loop contribution
This can be written as

\[V_{\text{eff}} = M^4 \lambda(X)^2 \quad \text{where} \quad \lambda(X)^2 = \lambda^2 \left[1 + b \frac{\lambda^2}{8\pi^2} \log \frac{|X|^2}{\Lambda^2} \right] \]

Effective coupling \(\lambda \) increases with \(X \): consequence of RGE
\(\Rightarrow \) \(X \) is stabilized at the origin.

Gauge Interactions try to decrease \(\lambda \) for larger \(X \)
\(\Rightarrow \) can drive \(X \) away from the origin!
\[W = h\bar{\phi}M\phi + (-hf^2 + dSS)\text{Tr}M + m'(SZ + ZS) \]

<table>
<thead>
<tr>
<th></th>
<th>(SU(5))</th>
<th>(U(1))</th>
<th>(U(1)_R)</th>
<th>(U(1)_S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi^i)</td>
<td>(\Box)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\bar{\phi}^j)</td>
<td>(\Box)</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(M)</td>
<td>\text{Adj + 1}</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>(Z)</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(\bar{Z})</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>(S)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(\bar{S})</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

For \(m'\) not too large, singlets get VEV

\(\rightarrow U(1)_S\) and \(U(1)_R\)

\(\rightarrow\) negative log contribution in 1-loop potential \(V_{CW}(M)\)

\(\Rightarrow \langle M \rangle \neq 0\) possible
Split up the meson M into singlet and adjoint components

$$M = M_{\text{adj}} + M_{\text{sing}}$$

M_{sing} is stabilized by the singlet sector

$$V_{CW}(M_{\text{sing}}) = V_{CW}^{\text{mess}} + V_{CW}^{\text{sing}}$$

drives towards region where messengers are tachyonic
drives away from region where messengers are tachyonic

What about the adjoint meson?

$$V_{CW}(M_{\text{adj}}) = V_{CW}^{\text{mess}}$$

TACHYONIC!
Fix the Adjoint Instability

How to stabilize the Adjoint Meson?

1. **Add Flavor Adjoint:** $\Delta W_{mag} = m_{adj} MK$
 \rightarrow **Landau Pole**

2. **Couple to field with** $R = -2$ **that gets a VEV**
 $\Delta W_{mag} = MMA$
 \rightarrow complicated & highly non-renormalizable in electric theory

3. **Meson Deformation:** $\Delta W_{mag} = m_{adj} \text{Tr} (M_{adj})^2$ \((R) \)

Some simple Meson Deformations are very hard to avoid in uplifted ISS models!
Complete Model for SUSY Sector in SSMGM

Magnetic Theory below scale Λ:

Trivial Gauge Group, $SU(5)$ flavor symmetry:

$$ W = h\bar{\phi}_i M^i_j \phi^j + (-hf^2 + dS\bar{S})\text{Tr}M + m'(Z\bar{S} + S\bar{Z}) + m_{adj}\text{Tr}(M'^2) + a\frac{\det M}{\Lambda^2_m} $$

(Instanton Term restores SUSY for $M \sim \sqrt{f\Lambda}$)

Electric Theory above scale Λ:

augmented massive $SU(4)_c \times SU(5)_f$

$$ W = \left(\tilde{f} + \frac{\tilde{d}}{\Lambda_{UV}} S\bar{S} \right) Q\bar{Q} + m'(Z\bar{S} + S\bar{Z}) + \frac{\tilde{c}}{\Lambda_{UV}} \text{Tr}(Q\bar{Q})'^2 $$
Scales of Parameters

\[W = h\bar{\phi}_i M^i_j \phi^j + (-hf^2 + dS\bar{S}) \text{Tr}M + m'(Z\bar{S} + S\bar{Z}) + m_{adj} \text{Tr}(M'^2) + a\frac{\det M}{\Lambda_m^2} \]

- \(m', f \ll \Lambda \) free parameters. Generally \(f \gtrsim 10m' \).

- \(\Lambda \lesssim \Lambda_{UV}/100 \) for calculability. But no minima for \(\Lambda \ll \Lambda_{UV}/100 \).

<table>
<thead>
<tr>
<th>Scenario 1</th>
<th>(\Lambda)</th>
<th>(\Lambda_{UV})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 2</td>
<td>(10^{16})</td>
<td>(10^{18})</td>
</tr>
</tbody>
</table>

- \(h \sim 1 \) unknown.

- Typical size of \(d \sim \frac{\Lambda}{\Lambda_{UV}} \sim 0.01 \), \(m_{adj} \sim d\Lambda \).

Is tiny \(d \ll h \sim 1 \) problematic for analysis at 1-loop? NO!
Vacuum Structure without Instanton Term

quantum corrections stabilize PM here

right near the origin messengers are tachyonic
Effect of Instanton Term

Creates SUSY-minimum at $M_{\text{sing}} \sim \sqrt{\Lambda f}$
Effective Potential Along Pseudomoduli Space

\[V_{\text{tot}}/m'^{4} - \text{const} \]

Meson stabilized at \(\langle M_{\text{sing}} \rangle = O(1) \times \sqrt{h/d} f \)

to ISS vacuum

to SUSY vacuum
Direct Gauge Mediation

Gauge $SU(5)$ flavor symmetry and identify with G_{SM}.

$$W_{eff} = X \bar{\phi} \phi \quad \text{where} \quad X = \frac{h}{\sqrt{N_f}} M_{sing} \quad \Rightarrow \quad m_{soft} \sim \frac{\alpha}{4\pi} \frac{F}{X}$$

Important parameter for scales is $r = \sqrt{N_f h d^f m'} > 1$.

\[m_{PM} \quad \overset{1 < r \lesssim 10}{\leftrightarrow} \quad m_{soft} \quad \overset{m_1}{\text{m}} \quad f \quad X \quad m_{adj} \quad \Lambda \quad \Lambda_{uv} \quad \text{Scenario 1 or 2} \quad \text{Log}_{10} \frac{M}{GeV} \]

\[m_{R} \quad \text{m} \quad [r \leq 10] \]

\[\boxed{\text{NO LANDAU POLE !!}} \]
Stabilizing the Uplifted Vacuum
We need to understand the stabilization in detail

Why bother? We know that it’s possible to get minima in the effective potential along the pseudomoduli space.

- Need to understand whether existence of minima is generic or tuned
 → If tuned, what conditions must be satisfied by the UV completion to make it generic?

- We have $d \ll h$, so how do we know we can trust our 1-loop calculation?
Effective Potential Along Uplifted Pseudomoduli Space

\[V_{\text{eff}} = V_{\text{tree}} + V_{\text{CW}} \]

\[V_{\text{tree}} = \text{const} - c \frac{m'^2}{\Lambda} M^4_{\text{sing}} \]

\[V_{\text{CW}} = \frac{1}{64\pi^2} \text{STR} m^4 \log \frac{m^2}{\Lambda^2} \]

(masses depend on \(M_{\text{sing}} \leftrightarrow \text{pseudomodulus} \))
1-Loop Contribution

Messengers

Singlet masses depending on g

Singlet masses NOT depending on g

\[V_{CW} = \text{const} + \frac{1}{8\pi} (1 - t) \log M_{\text{sing}} + \frac{1}{x} \text{stuff} \]
\[V_{CW} = \frac{1}{8\pi} (1 - t) \log M_{\text{sing}} + \frac{1}{X} \text{stuff} + \text{const} \]
We find that \(\frac{1}{2} \lesssim t \lesssim 1 \) is required for minimum:

\[
\frac{m'}{f} = 2g\sqrt{N_f} \frac{d}{h} \left(1 - \frac{d^2 N_f}{h^2} \frac{1}{2} t \right)
\]

\[\Rightarrow 10^{-4} \text{ tuning!}\]

- Typical for such models.
- Ideally explain with UV completion. (This is rather optimistic. . .)
Can We Trust 1-Loop calculation?

Messengers

- $h >> a$
- Two-loop correction

(positive log)

Singlet masses depending on g

- $g >> a$
- Two-loop correction

(negative log)

Singlet masses NOT depending on g

- "1/x" stuff

(positive log)

"Large" 2-loop corrections do NOT affect part of Vcw that generates local minimum
Conclusions
Conclusions

- ISS models are an extremely simple example of non-perturbative meta-stable SUSY-breaking.

Problems:
- Many Direct Gauge Mediation Models have Landau Poles.
- Uplifted ISS models avoid tiny gaugino masses but are difficult to stabilize.

We proposed Singlet-Stabilized Minimal Gauge Mediation: a ‘minimal’ uplifted ISS model with $SU(5)$ flavor symmetry. ⇒ No Landau Pole, No Gaugino Mass Problem.

Lots of work to be done to address the origin of smaller mass scales (ISS) and problems with tuning & UV completion (SSMGM).