CORRELATION LENGTH OF
 THE ONE-DIMENSIONAL BOSE GAS

N.M. BOGOLIUBOV and V.E. KOREPIN

Steklov Mathematical Institute, Leningrad, USSR
Received 7 May 1985

Abstract

The exact expression for correlation length in the one-dimensional Bose gas is obtained at any value of coupling constant and temperature.

1. Introduction

Recently the method of calculation of the current correlation function for the one-dimensional Bose gas was created [1-3]. In this paper we consider the onedimensional Bose gas. The hamiltonian of the system is

$$
\begin{gather*}
H=\int_{0}^{L} \mathrm{~d} x\left(\partial_{x} \Psi^{+} \partial_{x} \Psi+c \Psi^{+} \Psi^{+} \Psi \Psi-h \Psi^{+} \Psi\right) \\
{\left[\Psi(x), \Psi^{+}(y)\right]=\delta(x-y)} \tag{1}
\end{gather*}
$$

Here L is the length of a box, c a coupling constant $(c>0) h$ a chemical potential ($h>0$). In the thermodynamical limit $L \rightarrow \infty$ and $N \rightarrow \infty$ (N the number of the particles), $\rho=N / L$ fixed.

Exact eigenfunctions of H were constructed in [4]. The model was embedded in a quantum inverse scattering method in [7-11]. The zero-temperature case was solved in $[4,5]$. The thermodynamical properties of the system were evaluated in the paper [6].

Let us consider an N-particle wave function with periodical boundary conditions. The system of equations for the permitted values of particles momenta looks like $[4,6]$

$$
\begin{equation*}
\lambda_{j} L+\sum_{\substack{k=1 \\ k \neq j}}^{N} \Theta\left(\lambda_{j}-\lambda_{k}\right)=2 \pi n_{j} \tag{2}
\end{equation*}
$$

Here $\Theta(\lambda)=i \ln \{(\lambda+i c) /(\lambda-i c)\}-\pi, n_{j}$ is the set of integer numbers $\left(n_{j} \neq n_{k}\right.$ when $j \neq k$, a consequence of the Pauli principle [14]). It should be mentioned [6] that there exists a one-to-one correspondence for any set $\{n\}$ and eigenfunctions of the hamiltonian (1). Using the symmetry (Bose) of the wave function, we can put

$$
\begin{equation*}
n_{j+1}>n_{j}, \quad \lambda_{j+1}>\lambda_{j} \tag{3}
\end{equation*}
$$

Taking the sum of all equations in (2), we find

$$
\begin{equation*}
L R=2 \pi \sum_{j=1}^{N} n_{j}, \quad R=\sum_{j=1}^{N} \lambda_{j} . \tag{4}
\end{equation*}
$$

Here R is the total momentum of the system. Further we shall consider the particles in the center-of-mass system, i.e. $R=0$. Eq. (4) then implies

$$
\begin{equation*}
\sum_{j=1}^{N} n_{j}=0 . \tag{5}
\end{equation*}
$$

In the thermodynamic limit eq. (2) can be rewritten in the form [6]

$$
\begin{align*}
& 2 \pi \rho_{\mathrm{t}}(\lambda)=2 \pi\left[\rho(\lambda)+\rho_{\mathrm{h}}(\lambda)\right]=1+\int_{-\infty}^{+\infty} K(\lambda, \mu) \rho(\mu) \mathrm{d} \mu \tag{6}\\
& K(\lambda, \mu)=\frac{\partial \Theta(\lambda, \mu)}{\partial \lambda}=\frac{2 c}{c^{2}+(\lambda-\mu)^{2}} . \tag{7}
\end{align*}
$$

Here $\rho(\lambda)$ is the destribution function of particles and $\rho_{\mathrm{h}}(\lambda)$ is the distribution function of holes (the exact definition of this function see in [6]) and $\rho_{\mathrm{t}}(\lambda)$ is the distribution of vacancies.

The function $\rho(\lambda)$ is a positive bounded function. The physical density ρ is

$$
\begin{equation*}
0<\rho=\frac{N}{L}=\int_{-\infty}^{+\infty} \rho(\lambda) \mathrm{d} \lambda . \tag{8}
\end{equation*}
$$

It can be shown that

$$
\begin{equation*}
\frac{1}{2 \pi} \leqslant \rho_{\mathrm{t}}(\lambda) \leqslant \frac{1}{2 \pi}\left(1+\frac{2}{c} \rho\right) . \tag{9}
\end{equation*}
$$

This estimate can be derived from the restriction on the permitted values of the particle momenta in the Dirac sea [12]:

$$
\left|\lambda_{k+1}-\lambda_{k}\right| \geqslant \frac{2 \pi}{L}\left(1+\frac{2}{c} \rho\right)^{-1} .
$$

Now we want to calculate the grand canonical partition function of the model. Let us consider

$$
\begin{equation*}
Z=\operatorname{tr} \mathrm{e}^{-H / T}=\sum_{N=0}^{\infty} Z_{N}, \tag{10}
\end{equation*}
$$

where

$$
\begin{align*}
Z_{N} & =\frac{1}{N!} \sum_{n_{1}=-\infty}^{\infty} \sum_{n_{2}=-\infty}^{\infty} \cdots \sum_{n_{N}=-\infty}^{\infty}\langle\{n\}| \mathrm{e}^{-H / T}|\{n\}\rangle \\
& =\frac{1}{N!} \sum_{n_{1}=-\infty}^{\infty} \sum_{n_{2}=-\infty}^{\infty} \cdots \sum_{n_{N}=-\infty}^{\infty} \mathrm{e}^{-E_{N} / T} . \tag{11}
\end{align*}
$$

Here $E_{N}=\sum_{j=1}^{N}\left(\lambda_{j}^{2}-h\right)$ and $|\{n\}\rangle$ is the eigenfunction of the hamiltonian which corresponds to the set $\{n\}$. Using (3), (5) we can rewrite (11) in the form

$$
\begin{align*}
Z_{N} & =\sum_{n_{1}=-\infty}^{\infty} \sum_{n_{2}=n_{1}+1}^{\infty} \ldots \sum_{n_{N}=n_{N-1}+1}^{\infty} \mathrm{e}^{-E_{N} / T} \\
& =\sum_{n_{2,1}=1}^{\infty} \sum_{n_{3,2}=1}^{\infty} \ldots \sum_{n_{N, N-1}=1}^{\infty} \mathrm{e}^{-E_{N} / T} . \tag{12}
\end{align*}
$$

Here in the last term we pass to the new variables

$$
\begin{equation*}
n_{j+1, j} \equiv n_{j+1}-n_{j}, \quad \sum n_{j}=0 \tag{13}
\end{equation*}
$$

Let us calculate the ratio of the number of vacancies and number of particles (in the neighbourhood of given momenta λ_{j}) in terms of microscopic and macroscopic variables:

$$
\begin{equation*}
\frac{n \text { of vac. }}{n \text { of part }}=n_{j+1, j}, \quad \frac{n \text { of vac. }}{n \text { of part }}=\frac{\rho_{\mathrm{t}}\left(\lambda_{j}\right)}{\rho\left(\lambda_{j}\right)} . \tag{14}
\end{equation*}
$$

By means of this formula we can pass now from microscopic variables n_{j} to macroscopic $\rho_{\mathrm{t}}(\lambda), \rho(\lambda)$. As mentioned by Yang and Yang [6] the given $\rho(\lambda)$ does not define $\{n\}$ in a unique way, for at the fixed $\rho(\lambda)$ there exists

$$
\prod_{\lambda} \frac{\left[\rho_{\mathrm{l}}(\lambda) \mathrm{d} \lambda\right]!}{[\rho(\lambda) \mathrm{d} \lambda]!\left[\rho_{\mathrm{h}}(\lambda) \mathrm{d} \lambda\right]!}
$$

different configurations $\{n\}$. Taking into account this fact and formula (14) we can rewrite (10), (12) for the large system ($L \rightarrow \infty$) in the form of a functional integral

$$
\begin{equation*}
Z=\text { const } \int\left[\prod_{\lambda} D \frac{\rho_{\mathrm{t}}(\lambda)}{\rho(\lambda)}\right] \mathrm{e}^{-X / T}, \tag{15}
\end{equation*}
$$

where X is

$$
\begin{aligned}
X= & L \int_{-\infty}^{+\infty}\left(\lambda^{2}-h\right) \rho(\lambda) \mathrm{d} \lambda-L T \int_{-\infty}^{+\infty}\left[\rho_{\mathrm{t}}(\lambda) \ln \rho_{\mathrm{t}}(\lambda)-\rho(\lambda) \ln \rho(\lambda)\right. \\
& \left.-\rho_{\mathrm{h}}(\lambda) \ln \rho_{\mathrm{h}}(\lambda)\right] \mathrm{d} \lambda
\end{aligned}
$$

When L tends to infinity we may evaluate the integral in (15) by the method of steepest descent. We should minimize the functional X subject to the constraint (6) ($\delta^{2} X>0$, see [6]); this procedure leads to the equation which defines the state of the thermodynamical equilibrium of the model:

$$
\begin{equation*}
\varepsilon(\lambda)=\lambda^{2}-h-\frac{T}{2 \pi} \int_{-\infty}^{+\infty} K(\lambda, \mu) \ln \left[1+\mathrm{e}^{-\varepsilon(\mu) / \tau}\right] \mathrm{d} \mu . \tag{16}
\end{equation*}
$$

Here $\varepsilon(\lambda) \equiv T \ln \left[\rho_{\mathrm{h}}(\lambda) / \rho(\lambda)\right]$ and T is the temperature. The Fermi factor $\vartheta(\lambda)$
will play an important role below:

$$
\begin{equation*}
\vartheta(\lambda)=\frac{1}{1+\exp \{\varepsilon(\lambda) / T\}} \tag{17}
\end{equation*}
$$

Let us emphasize that the state of thermal equilibrium is not the pure one (it is not the eigenstate of the hamiltonian). This state is a mixture of the eigenstates. Let us denote by $\left|\phi_{T}\right\rangle$ one of these eigenstates.

In our paper we consider the correlation function of the currents $j(x)=$ $\Psi^{+}(x) \Psi(x):$

$$
\begin{equation*}
\langle j(x) j(0)\rangle=\frac{\operatorname{tr}\left[\mathrm{e}^{-H / T} j(x) j(0)\right]}{\operatorname{tr}\left[\mathrm{e}^{-H / T}\right]} . \tag{18}
\end{equation*}
$$

For the large system we can again express the trace as the functional integral and evaluate it by the method of steepest descent:

$$
\begin{equation*}
\langle j(x) j(0)\rangle=\frac{\left\langle\phi_{T}\right| j(x) j(0)\left|\phi_{T}\right\rangle}{\left\langle\phi_{T} \mid \phi_{T}\right\rangle} \tag{19}
\end{equation*}
$$

Here $\left|\phi_{T}\right\rangle$ is one of the eigenstates of the hamiltonian which corresponds to the state of thermal equilibrium. In [1] we proved that the right-hand side of (19) does not depend on the particular choice of $\left|\phi_{T}\right\rangle$.

In the frame of perturbation theory the correlation functions of the model were studied in [13].

The right-hand side of (19) was calculated in [1-3] in the form of the series

$$
\begin{align*}
& \langle j(x) j(0)\rangle\rangle=\langle: j(x) j(0):\rangle-\langle j(0)\rangle^{2}=\sum_{k=2}^{\infty} \Gamma_{k}(x), \\
& \langle: j(x) j(0):\rangle=\langle j(x) j(0)\rangle-\delta(x)\langle j(0)\rangle \tag{20}
\end{align*}
$$

Here

$$
\langle j(0)\rangle=\int_{-\infty}^{+\infty} \rho(\lambda) \mathrm{d} \lambda=\rho .
$$

The first two terms of the decomposition are equal to

$$
\begin{align*}
\Gamma_{2}(x)= & -\frac{1}{4 \pi^{2}} \int_{-\infty}^{+\infty} \mathrm{d} \lambda_{1} \omega\left(\lambda_{1}\right) \vartheta\left(\lambda_{1}\right) \int_{-\infty}^{+\infty} \mathrm{d} \lambda_{2} \omega\left(\lambda_{2}\right) \vartheta\left(\lambda_{2}\right) \\
& \times\left(\frac{\lambda_{1}-\lambda_{2}+i c}{\lambda_{1}-\lambda_{2}-i c}\right)\left[\frac{p\left(\lambda_{1}, \lambda_{2}\right)}{\lambda_{1}-\lambda_{2}}\right]^{2} \mathrm{e}^{x p\left(\lambda_{1}, \lambda_{2}\right)} \tag{21}\\
\Gamma_{3}(x)= & \frac{c}{2 \pi^{3}} \int_{-\infty}^{+\infty}\left\{\prod_{j=1}^{3} \omega\left(\lambda_{j}\right) \vartheta\left(\lambda_{j}\right) \mathrm{d} \lambda_{j}\right\}\left[\frac{p\left(\lambda_{1}, \lambda_{2}\right)}{\lambda_{1}-\lambda_{2}}\right]^{2} \\
& \times\left(\frac{\lambda_{1}-\lambda_{2}+i c}{\lambda_{1}-\lambda_{2}-i c}\right)\left(\frac{\lambda_{3}-\lambda_{2}}{\lambda_{3}-\lambda_{1}}+\frac{\lambda_{3}-\lambda_{1}}{\lambda_{3}-\lambda_{2}}\right) \frac{\exp \left\{x p\left(\lambda_{1}, \lambda_{2}\right)\right\}}{\left(\lambda_{3}-\lambda_{1}+i c\right)\left(\lambda_{2}-\lambda_{3}+i c\right)} . \tag{22}
\end{align*}
$$

The principal value of the integral must be taken in (22). The statistical weight $\omega(\lambda)$ is

$$
\begin{gather*}
\omega(\lambda)=\exp \left\{-\frac{1}{2 \pi} \int_{-\infty}^{+\infty} K(\lambda, \mu) \vartheta(\mu) \mathrm{d} \mu\right\}, \\
0<\omega(\lambda)<1 . \tag{23}
\end{gather*}
$$

The function $p\left(\lambda_{1}, \lambda_{2}\right)$ is

$$
\begin{equation*}
p\left(\lambda_{1}, \lambda_{2}\right)=-i\left(\lambda_{1}-\lambda_{2}\right)+\int_{-\infty}^{+\infty} \mathrm{d} t \vartheta(t) P\left(t, \lambda_{1}, \lambda_{2}\right) . \tag{24}
\end{equation*}
$$

The function $P\left(t, \lambda_{1}, \lambda_{2}\right)$ is defined in a unique way by the dressing nonlinear equation

$$
\begin{equation*}
1+2 \pi P\left(t, \lambda_{1}, \lambda_{2}\right)=\left(\frac{\lambda_{1}-t+i c}{\lambda_{1}-t-i c}\right)\left(\frac{\lambda_{2}-t-i c}{\lambda_{2}-t+i c}\right) \exp \left\{\int_{-\infty}^{+\infty} K(t, s) \vartheta(s) P\left(s, \lambda_{1}, \lambda_{2}\right) \mathrm{d} s\right\} \tag{25}
\end{equation*}
$$

and by inequality $\operatorname{Re} P\left(t, \lambda_{1}, \lambda_{2}\right) \leqslant 0$. Its domain of definition is $\operatorname{Im} \lambda_{1}=\operatorname{Im} \lambda_{2}=$ $\operatorname{Im} t=0$. A detailed investigation of eq. (25) and function P will be given in the next section.

We shall further need the expression for the correlation function at zero temperature. Explicitly it is given in $[2,3]$. At $T=0$ eq. (16) becomes

$$
\begin{equation*}
\varepsilon_{0}(\lambda)=\lambda^{2}-h+\frac{1}{2 \pi} \int_{-q}^{q} K(\lambda, \mu) \varepsilon_{0}(\mu) \mathrm{d} \mu . \tag{26}
\end{equation*}
$$

The bare Fermi momentum q is defined in a unique way from

$$
\begin{equation*}
\varepsilon_{0}(q)=0 \tag{27}
\end{equation*}
$$

(We shall use further the subindex "zero" for the quantities at $T=0$.) The function $\varepsilon_{0}(\lambda)$ is negative when $-q<\lambda<q$ and is positive when $\lambda>q, \lambda<-q$. Using this property it is easy to take the limit $T \rightarrow 0$ in (21)-(25) writing

$$
\begin{equation*}
\int_{-\infty}^{+\infty} f(t) \vartheta(t) \mathrm{d} t \rightarrow \int_{-q}^{q} f(t) \mathrm{d} t \tag{28}
\end{equation*}
$$

2. Integral equations

Let us consider the integral operator \hat{K}_{T}. If f is any normalized function then

$$
\begin{equation*}
\left(\hat{K}_{T} f\right)(\lambda)=\int_{-\infty}^{+\infty} K(\lambda, \mu) \vartheta(\mu) f(\mu) \mathrm{d} \mu . \tag{29}
\end{equation*}
$$

To get some estimates on its eigenvalues we construct the operator \tilde{K} with the kernel

$$
\tilde{K}(\lambda, \mu)=\sqrt{\vartheta(\lambda)} K(\lambda, \mu) \sqrt{\vartheta(\mu)} .
$$

The operator \hat{K}_{T} is similar to the operator \tilde{K}. It can be shown that

$$
\begin{equation*}
\int_{-\infty}^{+\infty} f^{2}(\lambda)\left(1-\frac{\vartheta(\lambda)}{2 \pi \rho(\lambda)}\right) \geqslant \frac{1}{2 \pi} \int_{-\infty}^{+\infty} \mathrm{d} \lambda \int_{-\infty}^{+\infty} \mathrm{d} \mu f(\lambda) f(\mu) \tilde{K}(\lambda, \mu) \tag{30}
\end{equation*}
$$

Here f is an arbitrary function. Thus from (30) and (9) we get the estimate on the eigenvalues $|K|$ of \hat{K}_{T} :

$$
\begin{equation*}
0<\frac{1}{2 \pi}|K| \leqslant \frac{2 \rho}{c+2 \rho} . \tag{31}
\end{equation*}
$$

It follows that the eigenvalues of \hat{K}_{T} range between 0 and 1 , or more precisely, they are different from 1 with a gap of order $(1+2 \rho / c)^{-1}$. Using these properties of \hat{K}_{T} we can prove that the solution of the integral equation (25) exists.

Let us rewrite (25) in the form

$$
\begin{equation*}
1+2 \pi P(t)=a(t) \exp \left\{\left(\hat{K}_{T} P\right)(t)\right\}, \quad \operatorname{Re} P(t) \leqslant 0 \tag{32}
\end{equation*}
$$

Here $|a(t)|=1$. Define further the sequence P_{n} :

$$
\begin{align*}
P_{0} & =0 \\
P_{n+1}(t) & =\frac{a(t)}{2 \pi} \exp \left\{\left(\hat{K}_{T} P_{n}\right)(t)\right\}-\frac{1}{2 \pi} \\
(n & =0,1, \ldots, \infty) . \tag{33}
\end{align*}
$$

We shall prove now that this functional sequence converges. First we show that if $\operatorname{Re} P_{n} \leqslant 0$ then $\operatorname{Re} P_{n+1} \leqslant 0$. Clearly, we have

$$
\left|a(t) \exp \left\{\hat{K}_{T} P_{n}\right\}\right| \leqslant 1 \Rightarrow \operatorname{Re} a(t) \exp \left\{\hat{K}_{T} P_{n}\right\} \leqslant 1
$$

Thus, $\operatorname{Re} P_{n+1} \leqslant 0$. Here we have used the positiveness of the kernel of the operator \hat{K}_{T}. Now we can prove

$$
\begin{equation*}
\left|P_{n+1}(t)-P_{n}(t)\right| \leqslant \frac{1}{2 \pi}\left(\hat{K}_{T}\left|P_{n}-P_{n-1}\right|\right)(t) . \tag{34}
\end{equation*}
$$

Subtract

$$
P_{n}(t)=\frac{a(t)}{2 \pi} \exp \left\{\left(\hat{K}_{T} P_{n-1}\right)(t)\right\}-\frac{1}{2 \pi}
$$

from (33) to obtain

$$
\begin{equation*}
P_{n+1}(t)-P_{n}(t)=\frac{a(t)}{2 \pi}\left[\mathrm{e}^{\left(\hat{K}_{T} P_{n}\right)(t)}-\mathrm{e}^{\left(\hat{K}_{T} P_{n-1}\right)(t)}\right] \tag{35}
\end{equation*}
$$

Let us use the well-known inequality

$$
\left|\mathrm{e}^{z_{1}}-\mathrm{e}^{z_{2}}\right| \leqslant\left|z_{1}-z_{2}\right| .
$$

Here z_{1} and z_{2} are two complex numbers from the left half-plane $\operatorname{Re} z_{1,2} \leqslant 0$. It is
now possible to complete the proof

$$
\begin{aligned}
\left|P_{n+1}(t)-P_{n}(t)\right| & =\frac{1}{2 \pi}\left|\mathrm{e}^{\hat{K}_{T} P_{n}}-\mathrm{e}^{\hat{K}_{T} P_{n-1}}\right| \\
& \leqslant \frac{1}{2 \pi}\left|\hat{K}_{T}\left(P_{n}-P_{n-1}\right)\right| \leqslant \frac{1}{2 \pi}\left(\hat{K}_{T}\left|P_{n}-P_{n-1}\right|\right)(t) .
\end{aligned}
$$

Since the eigenvalues of $(1 / 2 \pi) \hat{K}_{T}$ are less than unity but greater than zero (31), the sequence P_{n} converges in L_{2} and its limit satisfy (25). It should be mentioned that if $a(t)$ is real then $P(t)$ is real also.

The uniqueness theorem can be proved similarly. Assume that P_{1} and P_{2} are two different solutions of (25). Subtracting one from the other we obtain

$$
\left|P_{1}(t)-P_{2}(t)\right| \leqslant \frac{1}{2 \pi}\left(\hat{K}_{T}\left|P_{1}-P_{2}\right|\right)(t)
$$

Now we multiply this relation by $\vartheta(t)\left|P_{1}-P_{2}\right|$ and integrate it to obtain

$$
\begin{gathered}
\int_{-\infty}^{+\infty} f^{2}(t) \mathrm{d} t-\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \mathrm{d} s \int_{-\infty}^{+\infty} \mathrm{d} t f(s) f(t) \tilde{K}(s, t) \leqslant 0 \\
f(t)=\sqrt{\vartheta(t)}\left|P_{1}(t)-P_{2}(t)\right|
\end{gathered}
$$

in contradiction to (30); so $P_{1}=P_{2}$.
Therefore if $a(t)=1$ then $P=0$. Notice that if $|a(t)|$ in (32) is less than unity the uniqueness theorem and the theorem of existence can be proved similarly. It means that the function P can be analytically continued with respect to λ. In the next section we shall need the analytical continuation with respect to λ_{2} into the upper half-plane and with respect to λ_{1} into the lower one. It follows from

$$
|a(t)| \leqslant 1, \quad a(t)=\left(\frac{\lambda_{1}-t+i c}{\lambda_{1}-t-i c}\right)\left(\frac{\lambda_{2}-t-i c}{\lambda_{2}-t+i c}\right)
$$

that P could be analytically continued without singularities into the domain

$$
\begin{equation*}
\operatorname{Im} t=0, \quad \operatorname{Im} \lambda_{1} \leqslant 0, \quad \operatorname{Im} \lambda_{2} \geqslant 0 . \tag{36}
\end{equation*}
$$

We want now to investigate some other properties of the P-function. Let us prove that in the domain of definition

$$
\begin{equation*}
\left|P\left(t, \lambda_{1}, \lambda_{2}\right)\right| \leqslant \frac{1}{\pi} \tag{37}
\end{equation*}
$$

Clearly

$$
|P(t)| \leqslant \frac{1}{2 \pi}\left|a(t) \mathrm{e}^{\left(\hat{\kappa}_{r^{P}} P\right)(t)}\right|+\frac{1}{2 \pi} \leqslant \frac{1}{\pi} .
$$

This inequality and (9) give

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \mathrm{d} t \vartheta(t) P\left(t, \lambda_{1}, \lambda_{2}\right) \leqslant \frac{1}{\pi} \int_{-\infty}^{+\infty} \mathrm{d} t \vartheta(t) \leqslant 2 \rho \tag{38}
\end{equation*}
$$

This means that $P\left(\lambda_{1}, \lambda_{2}\right)$ slightly differs from $-i\left(\lambda_{1}-\lambda_{2}\right)\left(p\left(\lambda_{1}, \lambda_{2}\right) \sim-i\left(\lambda_{1}-\lambda_{2}\right)\right)$.
The rest of the properties of the P-function we shall enumerate without proof:
(i) if $a(t) \neq 1, t, \lambda_{1}, \lambda_{2}$ are finite, then $\operatorname{Re} P\left(t, \lambda_{1}, \lambda_{2}\right) \neq 0$;
(ii) $\bar{P}\left(t, \lambda_{1}, \lambda_{2}\right)=P\left(\bar{t}, \bar{\lambda}_{2}, \bar{\lambda}_{1}\right), \bar{p}\left(\lambda_{1}, \lambda_{2}\right)=p\left(\bar{\lambda}_{2}, \bar{\lambda}_{1}\right)$;
(iii) $P(t, \lambda, \lambda)=0$;
(iv) $P\left(-t,-\lambda_{1},-\lambda_{2}\right)=P\left(t, \lambda_{2}, \lambda_{1}\right)$;
(v) when $\lambda_{1}=\bar{\alpha}, \lambda_{2}=\alpha(\operatorname{Im} \alpha>0, \operatorname{Im} t=0) P(t, \bar{\alpha}, \alpha)$ is real since $a(t)$ is real; $p(\bar{\alpha}, \alpha)$ is real;
(vi) for $c \rightarrow \infty$

$$
\begin{align*}
P\left(t, \lambda_{1}, \lambda_{2}\right) & =\frac{1}{i \pi c}\left(\lambda_{1}-\lambda_{2}\right)\left(1+\frac{2}{c} \rho\right)-\frac{1}{\pi c^{2}}\left(\lambda_{1}-\lambda_{2}\right)^{2}+\mathrm{O}\left(\frac{1}{c^{3}}\right), \tag{39}\\
\rho(\lambda) & =\frac{1}{2 \pi}\left(1+\frac{2}{c} \rho\right) \vartheta(\lambda)+\mathrm{O}\left(\frac{1}{c^{3}}\right), \tag{40}\\
p\left(\lambda_{1}, \lambda_{2}\right) & =-i\left(\lambda_{1}-\lambda_{2}\right)\left(1+\frac{2}{c} \rho\right)-\frac{2}{c^{2}}\left(\lambda_{1}-\lambda_{2}\right)^{2} \rho+\mathrm{O}\left(\frac{1}{c^{3}}\right) . \tag{41}
\end{align*}
$$

We shall use these properties to calculate the asymptotics of correlator in the next section.

To conclude this section let us analyze the equation for $\varepsilon(\lambda)$ (16). This equation has a unique solution [6] with the properties

$$
\begin{align*}
& \varepsilon(\lambda)=\varepsilon(-\lambda), \tag{42}\\
& \bar{\varepsilon}(\bar{\lambda})=\varepsilon(\lambda), \tag{43}\\
& \varepsilon(\lambda) \xrightarrow[\lambda \rightarrow \pm \infty]{ } \lambda^{2} . \tag{44}
\end{align*}
$$

$\varepsilon(\lambda)$ has no singularities on the real axis.
Let us try to continue $\varepsilon(\lambda)$ into the upper half-plane. It is easily seen that with the help of (16) we can continue $\varepsilon(\lambda)$ up to $\operatorname{Im} \lambda=c$. Within this region $\varepsilon(\lambda)$ has the asymptotic λ^{2} when $\lambda \rightarrow \pm \infty$. At $\operatorname{Im} \lambda=c$ the kernel K becomes singular. If we want to continue $\varepsilon(\lambda)$ further than $\operatorname{Im} \lambda>c$ it is sufficient to shift the contour of integration into the upper half-plane $0<\operatorname{Im} \mu<c$. It is clear that we can do so up to the point α, where

$$
\begin{equation*}
\vartheta^{-1}(\alpha)=1+\mathrm{e}^{\varepsilon(\alpha) / \tau}=0, \quad \operatorname{Im} \alpha>0 . \tag{45}
\end{equation*}
$$

The function $\varepsilon(\lambda)$, however, can be continued further with the help of (16). We thus obtain that the first singularity of $\varepsilon(\lambda)$ is $\alpha+i c$ (the contour of integration is locked by singularities of $\ln (1+\exp \{-\varepsilon(\lambda) / T\})$ and $K(\lambda, \mu))$. It is easy to prove
that the solution of (45) necessarily exists. In fact, if $\varepsilon(\lambda)$ is continued into the complex plane so that $1+\exp \{\varepsilon(\lambda) / T\}$ has no zeros we could continue $\varepsilon(\lambda)$ into an entire complex plane without singularities with the help of (16). The function $\varepsilon(\lambda)$ would be an entire function with polynomial asymptotics λ^{2}. It is possible only if $\varepsilon(\lambda)$ is polynomial. But the polynomial does not satisfy (16). So the zeros of $\vartheta^{-1}(\lambda)$ exist and they form the quadrangle

$$
\begin{equation*}
\alpha,-\alpha, \bar{\alpha},-\bar{\alpha}, \quad \operatorname{Im} \alpha>0 \quad(\text { when } T>0) . \tag{46}
\end{equation*}
$$

The function $\varepsilon(\lambda)$ could be continued up to these zeros without singularities. This property will help us in calculating the asymptotics of correlation function.

The zero α necessarily lies in the complex plane. On the real axis $\varepsilon(\lambda)$ is real and $\vartheta^{-1}(\lambda)$ has no zeros.

The statistical weight $\omega(\lambda)$ also could be continued into the complex plane. Its singularity nearest to the real axis is $\lambda=\alpha+i c$.

The analytical continuation of these functions has the properties

$$
\begin{array}{ll}
\bar{\varepsilon}(\lambda)=\varepsilon(\bar{\lambda}), & \varepsilon(-\lambda)=\varepsilon(\lambda) \\
\bar{\omega}(\lambda)=\omega(\bar{\lambda}), & \omega(-\lambda)=\omega(\lambda) \tag{47}
\end{array}
$$

3. Asymptotic behaviour of the correlation function

We now consider

$$
\begin{equation*}
《 j(x) j(0)\rangle\rangle=\langle: j(x) j(0):\rangle-\langle j(0)\rangle^{2} \tag{48}
\end{equation*}
$$

The first term is given by (21). To analyze this expression when x tends to infinity we shall shift the contour of integration with respect to λ_{1} into the lower half-plane and with respect to λ_{2} into the upper one. The nearest barriers, when shifting, are the singularities of the Fermi factor $\vartheta(\lambda)$ which are situated at the points $\alpha,-\alpha$, $\bar{\alpha},-\bar{\alpha}$. These points are simple poles of $\vartheta(\lambda)$:

$$
\begin{equation*}
\left.\vartheta(\lambda)\right|_{\lambda \rightarrow \alpha} \rightarrow-\frac{T}{\varepsilon^{\prime}(\alpha)(\lambda-\alpha)}, \quad \mathrm{e}^{\varepsilon(\alpha) / T}=-1 \tag{49}
\end{equation*}
$$

The contribution of these poles to $\Gamma_{2}(x)$ is

$$
\begin{align*}
& 2 T^{2}\left|\frac{\omega(\alpha)}{\varepsilon^{\prime}(\alpha)}\right|^{2}\left(\frac{2 \operatorname{Im} \alpha-c}{2 \operatorname{Im} \alpha+c}\right)\left(\frac{p(\bar{\alpha}, \alpha)}{2 \operatorname{Im} \alpha}\right)^{2} \exp \{x p(\bar{\alpha}, \alpha)\} \tag{50}\\
& \quad+2 T^{2} \operatorname{Re}\left[\left(\frac{\omega(\alpha)}{\varepsilon^{\prime}(\alpha)}\right)^{2}\left(\frac{2 \alpha-i c}{2 \alpha+i c}\right)\left(\frac{p(-\alpha, \alpha)}{2 \alpha}\right)^{2} \exp \{x p(-\alpha, \alpha)\}\right] . \tag{51}
\end{align*}
$$

To calculate the contribution of other singularities to (21) we must shift the contour still further from the real axis. This will lead to the expressions decreasing with respect to x faster than (50), (51). The considerations based on the perturbation theory show us that (51) decreases faster than (50) when $x \rightarrow \infty$.

The asymptotics of the first term (21) at large distances are

$$
\begin{equation*}
\langle j(x) j(0)\rangle\rangle \rightarrow \mathrm{e}^{-x / r_{\mathrm{c}}}, \tag{52}
\end{equation*}
$$

where r_{c} is the correlation length

$$
\begin{equation*}
\frac{1}{r_{\mathrm{c}}}=-p(\bar{\alpha}, \alpha)=2 \operatorname{Im} \alpha-\int_{-\infty}^{+\infty} \mathrm{d} t \vartheta(t) P(t, \bar{\alpha}, \alpha) \geqslant 2 \operatorname{Im} \alpha \geqslant 0 . \tag{53}
\end{equation*}
$$

It should be noted that the function p is real and

$$
-\int_{-\infty}^{+\infty} \mathrm{d} t \vartheta(t) P(t, \bar{\alpha}, \alpha) \geqslant 0
$$

is positive.
Thus we have analyzed the first term of the sequence for the correlation function [1]. The tracing of the others allows us to make the conjecture that the expression

$$
\begin{equation*}
r_{\mathrm{c}}=-\frac{1}{p(\bar{\alpha}, \alpha)} \tag{54}
\end{equation*}
$$

is correct for any value of the coupling constant. This is the principal formula of our work.

Let us analyze now different special cases. Consider the correlation length at $T \rightarrow 0$ (the point $T=0$ is the phase transition point). It is easy to show that the solution of the equation

$$
\begin{equation*}
\vartheta^{-1}(\alpha)=0, \quad \varepsilon(\alpha)=i \pi T \tag{55}
\end{equation*}
$$

is

$$
\begin{equation*}
\alpha=q+\frac{i \pi T}{\varepsilon_{0}^{\prime}\left(q_{T}\right)}, \tag{56}
\end{equation*}
$$

where q_{T} is defined by $\varepsilon\left(q_{T}\right)=0, q_{T}>0$ (as $T \rightarrow 0, q_{T} \rightarrow q$). Thus when $T \rightarrow 0$ the difference between α and $\bar{\alpha}$ becomes small. The factor $a(t)$ in (32), (25) tends to 1 , so the solution of (32) is $P(t, \bar{\alpha}, \alpha) \rightarrow 0$. More precisely

$$
P(t)=-\frac{T}{\varepsilon_{0}^{\prime}(q)} F(t),
$$

where $F(t)$ satisfies the linear equation

$$
\begin{equation*}
F(t)-\frac{1}{2 \pi} \int_{-q}^{q} K(t, s) F(s) \mathrm{d} s=\frac{2 c}{c^{2}+(t-q)^{2}} . \tag{57}
\end{equation*}
$$

The correlation length tends to infinity:

$$
\begin{equation*}
\frac{1}{r_{\mathrm{c}}}=\frac{2 \pi T}{\varepsilon_{0}^{\prime}(q)}+\frac{T}{\varepsilon_{0}^{\prime}(q)} \int_{-q}^{q} F(t) \mathrm{d} t=\frac{2 \pi T}{\varepsilon_{0}^{\prime}(q)}\left[1+\frac{1}{2 \pi} \int_{-q}^{q} F(t) \mathrm{d} t\right] . \tag{58}
\end{equation*}
$$

The coefficient on the right-hand side has a distinct physical sense; the velocity of sound. So

$$
\begin{equation*}
r_{\mathrm{c}}=\frac{v}{2 \pi T} . \tag{59}
\end{equation*}
$$

The velocity of sound v is the derivative of physical energy with respect to physical momentum on the Fermi surface [5]:

$$
\begin{equation*}
v=\left.\frac{\mathrm{d} \varepsilon_{0}(\lambda)}{\mathrm{d} k_{0}(\lambda)}\right|_{\lambda=q}=\left.\frac{\mathrm{d} \varepsilon_{0}(\lambda)}{\mathrm{d} \lambda}\right|_{\lambda=q}\left[1+\frac{1}{2 \pi} \int_{-q}^{q} F(t) \mathrm{d} t\right]^{-1} . \tag{60}
\end{equation*}
$$

The physical momentum $k_{0}(\lambda)$ is

$$
k_{0}(\lambda)=\lambda+\int_{-q}^{q} \Theta(\lambda-\mu) \rho_{0}(\mu) \mathrm{d} \mu .
$$

Substituting (60) into (58) we obtain (59).
The same result was obtained in [13]. The correlations disintegrate when $T \rightarrow \infty$ (see the appendix).

Let us consider now the limit $c \rightarrow \infty$. We have

$$
\varepsilon(\lambda)=\lambda^{2}-A+\mathrm{O}\left(\frac{1}{c^{3}}\right), \quad A>0, \quad A=h+\frac{2}{c} \mathscr{P} .
$$

Here \mathscr{P} is the pressure [6]:

$$
\mathscr{P}=\frac{T}{2 \pi} \int_{-\infty}^{+\infty} \mathrm{d} \lambda \ln \left(1+\mathrm{e}^{-\varepsilon(\lambda) / T}\right)
$$

Changing $K \rightarrow 2 / c$ it is easy to find the $1 / c$ series expansion of A. We have

$$
\alpha=\sqrt{A+i \pi T}=\sqrt{h+\frac{2}{c} \mathscr{P}+i \pi T}, \quad \operatorname{Im} \alpha>0
$$

Substituting this expression into (53) and (41) we get

$$
\frac{1}{r_{\mathrm{e}}}=2 \operatorname{Im} \alpha\left(1+\frac{2}{c} \rho\right)+\frac{2 \rho}{c^{2}} 4(\operatorname{Im} \alpha)^{2} .
$$

Let us emphasise that in the strong coupling limit the two terms (50) and (51) begin to compete. The term (51) contains an additional decreasing factor $\exp \left\{-8 \rho(\operatorname{Re} \alpha)^{2} x / c^{2}\right\}$. For $c=\infty$ the sum of the two terms (50) and (51) gives asymptotics and contains oscillations [1].

For $c=\infty$ the correlation function is given by the following explicit formula:

$$
\langle j(x) j(0)\rangle\rangle=-\frac{1}{4 \pi^{2}}\left[\int_{-\infty}^{+\infty} \frac{\mathrm{e}^{i \lambda x} \mathrm{~d} x}{1+\exp \left\{\left(\lambda^{2}-h\right) / T\right\}}\right]^{2} .
$$

4. Asymptotic behaviour of the correlator at zero temperature

At zero temperature the correlation function

$$
\begin{equation*}
《 j(x) j(0)\rangle=\sum_{k=2}^{\infty} \Gamma_{k}^{0}(x) \tag{61}
\end{equation*}
$$

was calculated in $[2,3]$ in the form of a series. Let us write down its first term:

$$
\begin{equation*}
\Gamma_{2}^{0}(x)=-\frac{1}{4 \pi^{2}} \int_{-q}^{q} \mathrm{~d} \lambda_{1} \omega\left(\lambda_{1}\right) \int_{-q}^{q} \mathrm{~d} \lambda_{2} \omega\left(\lambda_{2}\right)\left(\frac{\lambda_{1}-\lambda_{2}+i c}{\lambda_{1}-\lambda_{2}-i c}\right)\left[\frac{p\left(\lambda_{1}, \lambda_{2}\right)}{\lambda_{1}-\lambda_{2}}\right]^{2} \mathrm{e}^{x p\left(\lambda_{1}, \lambda_{2}\right)} . \tag{62}
\end{equation*}
$$

We can find $\Gamma_{3}^{0}(x)$ from (22) using the rule (28). Let us analyze this expression when x tends to infinity. Integrating by parts we shall get the leading term of the asymptotics:

$$
\begin{equation*}
-\frac{\omega^{2}(q)}{2 \pi^{2}} \frac{1}{x^{2}}, \tag{63}
\end{equation*}
$$

taking into account that $p(\lambda, \lambda)=0$. Among the correction terms we have

$$
\begin{equation*}
\text { const } \frac{1}{x^{2}} e^{x p(q,-q)} \tag{64}
\end{equation*}
$$

This term contains oscillations. When $0<c<\infty, \operatorname{Re} P<0$, so this term decreases exponentially with respect to x. When $c=\infty, \operatorname{Re} P=0$ and (64) should be added to the leading term (63). So, when $c=\infty$ the asymptotic contains oscillations. This fact explains the results of [3]. If we analyze the rest of the terms of (61) we shall see that the asymptotics of the correlator at $0<c<\infty$ are equal to

$$
\langle j(x) j(0)\rangle \gg \underset{x \rightarrow \infty}{ } \frac{a}{x^{2}},
$$

where a is the dimensionless constant. This formula was previously obtained in [13].
We see that the representation of the correlation function which has been obtained in [1-3] is very effective. Really, to calculate the asymptotic behaviour of the correlator it is sufficient to deal with its first two terms.

We thank V. Popov for useful discussions.

Appendix

Let us analyze the behaviour of the correlation function at the high-temperature limit $T \rightarrow \infty$. It is difficult to investigate the expression (54) in this limit, so we shall solve here a more simple problem. We shall fix the distance x and study (21) when T tends to infinity.

To do this, let us rewrite eq. (16) using the following notation:

$$
\begin{gather*}
\tilde{\varepsilon}(\tilde{\lambda})=\frac{\varepsilon(\lambda)}{T}, \quad \tilde{\lambda}=\frac{\lambda}{\sqrt{T}}, \quad \tilde{\mu}=\frac{\mu}{\sqrt{T}}, \\
\tilde{c}=\frac{c}{\sqrt{T}}, \quad \tilde{h}=\frac{h}{T}, \quad \tilde{K}(\tilde{\lambda}, \tilde{\mu})=\frac{2 \tilde{c}}{\tilde{c}^{2}+(\tilde{\lambda}-\tilde{\mu})^{e}} . \tag{A.1}\\
\tilde{\varepsilon}(\tilde{\lambda})=\tilde{\lambda}^{2}-h-\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \tilde{K}(\tilde{\lambda}, \tilde{\mu}) \ln [1-\exp \{-\tilde{\varepsilon}(\tilde{\mu})\}] \mathrm{d} \tilde{\mu} . \tag{A.2}
\end{gather*}
$$

As $T \rightarrow \infty$ we have $\tilde{c} \rightarrow 0, \tilde{h} \rightarrow 0$ and $\tilde{K}(\tilde{\lambda}, \tilde{\mu}) \rightarrow 2 \pi \delta(\tilde{\lambda}-\tilde{\mu})$. Thus (A.2) gives (case $c=0$ in [6])

$$
\begin{equation*}
\vartheta(\lambda)=\frac{1}{1+\exp \{\varepsilon(\lambda) / T\}}=\mathrm{e}^{-\lambda^{2} / T} \tag{A.3}
\end{equation*}
$$

This leads to the following: $\omega(\lambda) \rightarrow e^{-1}, P\left(t, \lambda_{1}, \lambda_{2}\right) \rightarrow 0$ (see (25)) and

$$
\begin{equation*}
\Gamma_{2}(x) \xrightarrow[T \rightarrow \infty]{ } \frac{T}{4 \pi e^{2}} \mathrm{e}^{-T x^{2} / 2} \tag{A.4}
\end{equation*}
$$

So we find that correlation of the currents $\langle j(x) j(0)\rangle$ disintegrates at a distance of order $x \sim 1 / \sqrt{T}$. It should be noted that expression (A.4) is correct for not very large x (the pre-asymptotic region). When x tends to infinity $\Gamma_{2}(x)$ decreases exponentially (see (52)). But for high temperatures correlations disintegrate now in the pre-asymptotic region.

References

[1] N.M. Bogoliubov and V.E. Korepin, Teor. Mat. Fiz. 60 (1984) 262
[2] A.G. Izergin and V.E. Korepin, Comm. Math. Phys. 94 (1984) 67
[3] V.E. Korepin, Comm. Math. Phys. 94 (1984) 93
[4] E.H. Lieb and W. Liniger, Phys. Rev. 130 (1963) 1605
[5] E.H. Lieb, Phys. Rev. 130 (1963) 1616
[6] C.N. Yang and C.P. Yang, J. Math. Phys. 10 (1969) 1115
[7] E.K. Sklyanin and L.D. Faddeev, Dokl. Akad. Nauk USSR 243 (1978) 1430
[8] E.K. Sklyanin, Dokl. Akad. Nauk SSSR 244 (1978) 1337
[9] L.D. Faddeev, Sov. Sci. Rev. Math. Phys. C1 (1981) 107
[10] A.G. Izergin, V.E. Korepin and F.A. Smirnov, Teor. Mat. Fiz. 48 (1981) 319
[11] A.G. Izergin and V.E. Korepin, Zap. Nauch. Sem. LOMI 120 (1982) 69
[12] M. Gaudin, La function d'onde de Bethe pour les modèles exacts de la mécanique statistique (Commisariat à l'énergie atomique, Paris, 1983)
[13] V.N. Popov, Path integrals in quantum field theory and statistical physics (Atomizdat, Moscow, 1976)
[14] A.G. Izergin and E.V. Korepin, Lett. Math. Phys. 6 (1982) 283

