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1 Notations

The size of input is N = 2n. Here n is number of qubits to represent N states. Grover’s algorithm finds one
marked state in N states (assuming only one marked state) [1]. The marked state (target state) is denoted as
|t〉. The initial state in Grover’s algorithm is the superposition of all N basis. The initialization of input can be
realized by single-qubit Hadamard gate H:

|sn〉 = H⊗n|0〉⊗n (1)

Grover’s algorithm is realized by repetition of Grover operator on initial state |sn〉. Grover operator is composed
by two parts: oracle Ut and diffusion operator In:

Ut = 112n − 2|t〉〈t|; (2)

In = 2|sn〉〈sn| − 112n . (3)

Here 11 is identity operator. Oracle Ut flips the sign of target state. Diffusion operator In reflects the amplitude
around average. Combined with Ut and In, we have Grover operator:

Gn = InUt (4)

Repeatedly acting the Grover operator Gn on initial state |sn〉, the success probability finding the target state
will grow. In our optimized depth search algorithm [2], we define another diffusion operator called local diffusion
operator In,m (m < n):

In,m = 112n−m ⊗ (2|sm〉〈sm| − 112m) (5)

Local diffusion operator reflects the amplitude around subspace average. See next section for quantum circuits
diagrams of In,m. Combined with Ut and In,m, we have Grover operator (called local Grover operator):

Gn,m = In,mUt (6)

Without confusion, we simplify the notation as: Im = In,m and Gm = Gn,m.

2 Quantum circuit diagrams

In the following, we consider examples on n = 6 search algorithms (N = 26 = 64).

2.1 Oracle

Different problems have different oracles. For demonstration, we can consider the simplest oracle. As mentioned
in [3], oracle is single-qubit gate equivalent with n-qubit Toffoli gate. Suppose |t〉 = |000000〉 (n = 6). We have
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the oracle:

Ut =

X • X

X • X

X • X

X • X

X • X

X H H X

(7)

Here X is Pauli gate. And we use conventional quantum circuit diagram for 6-qubit Toffoli gate, denoted as
Λ5(X). The 5 subscript suggests that it has five target qubits. The 6-qubit Toffoli gate Λ5(X) is highly non-
trivial. In real quantum computers, we need to further decompose it into single- and two-qubit gates. According
to [4], Λ5(X) gate can be realized by depth 61 circuits: d(Λ5(X)) (if the quantum computer can perform any
single-qubit gates and any two-qubit controlled gates.). We use notation d(U) to represent the depth of unitary
transformation U . In real quantum computers, the depth d(Λ5(X)) may be much larger since not all qubits are
connected. Nevertheless, we use

d(Ut) = d(Λ5(X)) + 2 = 63. (8)

2.2 Diffusion operators

We have two kinds of diffusion operator. One is global diffusion operator In (3). The other one is local diffusion
operator Im (5). Diffusion operators are independent on oracle. Global diffusion operator In is also single-qubit
gate equivalent with 6-qubit Toffoli gate Λ5(X):

I6 =

H X • X H

H X • X H

H X • X H

H X • X H

H X • X H

Z Z

(9)

Then we have the depth
d(I6) = d(Λ5(X)) + 2 = 63. (10)

In experiments, we can see that diffusion operator is realized by comparable depth to oracle. Although Grover’s
algorithm is optimal in number of oracle, depth can be optimized.

Note that local diffusion operator I6,5 (short as I5) is a 5-qubit gates instead of 6. And I4 is a 4-qubit gate
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and so forth. We give examples on I4 and I2:

I4

=

H X • X H

H X • X H

H X • X H

Z Z

=

I2

H X • X H

Z Z

(11)

The subspace where I4 and I2 are acting on can be chosen arbitrarily, such as qubits with high connectivity.
According to [4], we have the depth of 4-qubit Toffoli gate: d(Λ3(X)) = 13, and 2-qubit CNOT gate: d(Λ1(X)) =
1. Therefore, we have

d(I4) = d(Λ3(X)) + 2 = 15, d(I2) = d(Λ1(X)) + 2 = 3. (12)

Obviously, for any quantum computers, we will have

d(In) < d(Im), m < n. (13)

2.3 Grover operators

Global Grover operator Gn (4) is operation combined with oracle and global diffusion operator In (3). Local
Grover operator Gm (6) is operation combined with oracle and local diffusion operator Im (5). As examples on
n = 6, we have

G6 = Ut I6 G4 = Ut

I4

(14)

The depth of Grover operators can be simply counted:

d(G6) = d(Ut) + d(I6) = 126, d(G4) = d(Ut) + d(I4) = 78. (15)

Obviously, for any quantum computers, we will have

d(Gn) < d(Gm), m < n. (16)

3 Search algorithm with depth optimizations

Near-term quantum computers are subjected to limited coherence time. We have to design low depth algorithm,
or divide long circuit into shorter pieces. In n = 6 search algorithm, the probability finding the target state
reaches maximal after 6 iterations of G6:

|〈t|G6
6|s6〉|2 ≈ 99.66% (17)

However, the operation G6
6 is too long in practice. Besides, it is not optimal neither in depth nor success

probability. We will show a better way for 6 iterations. For practice, we will concentrate on the circuit with one
or two Grover iterations.
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3.1 One oracle

• Grover’s algorithm. The one iteration Grover’s algorithm gives:

|0〉 H

G6

|0〉 H

|0〉 H

|0〉 H

|0〉 H

|0〉 H

(18)

The whole circuit has depth d(G6) = 126 (we can incorporate the initial Hadamard gates into G6.). The
success probability finding the target state is

|〈t|G6|s6〉|2 ≈ 13.48%. (19)

The result is better than classical algorithm. Optimal classical search has success probability 3.15%: single
query followed by a random guess if the query fails (1/64 + 1/63 ≈ 3.15%). To evaluate the efficiency, we
can calculate the expected depth:

d(G6)

|〈t|G6|s6〉|2
≈ 935. (20)

• Optimized algorithm. In order to lower the depth, we can apply one iteration with local diffusion operator:
G4 operator for example. The one iteration local Grover operator gives:

|0〉 H

G4

|0〉 H

|0〉 H

|0〉 H

|0〉 H

|0〉 H

(21)

Note that G4 is still a 6-qubit gate, although I4 is a 4-qubit gate. The whole circuit has depth d(G4) = 78.
The depth is lower compared with G6. The success probability finding the target state is

|〈t|G4|s6〉|2 ≈ 11.81%. (22)

The success probability decreases a little bit, but still outperforms the classical case. The expected depth
is:

d(G4)

|〈t|G4|s6〉|2
≈ 660. (23)

The circuit is 38% shorter than one G6 iteration. The expected depth is 29% lower! Local diffusion operator
may decrease the success probability, but it saves depth.
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3.2 Two oracles

We can apply same strategy for two iterations search algorithm: design circuit with local diffusion operators and
find the optimal one with least expected depth. There is something new for local diffusion operators. We can
apply divided and conquer strategy for search algorithm.

• Grover’s algorithm. Two iterations Grover’s algorithm gives:

|0〉 H

G6 G6

|0〉 H

|0〉 H

|0〉 H

|0〉 H

|0〉 H

(24)

The whole circuit has depth d(G2
6) = 252. The success probability finding the target state is

|〈t|G2
6|s6〉|2 ≈ 34.39%. (25)

And the expected depth is
d(G2

6)

|〈t|G2
6|s6〉|2

≈ 733. (26)

• Divided and conquer. We suppose that the target state is |t〉 = |000000〉. We can divide the target state
into two parts: |t1〉 = |00〉 and |t2〉 = |0000〉 (|t〉 = |t1〉 ⊗ |t2〉). Accordingly, we can design the search
algorithm which has two steps: the first step finds |t1〉 and the second step finds |t2〉. And each step, we
only have two Grover operators (local or global Grover operators).

– The first step has the circuit (G4G6 sequence):

|0〉 H

Ut I6 Ut

|0〉 H

probability p1 finds |t1〉

|0〉 H

I4

|0〉 H

|0〉 H

with I4 acting on

|0〉 H




G6 G4

(27)

We only measure the qubit which does not have I4 performed. The probability finding |t1〉 is p1:

p1 ≈ 56.04% (28)

The whole circuit has depth d(G4G6) = 204. We can suppose the measurement results are |b1〉 and
|b2〉 (b1, b2 ∈ {0, 1}). Note that we can not verify the partial bits b1 and b2. Since p1 > 1/2, the
majority vote can be applied.
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– The second step has the circuit (G4G4 sequence):

|0〉 Xb1

Ut Ut

|0〉 Xb2

|0〉 H

I4 I4

|0〉 H

|0〉 H

probability p2 finds |t2〉

|0〉 H


G4 G4

(29)

The initial state is renormalized database. For example, the first step we find |01〉, then we prepare
the input |01〉 ⊗H⊗4|0〉⊗4. The probability finding |t2〉 is p2:

p2 ≈ 90.84%. (30)

The whole circuit has depth d(G2
4) = 156. We have the expected depth

d(G6G4) + d(G2
4)

p1p2
≈ 707. (31)

The expected depth is still lower than two iteration Grover’s algorithm. Besides, the divided and
conquer method is subjected to half less errors from measurements.

3.3 Six oracles

• Grover’s algorithm. In n = 6 search algorithm, six global Grover iterations gives the maximal success
probability:

|0〉 H

G6 G6 G6 G6 G6 G6

|0〉 H

|0〉 H

|0〉 H

|0〉 H

|0〉 H

(32)

The success probability is
|〈t|G6

6|s6〉|2 ≈ 99.66%. (33)

The whole circuit has depth d(G6
6) = 756.

• Optimized algorithm. It is very surprising that we can replace global diffusion operators by local diffusion
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operators without decreasing the probability! We have the circuit:

|0〉 H

G4 G6 G6 G4 G6 G4

|0〉 H

|0〉 H

|0〉 H

|0〉 H

|0〉 H

(34)

We have replaced three global diffusion operator I6 by three local diffusion operators I4. Note that G6 and
G4 does not commute. Such sequence does not unique. The success probability is

|〈t|G4G6G4G
2
6G4|s6〉|2 ≈ 99.86%. (35)

The whole circuit has depth d(G4G6G4G
2
6G4) = 612. The whole circuit has decreased depths 19.05%. And

the success probability does not decrease. It suggests that the maximal probability Grover’s algorithm is
neither optimal in depth nor in probability.

4 Conclusions

We have shown that quantum search algorithms can be optimized in depth by local diffusion operators. And the
local diffusion operators can be applied to:

• decrease the expected depth of the circuit;

• divided and conquer strategy;

• decrease the depth for maximal success probability search algorithms.
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