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Abstract

The quantum nonlinear Schrodinger equation (one dimensional Bose gas) is con-
sidered. Classification of representations of Yangians with highest weight vector
permits us to represent correlation function as a determinant of a Fredholm integral
operator. This integral operator can be treated as the Gelfand-Levitan operator for
some new differential equation. These differential equations are written down in the
paper. They generalize the fifth Painléve transcendent, which describe equal time,
zero temperature correlation function of an impenetrable Bose gas. These differen-
tial equations drive the quantum correlation functions of the Bose gas. The Riemann
problem, associated with these differential equations permits us to calculate asymp-
totics of quantum correlation functions. Quantum correlation function (Fredholm
determinant) plays the role of 7 functions of these new differential equations. For
the impenetrable Bose gas space and time dependent correlation function is equal to
r function of the nonlinear Schrodinger equation itself. For a penetrable Bose gas
(finite coupling constant c¢) the correlator is 7-function of an integro-differentiation

equation.
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0. Introduction

The nonlinear Schrodinger (NS) equation is very well known :

109 = —03 + 2cp oy

(0.1)
10T = O2pT — 2cyt Ty
The Hamiltonian of the model is equal to
H= ] dz(0: %™ 8,9 + cpTytyp — hyty) (0.2)

where % denotes the chemical potential. The operator for the number of particles Q and
momentum P are equal to

Q= / " devt(2)(a)

- 03)
P=j [ d@ow - @t @)ue))
In the quantum case the commutation relations are
(@ 0,9* (1,5)] = 8(z = 1), (92, 1, 6(3, ] = 0. 04
The bare vacuum is defined by
W@ =0; (0l (2) =0 03

Another name of the model is the one-dimensional Bose gas. The model is exactly solvable
[1]. We shall consider a ground state |Q) of the model with finite density D. In this
case momenta of the particles fill a one-dimensional Fermi sphere [—¢,4] (q is the Fermi
momenta). Thermodynamics of the model at temperature T' > 0 was constructed in [2}.
We shall be interested in thermodynamics only for an impenetrable Bose gas (¢ = o0).
In this case the spectrum of the Hamiltonian is equivalent to a free fermion one. In the
state of thermodynamic equilibrium the distribution of particles in the momentum space

are given by the Fermi weight

o()) = % (1+e0-rm) ™ (0.6)

In this case the density D is equal to

1 [ d\

c=o00 (0.7)
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We shall consider different correlation functions in the model. First we shall consider

the impenecrable Bose gas (¢ = o0). In this case we shall calculate the field correlator

(Qp(x2,t2)9% (21,1)|Q)
(82182)

(W(z2,t2) T (z1,t1)) = (0.8)

This is the zero temperature case. Recall that [?) is the ground state with finite density
D and

P(z,t) = ethtb(z,O)e—th . (0.9)

We shall calculate also finite-temperature correlation functions

tr(e=H/Typ(zq, t2)y* (21, 41))
tr(e—H/T) '

(W(z2,t2)¥ T (21, t1)) 7 =

(0.10)

We shall consider also many point correlators. It should be noted that the zero-temperature
equal time correlator was calculated in [3-5]. It was proved that it is associated with the
fifth Painleve transcendent. There exist models similar to the impenetrable Bose gas (Ising
model, XY model) where different correlators were calculated [6-9]. For a penetrable Bose
gas (0 < ¢ < o) the problem of correlators is especially interesting, because the model is
not equivalent to free fermions, nevertheless we succeed in calculating correlators in this
case (see section 4, 8).

Let us define the simplest correlation function which we calculate here for finite c.
In the ground state of the model particles move in the Brownian way. There exist some

probability
P(zx) (0.11)

that on the interval [—z, z] there will be no particles (empty place). This probability is
the simplest correlation function and we shall calculate it here.

Calculation of correlation functions consists of two steps. First we represent correla-
tion function as a Fredholm determinant (minor) of some integral operator. (These integral
operators are of very special form, they form infinite dimensional group, see part 11.) Then
we treat this integral operator as a Gelfand-Levitan [10] operator of some new differential
equation and derive this differential equation. It follows that correlation functions (Fred-
holm determinant) play the role of r-functions [11] for this new differential equation. A
Riemann problem [11] can be associated with this differential equation, which enables us
to calculate the asymptotics of correlation functions.

The plan of the paper is as follows. In part I we represent correlation functions as
Fredholm determinants. In section 1 we present the Lenard formula. In section 2 we
derive the Fredholm determinant for time dependent correlation functions. In section 3 we

present generalization to the case of many fields. We use the Quantum Inverse Scattering
Method (QISM) [12-16] in section 4 where we derive a Fredholm determinant for finite
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coupling constant. The algebraic part of the derivation is associated with enumeration of
representations of Yangians with highest weight vector [17-21].

In part II, starting from Fredholm determinants we derive differential equations which
drive correlation functions. Correlation functions (Fredholm determinants of integral op-
erators) are equal to 7-functions of these differential equations, and integral operators play
the role of Gelfand-Levitan operators. This approach is close to [22-25][42,43]. First we
consider the impenetrable Bose gas ¢ = co. In section 5 we construct a differential equation
for the equal time temperature correlator. This is the case most close to the fifth Painleve
transcendent [5,26]. We get a kind of Painléve equation with partial derivatives. This is a
new integrable equation. The place of this equation in the general scheme is discussed in
[27]. All ideas are explained in this case. All other cases are treated similarly. In section 6
we consider the time and space dependent correlator (0.8) (zero temperature case). In this
case the fifth Painléve equation is deformed into a nonlinear Schrodinger equation (not
selfajoint). In section 7 time-temperature correlators (0.10) are considered. We derive
a three-dimensional completely integrable system of differential equations (based on NS
equation) for this correlation function. Maybe it is interesting from the point of view of
integrable differential equations. The most interesting results are in section 8, where we
derive an integro-differential equation for correlation function at finite coupling constant c.

In part III we consider asymptotics of correlation functions. All differential equa-
tions derived in Part II are associated with some Riemann problem. This permits us to
calculate the long distance asymptotics of correlation functions. In section 9 we do this
for the example of the equal time finite temperature correlator. In section 10 we present
some formulas of current 1/)(*;)2,1:(,) correlators, obtained together with N.M. Bogoliubov.
Many point space and time dependent finite temperature correlators of currents of the

impenetrable Bose gas can be represented as a determinant of matrix.
I. Correlation Functions as Fredholm determinants

In this part we shall represent different correlation functions as Fredholm determinants
(minor) of some integral operators. We shall begin with the impenetrable Bose gas ¢ = 0.
In the section 4 of this part we shall derive a Fredholm determinant for finite ¢(0 < ¢ < 00).
The derivation is similar to the derivation of the determinant formula for norms of Bethe

wave function [16].

1. Lenard formula

First let us consider equal time finite temperature field correlators

r(e " /Tyt () (-2
(i = T ) (1)




by z here we denote distance. Let us make a rescaling and introduce new variables
B==; z=2zVT. (1.2)
The reason is that correlator depends only on two variables z and
(W*(2)¢(=2))r = VTy(2,8) . (1.3)

To define g let us introduce an integral operator K, it acts on the real axis. The kernel
K(A, p) is equal to :

KO, ) = /900 sinz(A - ")\/19( (1.4)

(A=
Here 9J()) is Fermi weight

9(N) = (1+exp{\? — B} . (1.5)
It is convenient to describe properties of the operator K in terms of functions
fi(x z,8) (1=%)

(the dependence on z and 3 will be suppressed). The functions fi(}A) are defined as

solutions of linear integral equations :

£:0) - / KOwm fiuds = ei(A) 5 i=+ . (16)
Here v is a real parameter and the functions e;(A) are given as

e+(A) = /I(X) exp{xiAz} . (1.7)

Of primary importance will be the matrix of "potentials” Bjx(z, ) :

B‘-k(z,ﬂ) = ‘Y/oo e,(/\)fk(/\)d/\ . (18)

-0
It is a real symmetric matrix with two independent matrix elements B4 and B_—

Biy+=By+ =B-_; By-=By-=B_,. (1.9)

Now all the notation necessary to express correlators in terms of the operator K has been
introduced. The field correlator (¥+(2)¥(—2))7 = VTg(z, ) can be represented as

o(z, B) = %BH,(x,ﬂ)det(l ~ 4K/ yn - (1.10)
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The last factor here is a Fredholm determinant. In the paper (27] it is proved that for-
mula (1.10) can be transformed to Lenard formula by means of Fourier transformation.
Correlators of many fields can be represented in the similar way [27). 1t is interesting to
mention that det(1 — vK) has meaning as correlator at any complex value of parameter

~. Let us consider
tr(e"H/Te"‘Q(z))
= ) 1.
(exp(eQ@))r = i (111)

Here a is an arbitrary complex parameter and Q(z) is the operator of the number of

particles on the interval [~z, z]

Q)= [ ¥ (¥)v(y)dy - (1.12)
In [28], [29] it is shown that

(e79)) = det(1 - yK)

1 — o . (1.13)
s

‘Y:

Especially interesting is the value e* = 0, v = % it describes the probability (0.11) that
on the interval [~z,2] there will be no particles of the Bose gas. This case v = % also
describes the level spacing probability distribution function which appears in the theory of
random matrices [30, 5]. There is an interesting connection between formulae (1.10) and

(1.13). From [31] we know the fermionization formula :

¥5(2) = ¥y(z) exp {m I w;f(ym(y)dy} . (119

In the Lh.s. we have the canonical Bose field (of impenetrable Bose gas), v, is canonical
Fermi field. So (1.14) shows that for the field correlator (1.1) @ = ¢w. Formula (1.13)
1—e®

7 = ~5— leads to the correct value of ¥ = 2 for field correlator (1.10). One should
mention that for zero temperature case T = 0 the operator in (1.4) turns in

sinz(A - p)

Ko(/\,ﬂ)= /\_“

It acts on the interval [~g, g]. The probability of empty place (0.11) is equal to

P()) = det (1 - %K()) . (1.15)

In section 4 we shall generalize this representation to finite coupling constant. In section 5
we shall derive differential equation which drive equal time finite temperature correlation

function, based on representation (1.3) and (1.10).
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2. Time dependent correlator
First let us consider the zero temperature T = 0 case. In this case the ground state

IQ2) is a Fermi sphere [~¢, 9], with Fermi momentum q

(R %))

(7/’(-;)1/)(1» = <QIQ>

In the paper [32] it was proved that :

: 1 0
<¢($2,t2)'¢'+(l‘1,t1)> = ezhtn —G(t12,$12) + — det(l + %)/ —q - (21)
27 Oa a=0
Here
l2=ti—ty, Tip=z, -1,
oo . 2
G(t12,712) =/ duettizs’—iz1ap (2.2)
e o]
The last factor in (2.1) is a Fredholm determinant with the kernel
- EQ) - E(ﬂ) a Fta (A2 44?) —$z21(A+u) 9
Vo(A ) = [ O = )n? 53 E(A).E(p)| x e X e . (2.3)
This integral operator acts on the interval [—q,q](A, u € [~¢,4]). The function E()\) is
defined as follows : o .2
E(X) =][ d,uexP{Z 1247 = 17150} . (2.4)
~o0 $— A
Now let us discuss temperature - time correlators
tr(e—H/T¢(321 t2)¢+($1, tl)) >
(¢($2,t2)¢+(l‘1,f1)>T = tr(e=H/T) ' (2.5)
They are given by a similar formula
+ ihty (1 9
(¥(z2,t2)9* (21, 81y = it 7= G(tiz,212) + 3a ) detl+Vn)/ .. (2.6)

Now the integral operator Vr acts on the whole real axis and the kernel V7(), u) can be
expressed in terms of V,

Vr(A, 1) = VI Vs (A, 1) v/3(5) (2.7)

Here J(A\) = (1 + exp{A? = 8})~1 . Another interesting object is the Euclidean time

correlator. Let us denote 7 = it

w(z,7) = e (2, 0)e HT (2.8)
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(e—HIT )y .
(622, 7)o (21, 7)) = TLe " ¥lea )Y H (2, m))

)
tr(e—H/T) (29)
Let us write down the Fredholm determinant formula for it
, - 1 - 0 ~
(V(z2, )Y * (21, 7)) = P72 (gG(Tl%xw) + %) det(1+Vr)/,_, - (2.10)

Here V7 is an integral operator on the whole real axis, with the kernel

. (r21 (A’ +p?)~iza1 (A-p))/2 E(\) - E( . .
€ i) a
A p) = - —FE(\.E (211
T m) V14 e =R)/T\ /1T 1 ¢W*=h)]T X { T2(A — ) 273 (A)-E(p) ( )
Herel'12=131—12; 0ST21=T2—T1S%; T12 = —To1

oo
~ R
—r —iz
(;’(7-12’2:12) — / duye=T2b 124
o0

~ ® dA

In sections 6, 7 we shall derive differential equations, based on these Fredolm determinants.

(2.12)

e—T21A2—5112A

3. Manypoint field correlators.

In the paper [33] many field correlator is represented as the Fredholm minor :

N . N
([[¥ (2, t2e)9 (2201, takms)) = € Lot (2rtae-)
=t (3.1)

1 0
' kl;Il (27G(t2k—1 — tak, Tok—1 — Tox) + 37“") det K/, o

Here X is a Fredholm integral operator acting on the interval [—q,4q]. The kernel K(Xg, An)
of this operator is equal to

N

zc(Ao,AN).—./ ... dhyo ] [6(/\m—Am_1)+
e m=1
+Km(A,,,,A,,,_1)} exp (i{thAfn Nt (32)

+ T2m-1 Am—l - z2m)\m}) .

Here En(A) = En(n)
_ Lm —LEmil)  Qam .
Km(A) /“) - 7r2(/\ _ /J) o2 Em(/\) Em(/l) (33)
and o
Em(/\) =]{oo P _'u/\ exp {iy.z(tgm..l - tzm) - i/,t(.’l,'gm_l - l‘gm)} . (34)



These formulae represent the correlation function at zero temperature. Integral operator

K can be represented in the form
KA w)=I+V(\pu). (3.5)

The kernel of V has canonical form

2N

VO = (ﬁ) > e (NEsn) (36)

j=1

This will permit us to derive differential equations which drive correlation function (3.1).
To represent the finite temperature correlation function as a Fredholm minor one should
replace in (3.1) the operator K by an operator acting on the whole real axis, its kernel
being equal to :

Kr(Ap) =1+ Vp(A,p) (3.7)
and
Vr(du) = VIV (A, w)v/3(a) .
The kernel V() 1) can be taken from (3.5).
4. Finite coupling constant correlator
We shall discuss the penetrable Bose gas (finite coupling constant 0 < ¢ < o) in

terms of the Quantum Inverse Scattering Method. In terms of this method, the model can
be associated with the monodromy matrix

T(A):(A(/\) BM)) (4.1)
C(A) D)

It is matrix 2 x 2 with matrix elements being quantum operators (functions of 4, ™).
Their commutation relations are given by the R-matrix

R(A\ )T\ @ T(w) = T(p) @ T(AR(A, 1) . (4.2)

The R-matrix is a 4 x 4 matrix

e, X) \
: 1
RO\, ) = 9 A) . (4.3)
1 g(u, A)
fu, A)
Here ' e
9N = =25 () = — (4.4)



The bare vacuum |0) plays the role of the highest weight vector :
C(MI0) =0;  A(N)]0) =a(A)]0) ;  D(XN)|0) = d(N)|0) . (4.5)

The complex valued functions a(A) and d(A) for NS model are equal to a(\) = exp{ %’\L},
d(A) = exp{%} (L is the length of periodical box). For the finite coupling constant case
0 < ¢ < o0, the ground state of the Bose gas with finite density D (for zero temperature) is
still a one-dimensional Fermi sphere [—g, ¢] (¢ is the Fermi momentum). Detailed explana-
tions are given for example in [34] (see also references there)). For calculation of correlation
functions it is necessary to enumerate all T()\) (4.1) with commutation relations given by
(4.2), (4.3) and with highest weight vector (4.5). This is connected with the problem of
enumeration of representation of Yangians (associated with sf;) with highest weight vec-
tor [18]. Solution of this problem can be taken from [21): there are no restrictions on the
functions a()) and d(\) - they are arbitrary functions. To solve the recursion relations
for correlation functions in terms of determinants one should use variational derivatives
ET&TF’ E%XT with respect to arbitrary functions a()) and d()\). They act from one irre-
ducible representation of Y'(sf;) with highest weight vector into another. This leads to the

appearance of dual quanum fields

2

B(\) = a()) + /q dv (enm) at(v) (4.6)

-9

acting in auxiliary Fock space. Here G and at are canonical Bose fields
[a(A),a® (W] = 6(A =) 5 [a(N), a()] = [a*(N),aT (w)] = 0 (4.7)
in auxiliary Fock space, and |0) in Fock vacuum of the new space :
a(A)0y=0; (0lat(\)=0. (4.8)

It is remarkable that the dual fields (4.6) commute :

[p(A), e(w)] =0, (4.9)

so they can be treated as classical functions. This construction permits us to represent
correlation functions as Fredholm determinants [28],[29]. Let us recall that the simplest
correlation function is the probability P(z) (0.11) that on the interval [—z, z] there will
be no particles. Let us write it down as a Fredholm determinant using the dual quantum

fields () (4.6
P (40) 0| det(I + V)|0)

_{
Plo) = - £x)

(4.10)
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Both integral operators V and K act on the interva) [~4,q). The kernel of K(X u)is equal

to
2c

FFO= a7
The kernel of V(A1 A7) is expressed in terms of the dual fields :

KA\ p)= (4.11)

2

- iZA1+o(A) | —izA3~%p(Ay) 1ZA2+30(Ap) | =tzAi~1to(A;)
VAL Ag) = == { € : — 4+ & < z (4.12)
(A = A2)(A1 = ), + ic) (A2 = A)(A2 = A, + ic)

This is the answer, Remember that in the limit ¢ = 0o (g-fixed)

PA=0; K20; c—ooo
1 sinx(/\l - Az) . (413)
™

V(’\h /\2) - - AI _ /\2

This is in accordance with (1.15). Let us rewrite V(A1,22) in the form

= [T se~2c | e+(A1)e_(Ag) —e4(Ag)e_(Ay)
V(AL Ap) = /O d { — } (4.14)
ex()) = \/Zﬂexp {i(m +ish+ %ﬂx))} . (4.15)

Now the integral operator V for finite coupling constant is represented in a form similar
to ¢ = oo but we have an additional variable s.

II. Differential equations for correlatjon functions
Now we shall use Fredholm determinants (of integral operators obtained in part I) to
derive differentjal equations, which drive correlation functions,. One should note that a]]
Fredholm integral operators which occur have very special kernels V(),, A2). The product
(A ~ A2)V (A1, Ag) is equal to the sum of one-dimensional projectors

N
1 =22V, 00) = 3 e;00) B, (1) (11.0)

j=1

(for finite coupling constant the sum is replaced by integration). Functions e;(A), E;(N)
should also obey the constraint 2?’:1 e;(A)E;(A) = 0.Such an integral operator one can
call "completely integrable”, The product of two such operators has the same form. Let

X eV ED (A
VOO A) = 3 I (/\11)_ 32( 2)
=1

4 653)(/\1) ' E;Ez)(/\z)

V(A Ag) = :
(A1, 42) ; AL = A

(I1.1)
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The product of two such operators is equal to

q
/ y(l)(,\l, y)V(z)(V, Ag)dv = V(3)(/\1; Az) =
-9

Il
.Mz

(11.2)
v _Az YONED (M) + z e /\1)E(,3)(/\2)} .

j=1 K=1

Here

M
BP0 =3 BP0 [ BP0

— V= A
e ! ) (I1.3)
14
e§3)(,\) Z (U(,\)/q X _VEgl)(y)e(Iz)(y) .
1=1

This is a very important property, which shows that the resolvent of this operator can
be constructed universally, as follows. Let us take kernel operator (II.0). We introduce

the resolvent R in the following way
I+VI-R)=I; (I+V)R=V. (I1.4)

Let us write down the integral equation for the kernel of the resolvent R(A;, Az):
q
R(A1,A2) + / V(A1 v)R(v, A2)dv = V(Aq, A2) . (I1.5)
~-q

To write down R(A;, Az) in explicit form let us introduce functions ij(A) and fJR(/\) by the
following integral equations :

ACVES /q VO ) ff(p)du = ej(2) (I1.6)

-q

FE+ [ VN FEwdn = B (117)

-q
Then one can prove the theorem that

S fFO DfF00)

R(’\lv)‘Z) = /\1 _ /\2

(I1.8)

Formulae (II.2)-(I1.8) show that operators (1 + V) (here V is given by (II1.0) or (IL.1)
form infinite dimensional group. This permits us to derive differential equations (from
integral one), its Lax representation and the associated Riemann problem. We shall do
this in more detail for equal time finite-temperature correlators in section 5. All other
cases are treated in a similar way. We shall construct differential equations for which these

“completely integrable”integral operators play the role of Gelfand-Levitan operators. One
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should mention that direct quantization of the Gelfand-Levitan equation was proposed in

(35]. It will be interesting to understand the connections between these two approaches.

5. Finite-temperature equal time correlator
Let us come back to section 1. The finite-temperature equal time correlators of an
impenetrable Bose gas were described as Fredholm determinants det(] —vK) of an integral

operator K (on the real axis)

_ sinz(A — ) _ex(Ne-(p) —e—(Nes(p) .
KA u)= vﬁ(A)Trvﬂ(u)— 20 = 1) =K(p,A) . (3.1

Here

e+(A) = V/I(N)ete

—
(&]]
o

~—

and

9(A) = (1 +exp(A — )1 .
Functions f+() are constructed by (1.6)
(e o]
£ =7 [ KO falidu = eah). (53)
Let us define the inverse operator as follows
(I -4K)I+~vR)=1; (I-4K)R=K. (5.4)
The kernel of the resolvent R is equal to

To construct a nonlinear differential equation for B, (see (1.8)), first let us construct a
Lax representation of this equation. Let us differentiate (5.3) with respect to z, the result
can be written in the vector form :

2 F'= (idos + Q)F . (56)

Here f is a two-component vector-function

- + (A
Fon = (f ( )> (5.7
f-(2)
and @ is 2 x 2 matrix
0 B
Q= ( ++> . (5.8)
Bi, 0



Here we used that 0; K (), p) is sum of one-dimensional projectors
20 K(A 1) = e (Me(1) + e- (Ve (1) .

We shall consider (5.6) as the L operator; to construct the M opertor we apply (2003 +0,)
to the equation (5.3). This gives the M operator

— —

(2)05 + 0)f = (izoy — i85V)f (5.9)
Here
By_ -Byy
V= (5.10)

and we used (2003 + 9x)9(A) = 0. Write now the compatibility conditions for the system
(5.6) and (5.9)
[0r —ido3 — Q,2008 + Ox — tda3 +i05V] =0 (5.11)

at any A. We arrive at the equations

0.93B (5.12)
3[33_2,_+=1+az (ﬁ) .

Here O is a derivative with respect to our independent variable 3 = % Let us denote by
o(z, )
o(z,B) = éndet(I — vK) . (5.13)

One can show [27] that o|;=¢ = 0
820 =-B2,, 0,0=-B,_ (5.14)
and o itself satisfies the differential equation
(050%0)? = —4(820)[22858,0 + (858,0)? — 2850] . (5.15)

The initial data for this equation can be extracted from the Fredholm determinant itself

lim By, = ﬁlim oc=0

B——c0 —_—00

Byt = ‘//19(/\)61/\ + 27’ (/ 19(/\)d)‘)2 +0(z?)

z—0

o= —x’y/t?(/\) - 22—2 (/ 19(/\)d/\>2 +0(z?) .

13
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This fixes the solution uniquely [27] and describes completely the correlation function
(1.10), (1.3). It is interesting to mention that at 7 = 0 the value o = éndet(] — ~I\)
depends only on the product of variables z and VB; =28 = zVk. Equation (5.13) is

conveniently rewritten for a function

0
oo(7) = Ta—Tfn det(I — vK)

One has

(raf)? = —4(roy = ao)(4raf + (oh)? - 40y) . (5.17)

This is the famous fifth Painléve transcendent of [5]. To conclude this section, let us
present a matrix Riemann problem, associated with these equations [27]. Consider the
2 X 2 matrix x(A) function of \.

1) it is holomorphic at Im(\) > 0 and Im(A) <0
10

2) ) =1= o 7).

3) det x(A) #£0 VA

4) the boundary values x*()) at the real axis A € R are related

xX“(A)=xTNG); Imi=0 (5.18)
er{(Ae_ () —eZ ()
G(A)=I+m( +(Ae-(A) () ) (5.10)
e2(A)  —er(Ne—(N)

This Riemann problem permits one to calculate the long distance asymptotics of cor-
relators. A Riemann problem can be associated with each of the differential equations
constructed below. Let us mention also that differential equations for many point
correlators are constructed in [27].

6. Time dependent correlator

Here we shall take the time correlator of section 2 and derive a differential equation
which drives this correlator. This will be the classical nonlinear Schrodinger equation. So
we shall study (¥(z2,t2)9% (21,4 )), (¢ = o) for Euclidean time

ti—ta=2ir; 7>0;, z,—-29=22; z>0. (6.1)

Let us evaluate the derivative in (2.1)

((2T(1)) = (2, t2)T (21, 1)) = g_;e%q?bﬂ_ det(I +Vp) . (6.2)

Here 14 is the integral operator on the interval (—q, 4] (for by see (6.10)):

q

fe(3) + / Vo B fx(Wdu = e2(3) (6.3)
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The kernel V5(A, ) can be represented in the form :

Vo(A, 1) = e+(/\)e—(u/2 - Z+(#)e—(k) .

Here

e~(A) = e HR L e, (3) = eo(A)- E())

dv ~2rv?—2izv
E()\) =f 7__Xe 2 2

The resolvent R is defined as usual
I+V)I-R)=I; (I+V)R=V.

Its kernel can be represented in terms of functions f+ (6.3)

RO ) = L2 = 1)

It is important to introduce potentials

q
Bji =/ duej(p)fe(p) ;s J k==
-9

Cir = /q dp pe;(p)fe(p) .

-q
Let us introduce also b4

bty = B4+ -G
oo
G — / due—2ru2—2iz;4 '

Let us mention now some symmetry properties : First of all V is symmetric :
V(Au)=V(uA); R(u) = R(u,A)
Bjk = Bkj .
Second, there exists a complex involution

e-(N) = e(=A); &(A) = —ex(=N);  Fu(=N) = Ffe(N)

V) =V(=A=p); R\ p)=R(-X—p).
So Byy,b,y and B__ are real
By =Byt ibyy =byy ;B =B__

15
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but B, _ is pure imaginary

B+_ = _B+__ . (616)
Third, we mention also that

Cir==Ciy; To_= ~C; Ci_=cC,_;

_ (6.17)
Coy = C_y; C.y = Cio + Bi.B__ - Bi_ .

6. a. Lax representation

equation, which will drive the correlator (6.2). First we take the solutions of (6.3) fx())
and define vector-function

It is easy to differentiate (6.3) with respect to z, because %Vo(/\,,u) is equal to the sum

of one-dimensional projectors (similar to section 5). The result is the I opertor :

(%-{-i/\ag—%Q) F=0 (6.18)
Here
0 b
Q= ( ++> (6.19)
B._ 0

see (6.10), (6.8). In a similar way one can differentiate (6.3) with respect to time r This
gives the M operator :

<i+A203 —2)Q - V)f:o. (6.20)
or
Here
26++B__. iazb++
V= . (6.21)
—10;B__ —2B__ b,

Compatibility condition for (6.18) and (6.20) leads to :

This gives the nonlinear Schrédinger equation

2

5B =-12pB __4p2_y,,
{ or 2 9z7 (6 23)

i

2
%b.{._f. = %%yb++ +4b_2+_+B__

16



Initial data 7 = O for these equations can be extracted from the description [3] of equal
time correlator (¥ *(z)¢(—z)). This also gies the expression for C** and C__

C++ = %6,B++ + B++ ‘ B+_ - 2GB+_
. (6.24)
C.-=-%0.B._-B,_.B__
Direct differentiation of (6.8) (using (6.3)) gives also
0 . -
5;34._ = 22B-_b++ . (620)
This permits us to express matrix V' (6.21) in terms of the matrix U
—By- bist
U= (6.26)
—-B__ B,_
V =1i0zU . (6.27)

6. b. Expression for the correlation function in terms of NS equation.
The field correlator (6.2) is equal to the product of two factors by 4 and det(I + Vj).
One can get a differential equation for b4 by substituting one of eq. (6.23) into another

. . . 2
8 (2bry —bl, 0% (2byy -0, by — b,
25- <—_’Z+—_ t 522 v ooy | ——— | =0.  (628)

To characterize det(I + V,) let us introduce the notation

o =¢fndet(I+V}) . (6.29)

At T = 0, function o(z) was described in [5]. Derivatives of o(z,T) can be expressed in
terms of solutions of the NS equation (6.23)

do . 0%
B—w‘ = —2ZB+_ ) 5;2- = 4b++B.-_ (630)
Oo
== =2GBo —2Ci +C-s). (6.31)
Straightforward calculations involving (6.3), (6.8), (6.9) show also that
5} dB__ ,
—(Cy-+C-y) =(B4+ - 2G)—— —B-_B,,
Oz Or (6.32)
0Bi- b dB__ _B Oby s
"Tor T Tt Toz T 0z
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This set of equations completely describes the correlator (¢(z2,t2)¢¥*(z1,¢1)). The associ-
ated Riemann problem can be constructed similar to section 5. This permits us to evaluate

asymptotics.

7. Finite temperature time correlator.
Here we shall consider the temperature time correlator of an impenetrable Bose gas

¢ = oo, (¥(z2,t2)¥*(z1,%1))r. The Fredholm determinant representation can be extracted

from section 2. Let us consider Euclidean time
thi—to=2ir; 7>0; z3—z29=22; >0. (7.1)

Here we shall use the notation of section 6. We shall use also the variable 8 = %, the same

as in (1.2) and section 5, and the Fermi weight

IA) = (1+exp{A2 -8}, (7.2)
So
+ —1 28
(¢($2,t2)(/) (.’El,tl»T = ’2—;6 b++ det(I + VT) . (73)
Here Vr is an integral operator on the whole real axis
£+ [ VrO el = ex () (74
with the kernel: \ \
(A=n)
and )
e-(A) = =B+ | e () = e-(VE(N) (7.6)
— * dv —2ru?=2izv , _ ® —2ru=2izp d

The functions fi(A) are defined by (7.4) and the kernel of the resolvent is given by (6.7).
The potentials

B, = /w ei(p) fe(p)dp ; Cix = /_oo duei(p) fr(p)p (7.8)

-0
now depend on three variables z, 73. The symmetry properties (6.11)-(6.17) are still valid.

7. a. Lax representation.

Let us define a vector-function, as usual
. f+(A)
f(A) = ( . (7.9)
f-()
18



Differentiate (7.4) with respect to z, ; also apply the operator (2005 + 3») (as in (5.9)).
In this way we get three operators

~

Lf=0; MNFf=0; NOMF=0. (7.10)

The operators L and M are the same as in (6.18) and (6.20)

L(A) = —a—-i-i/\a;, - 2iQ (7.11)
Oz
. o -
M) =5+ X3 —2)Q - V. (7.12)

Formulae (6.19), (6.21), (6.27) and (6.26) are still valid. The operator N is similar to (5.9),
but now we have

- i} 5} :
N = 2,\% + 3 +2At03 +iz03 — 47Q — 26,U . (7.13)
Here 0 b B .
Q:[ ++] ; U=[ +- ++] (7.14)
B._ 0 ~B__ B,_

7. b. Three dimensional completely integrable differential equation.

All three operators L, M, N should commute at arbitrary value of spectral parameter
AL(A), M(N)] = 0,[L(\,N(A)] = 0 and [M()),N(A)] = 0. Now let us write down
nonlinear differential equations for the potentials B;x and C;;. First of all (6.23)-(6.25)
are still valid. To write down a complete set of equations we introduce the notation :

g-=e*B__; gy =P, (7.15)

n(z,7,8) = g+9-; p(z,7,8) = g-0:9+ — g40:9- . (7.16)
First of all the NS equations are valid
(1) Org+ =259+ + 3029+ + 493 9-
(i)  Org- = —2p9- — 3029 —4g% g, (7.17)
(i) 2n =p
The first equation containing the § derivative looks like

050, 8509 -
%9+ _ 28%9- — y(z,r,8) . (7.18)
9+ g-

Here we define a new function ¢(z, 7, 3). The two remaining equations look like

Orp +405p =0

(7.19)
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Initial data 7 = 0 for this equations can be extracted from equal time temperature corre-
lator (¥ (x)(=r))7T, see sections 1, 5. So (7.17)-(7.19) are a complete set of equations
for b4+ and B__. Other potentials are defined in terms of these two. "The derivatives of

B4 _ are equal to:
OBy =2in ,0;B4_ =ip

T 1 (7.20)
By =—~-z--
98B+ 57 rid
The potentials Cix are still given by the expression (6.24), (6.32).
7. c. Expression for correlation function.
The correlator (7.3) is equal to the product of g4, and e’
o ={ndet(I+ V7). (7.21)

It is easy to get an equation involving only g, because g_ can be expressed, from(7.17)(i)

_ 29+ —4p9+ + 0294

8g—
g%

(7.22)
One can substitute this expression in all other equations of (7.17)-(7.19) to get a complete
set of equations for gy. At 7 = 0,0 was described at section 5, its derivatives can be

expressed in terms of the potentials B, Cix

Oc , Oc

—a; =-21B,_; E =—-2GB__ -2(C+- + C-4+) (7.23)
do .
35 = —2705(Cy- + C-y) — 2i203B4_ —27B__9sB__+

+ 2T(B++ - 2G)653-_ + 2(6534_.{.)(653__) - 2(653.{._)2 (724)

This completely defines the correlation function. The corresponding Riemann problem

(similar to section 5) also can be constructed.

8. Integro-differential equation for the finite coupling correlator.

Here we shall derive trhe integro-differential equation which drives the simplest cor-
relator at finite coupling 0 < ¢ < oo. This is probability of absence of particles on the
interval [—z, z] [see (4.10, (0.11)} ;

pz) = OLdetT+1)]0)

8.1
det(I — 5= K) (&1

Only the numerator depend on the distance . So we shall investigate here
det(I +V). (8.2)
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The integral operator V" acts on the interval [—g, q], its kernel V(A1, A2) is given by (4.12).
1t depends on the dual quantum field ¢(\) (4.6), but it commutes at different values of
spectral parameters [p()), ¢(#)] = 0 so we shall treat (1) and V (), A2) (4.12) as classical

unknown functions. Let us use (4.14) as representations for

V(A ) = i/ooo ds(e—sc)6+(/\1l8)e—(/\2|/~\sl) : f\:(/\gls)e_(/\lls)

ex(\|s) = \/;c;-exp {i(m +ish+ %cp(z))} .

One should emphasize that this V., has the canonical form (I1.0) with Z ., replaced by

the integral fo ds, so the formulae of previous section can be generalized. Let us define

(8.3)

the resolvent in the standard way

(I+V)I-R=I (I+V)R=V

? 8.4
R(A1, A7) +/ V(A1 A3)R(As, A2)dAs = V(A1, Ag) . (84)
-q
It is symmetric
V(Al, /\2) = V(/\g,/\l) H R(’\l’ /\2) = R(/\z,/\l) . (85)
To write down an explicit formulae for R, we introduce functions fe(A]8) :
q
Fel)+ [ VO, aluls)di = ex(Als) (3.6)
-q

The kernel of the resolvent can be represented in the form :
o}
ROV =i =0 [ dse  f I f-(ulo) — F-Ifeale)) . (87
0
Now define potentials B;(s, 1)
q 0
Bi(s,t)= [ duelo)fulule) , ik =2 (89)
-q
not it is the kernel of matrix integral operator. It is symmetric
Bik(s,t) = Byi(t,s) . (8.9)
Differentiate (8.6) with respect to z, to construct the L operator (it is an integral operator):
0 = > o =
%f()\[t) =1Aa3 f(Alt) + 2/ dse™°°Q(t, s)f(M|s) . (8.10)
0
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Here we introduce the 2 component vector f and matrix Q
. f+(Als) 0 Bii(s,t)
f(Als) = o Qtls) = ; (8.11)
f=(Als) B__(t,s) 0

Qt,s) = Qs, 1) .
Now let us differentiate (8.6) with respect to g. We find

%f‘(w)wfo dse™*U(t,s) f(M|s) = 0, (8.12)
Ag(s,t)  A_(s,t)
Ut,s) = ;_q S, (8.13)
Here
(f-(qls)f+(q|t) —f+(qls)f+(qlt))
At(s,t) = ; (8.14)
f-(gls)f-(qlt) —fi(gls)f-(qlt),
i /0 T dse=* AL (2, $) AL (s,u) = 0,
(f-(—qls)f+(—qlt) —f+(—qls)f+(—qlt)>
A_(,s’t) = (815)
f-(=als)f-(—qlt) —f+(—qls)f-(—qlt) .

Finally we write the compatibility condition for equations (8.10) and (8.12). In this way
we get

%B++(s,t) = Folals)Fo(alt) + Fo(=als) fa(=glt),

5 , (8.16)
5B (5:8) = f-(als)-(alt) + f~(~alo)f(=qlt)

6 . *° —8C

Sofealt) = iafulalt) + 2 [ dse™ " Baa(t,5)f-(alo)

z 0

s =) = =igf_(dl)+ 2 [ dseB__(t,9)f(al),

Oz 0 (8.17)

5= Ful=alt) = =iafa(=qit)+2 | dse™Bua(t.)f-(=a/s)

a N * —3C
soi-(=alt) = igf_(~alt)+ 2 [ dse™B__(t,9)fu(~als).
0
This is a complete set of equations for 6 unknown functions ;
Byy(syt) s Bo—(s,t) 5 fr(als)s f-(als); fe(—dls); f-(—qls).

The associated Riemann problem can be constructed in a way similar to section 5. So
(8.16) and (8.17) is our integro-differential equation, which drives the correlation function

at finite coupling constant.
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8. a. Correlation function,.
To study the space dependence of P(z) (8.1), we shall express det(I + V) (8.2) in
terms of solutions of (8.16) and (8.17). First of all we have as usual

;—z@n det(I+V)= —-2/ dse™*°Bi_(s,s) (8.18)
0

Differentiating (8.6) and (8.8) with respect to z and ¢ we obtain

%B.;._(s,.s) =2 /0°° dte By (s,t)B__(t,s) (8.19)
a%m_(s,s) = Felals)f—(als) + fo(~qls)f—(=gls) . (8.20)

Even more important is the derivative with respect to g. (We know that ¢ndet(I+V) =0
at ¢ =0)

S-tndet(l +V) = Rlg,q) + R(-3,~q) . (8.21)

These are diagonal values of the resolvent on the edges. From (8.7) we have

Rig.q) =i [ dse [(d)0rfuMo) ey — Folalon -l ] - (822

Here r.h.s. can be calculated from (8.12) (8.13) at A = q.
Rlg.q) =i [ dse™{f-(als)0, fulals) = Folalo)On-(alo)+

1 = —sc S —qls) — s —qls i
+§5{ [ s el (ale) - F-Gals)a(=a )]} .
R(~q,—q) =i / dse™* (1 (~qls)0y f—(~als) ~ f—(~qls)Be fu(=qls)]+

- 2
* 512 {/ dse™*%( £ (qls)f-(=qls) - f—<‘-l'8>f+(“1‘s”}

In this way we have expressed a%fn det(I+V) in terms of the solution of the system (8.17).
To finish the program one should evaluate the long distance asymptotics of det(I + V) at
¢ — oo and make normal ordering with respect to quantum operators @(\),a*(u) entering
©(A) (4.6) (that is, we must calculate the expectation value with respect to the Fock

vacuum |0} in dual Fock space).

8. a. The operator Riemann-Hilbert problem
In this section we present the Riemann-Hilbert problem which corresponds to the

integrable non-linear system (8.16), (8.17). The latter is a system of integral-differential
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equations, which is why the corresponding Riemann-Hilbert problem will be an integral-
operator-value problem. One can say that the constructions of this section are the natural
generalizations of the techniques of [5,27] to the infinitely-dimensional case.
Consider the integral-operator-valued function at real A (R is real axis):
GA)=T+6(¢% - AHg(N), AER,
where the matrix-kernel g(\ls, s') of the integral operator g()) is given by:
, ex(Mls)e—(Als"), —e4(Als)es(Als")
9(Als, s') = +2x
e~(As)e=(Als"), —e—(A[s)es(Als")

e+(Als) = \/gexp{:!:i/\(x +s)+ %c,o(/\)}

All our operators are integral operators in the L, C R*,e™*¢. We propose that the operator
G(A) as the “conjugation matrix”for an infinite dimension Riemann-Hilbert problem which
is the problem to construct the integral operator-valued function x(A) with the following
properties:
1. x(}) is analytic for ImA > 0 or Im) < 0.
2. x7(A) = x*(N)G(A\),Im()) =0, and x* are the boundary values of function y()) as
AeR+40.
3. x(A) = Tas A - .
In terms of the corresponding kernels the properties 1-3 can be rewritten in the fol-
lowing way:
P1. x(Als,s’) is an analytic function of A in the half planes Im\A > 0 or ImA < 0 for all
s,s'.
P2 XT(Ns,s") = [T ds"e™"ex*(Als,s")G(Als",s") = x+(Als,s') + 2r6(g? — A?) x
X j;)ooe"”cds"x+(/\|s,s")g(/\ls”.s').
P3. x(Als,s') = [(1) ‘1)] §(s = s')e” s + A 1ghi(s,8') + ... as A — oo,
Suppose that the solution of the Riemann-Hilbert problem 1-3 exists and unique.
Then we shall show that the function

¥(A) = x(ME(X),

where
E(z\|8, 8’) = 6(3 _ sl)ei/\(z-fal)aaea'c,

satisfies the integral-operator-value linear system in the form of (8.10),(8.12). We begin
with the z-equation. Applying the standard reasoning (see,m for example [27]) based on

Liouville’s theorem and on the r independence of the conjugation integral operator,
Go(A) = ETH(NG(NE(N) ,
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we have the equality,

B (MY~ A) = iAoy + Uo (8.24)

where Iy(s,s') = (s — s')e* o3 and U is independent of A\. Rewriting (8.24) in the form,
Oz (s, s') = ida3p(Als, ') +/ e Un(s, s")(A]s", s )ds" . (8.25)
0
We see that

q
Bik(s’sl) = / ei(’\ls)fk()‘{s,)d’\s UO(SNS,) = i[d’l(‘s"sl)’UI}] ’ (826>

-9

where 11(s,s') is the first coefficient in the series P3. So we obtained the first equation of
the system (8.10). Note that we also have the equalities

Byi(s,s") = —t[y1(s, )iz,
B__(s,8") = +i[¥1(s,8")]n1

0 +Biy
Up(s,s')=2 ( ) (s,8') .
+B__ 0

Let us now study the g-derivative of the function 3. To do this it is convenient to

consider the integral operator valued function ¥g(A) with the kernel,

) ' e—@(N)/2 0
Yo(Ms,s') = [8(s = s)e” = 2gn 2t 2 [8 é”( ) .

(8.27)

2r A —gq —e—?(N/2 ge(N)/2

It is easy to check that for all real A the following conjugation condition is satisfies.

¥g (A) = %5 (\)Ga(A) .

Then we can represent the integral operator ¢(\) in the neighbourhood of the interval
[—4¢,¢] in the form,

P(A) = H(\o() (8.28)

where w()\) is singlevalued and analytic in that neighbourhood. Note that the representa-
tion (8.28) is just the infinite dimension analogue of the basic formulae of the article [27)].
Just as in this article we conclude from (8.28) that,

. 1y Ay A_ ,
0 (NPT (N = T+ i (8.29)

where
Ax =i lim OV F QP(N3ybo(Ng (NPT (Y - (8.30)
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Note that the kernels of the integral operators ¥, ' (A) and ¥ ~!(\) are described by

eP(N)/2 0
s\ s, ') = :
Vg H(Als, s") (e—‘*’(’\)/2 e—np(A)/?) (8.31)
nos'c , i€ A+g) (0 1
'[6(3—3)6 +27r€n</\—q> [0 O]}
) paa(Als’ss)  —v1a(A]s's)
TH(As,s) = (8.32)
—a1(Als’ys)  wii(Als',8)

The first of these equalities is obvious, the second one follows from the identity,
) =T = Ag(N) -
This identity is a direct corollary of the important relation
(N =0.
Note also that from (8.31) we have

a5 Ol ) = =5 (= + 1) (0 o) (5.33

Returning to the integral operators A4 we obtain from (8.30-8.33) that
' ¢ R R —(s" 48", " 01 "e 1
As(s,s) = — ds"ds"e “Plals,s) (o o) 7 xals")

= —/ ds"e™*" ) (£qls, s") / ds'"e™*"p " (£qls", s")
c ev(iq)/'-’ 0

- ds" -3¢ +qls, "
r/o s'e™ " 9‘”)<_(¢4)/2 0)

—e—¥(£9)/2 ¢(iq)/2
x< “ 0 ¢ ) /ds”e"’ Sy (qls",s') =

(f+(i<1|3)f-(i‘1|3'), —f+(i<1|3)f+(iQ|5')>
fo(Eals)f-(£qls), —f-(xqls)fs(xqls))

where we set:

f+(As) = /:0 ds'e's’c[xll()\]s,s')e+()\|s') + x12(Als, s )e—(A]s") a3
8.34

_(As) = / T dste™ T (N, e (Als') + xaz(Als, s e (As")]

By this formulae the reconstruction of the Lax representation (8.12) from the

Riemann-Hilbert problem 1-3 is finished.
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Our last task is to show that the formulae (8.27) and (8.34) give us just the same
functions B, (s.s'),B__(s,s') and fi(\|s) as we had in the previous section. To do this

let us consider the singular integral equation equivalent to the problem 1-3. It has the

form q y
+ T _ . u -
O =11 [t g (8.35)
Set
FH(N) = AT | (3.36)
where

T(Ms,s') = r(\|s)8(s — s')et*'e

1 er(A]s)
T(Als) = ( * > .
0 e-(A]s)

Using the function ®+(\) equation (8.35) can be rewritten in the following way :

3+(\) = T(\) - 1/2mi /_ "q r‘f\":,-dé’“(u)T“l(#)g(u)T(/\) .

bl

Note that
(T (w)g(w)T(A)) (s, Als, ") = 771 (uls)g(pls, 8')7(A]s")

0, 0
= +27r .
e-(uls"), e (uls)es(Ms") = ea(ulsle- (Ao
So, for the matrix elements <I>+()\|3 s') we have:
B (Ms,s') = 8(s — s')e’' + i/
dL(As,s') = ex(As) 6(3 -3 )e"’ €
+1 / i - ds”e_’%@fz(/,tls,s")x
X [e —(#ls Je+(Als") — e (uls")e-(Als")],
HOUss) = i [ S [ Bl o e )
$, (s, s) = e—(A|s)é(s — s") exp(s'c)+
ds"e™%" @, (uls, s")x
/q - A 22(

e~ (uls’ )e+(/\|8 ) — e4(uls')e—(Als")]

q o0
_d“_,/ ds"e™*" @t (uls, s"e_(uls"),
q ,u/ - A - ZO 0

. (8.37)

Introduce the functions
fij(Als) =/ ds'e”* °<I>+(A|s s') .
0
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Then we obtain from (8.37) that

q
fr2(Ms) = ex(Als) - / duV (1) fra(uls)

_qq
Fas(As) = e_(Als) ~ / duV (A ) faa(uls) -
-q

were

VO =i [ oo tAlemlile) Zerlulole ()

So we come to our basic integral operator (8.3). In particular we have the following
equalities

F+(As) = fiz(Als)

f-(Als) = faa(Als) .
Taking into account the definition (8.36) of the function ®+()) we see that (8.38) coincides
with (8.34).

To prove (8.27) note that due to (8.35) the matrix coefficient 1, (s, s') can be expressed

in the following way :

(8.38)

q oo "
Y1(8,8') = 1/21rz'/ dp/ ds"e™ °x*(uls, s )g(u|s", s')ds" .
—g 0

Therefore for the corresponding matrix elements we have

a(s s = =i [ " dufe(uls)e(uls') = —iBos(s',s)
—-q

q
a(s, 8z = +i / dpfe(uls)es (uls') = +iBys(s',s)

. : (8.39)
15,8} = —i / duf-(uls)e_(uls') = +iB-_(s',s)

-9

q
[b1(s,8")]22 = +i/ duf-(uls)e+(uls') = +iB4-(s',s)
-q
Note also that the symmetric property
Bik(s,8') = Bri(s', s)

is the direct corollary of the formula (8.32)

Now we finish the discussion of the Riemann-Hilbert problem which corresponds to
the case 0 < ¢ < co. In another paper we will use this Riemann-Hilbert problem for the
calculation of the asymptotics of det(I + V') as £ — oo (as it was done in [27] for the case

c= ).
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III. Asymptotics of correlation functions
This part consists of two sections. In section 9 we study long distance asymptotics of
equal time temperature correlator of the impenetrable Bose gas. In section 10 we study
density y*(z,t)1(zx,t) (current) correlations for the impenetrable Bose gas (it is equal to
a matrix determinant), we study also 1 corrections.

9. Temperature equal time correlator

Following section 1 and 5 we shall study asymptotics of equal time temperature cor-
relators (1.1), (1.10)

(Wr(2)p(=2))r = —?B++ det(I — vK) . (9.1)

Let us use our variables (1.2)

h
ﬁ=T; z=2VT. (9.2)
The associated Riemann problem approach leads to the following asymptotic formula

zZ — 00, — 0O.

(7 (2)¥(=2))r = \/;pooe'““) exp {—% /ﬂ ” dt(a,c(t)f} x

ia2()\1)
AoA1(Ag + Ap)?

x {(AZ + A2)sin 6 + 2iAg Ay cose}] .

621'1:/\1 x (93)

x [1—2Re

Here we took po from [4],[5] :
Poo = 71'61/22—1/3.4.—6 )

A is the Glaisher constant. The function C(t) is given by

1 [ et =t 41
In (9.3) Ao = VBB
AM=vVB+2ri; ImA; >0; RelA; >0. (9.5)
The function a(}) is given by
X+ Ao i [ du |e* P41 06
a(d) = /\_/\Oexp{g/;oou_/\ene“,_ﬂ_l . (9.6)




The function 6 is given by

T 1 [ dyu e“z"ﬂ+1 -
9(2,,@)—2/\0$—5+;£wr_—/\€n m{ (91)

These formulae give us the long distance asymptotics of the equal time temperature cor-
relator. The zero temperature case was considered in 5].

Another important correlator (at ¢ = o0) of the impenetrable Bose gas is P(z) (0.11),
(1.15), (4.10), (4.13), the probability of absence of particles in the interval [—z,z]. It is
given by (1.15)

P(z) = det(I — 7K)/7=1/" (9.8)

here z and z are related by (1.2). The associated Riemann problem gives us

B
tnP(z) = —2Cy(8) + %/_ (8:Co(t))?dt+

(9.9)
—2z2428 | 1 Co(8) —4z2443 1
e [167rzz+87rz3 T te 2M0pzgs T T
Here
1 oo
Colt) = = / dMn (1+677V) (9.10)
ade o]
At zero temperature, the asymptotics are different
2
¢n P(z) = -("’3) - -;- ¢n 2z . (9.11)

10. Current correlators

Firt we study time correlators of currents J(z,t) = Y¥(z, t)¥(z,t) for the impenetrable
Bose gas at finite temperature as well as at zero temperature. Special attention is paid
to the asymptotics, and the % corrections are derived. We would like to emphasize the
contribution of N.M. Bogoliubov in this section. First let us consider the zero temperature
case. The density of the gas is given by

p=2% (10.1)
v
Here ¢ is the Fermi momentum. Let us introduce also two functions

1/ it(A?~h)—ix

P(t,z) = —-/ dAe (A =h)=irz (10.2)
2r J_4
L[~ AP=h)+i 1 /1 ~1t(A?—h)+iz A
¢ - = 1t( )+1xz\d/\___ d/\e 1t( iz

At 2) 27 [_we 2r J_, (10.3)

h=gq%.
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The V-current correlator is equal [36],[37] to the determinant of an N x V matrix :
<j(r_v.t_\,r)j(xN_1,tN_1)-...~j(m2,t2)j(x1,t1)) =d1$tM,-k i C=0 (10.4)

where the matrix Mg is constructed as follows :
Mi=D; Mi=Pti—tiszi—z) k<1
. (10.5)
My = —H(tk —t, Tk — .’E,‘) k>1.

A similar formula is valid for finite temperature T > 0, where the distribution function of

particles in momentum space is given by the Fermi weight (0.6)

1 1

The density is equal to D = [ d\p()) [see (0.7)]. The functions Pr and Hr are defined

now as

o0
Pr(t,s) = / dAp(A)eit AV —h)=irz (10.7)
00 s . 00 g )
HT(t,CL‘) - _21_7r/ e~ VHA -—h)+lz»\d/\ _/ p(/\)e—:t(k -h)+zz)«d/\ . (108)

In this notation formula (10.4) is still valid. Euclidean time correlators are also given by

similar formulae. Let us replace t — —i7 in (10.4) and demand that

1
‘f > Tk+1 — Tk > 0. (109)

It is possible to change the operator ordering in the L.h.s. of (10.4). Using fermionization

(1.14) and denoting by : : normal ordering with respect to fermions one obtains
(i(zn,tn) o d(a,t) ) = dAc}t mik, €=00. (10.10)
The matrix elements of m;; are
mix = P(ti — tk, zi — z) . (10.11)

It is interesting to look how 2 corrections change these formulae. Let us write down the L
correction for the equal time zero temperature n-point current correlator

n

(:7(z1) .. j(zp) :)={1+
1 2¢ 1 . . 0 0 ) 190 0 (10.12)
+Z,§=:1 ?+5§€(“—z"‘)<8_ﬂh—%ﬁ t2oatEn | [
x det (w-{-a‘r(ijm,ikm))/ )
n 7r:vjk =0
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Here ¢(z) is the sign function, and

(10.13)

xklz: — eir2¥
= dA1d) .
/ A A

Let us consider also the 1/¢ correction to the two point time dependent field correlator

<: J(l',t)j(o,()) :) = D2 ( ) /di’/\ezt(A -2 )

x (cos A\123) [ + -A;lcl dhs (L _ L)] +0 (C%) (10.14)

(zero temperature):

The intgration domain A is defined by A = {|A;] > ¢,|Az] < ¢}.

Let us study the asymptotics in different directions in z,¢ plane. Simplest example is
the two-point correlator

(: j(z2,t2)5(z1,t1) 1) = D* = P(tg1,221)P(t12, 212) . (10.13)

An important role is played by the Fermi velocity v = 2¢. In the space like directions

To1 — 00,y — 00, I%I > v integration by parts gives the complete asymptotic expansion

9% o= (=2it)"(2n = I 7T N (= Zzt) (2n — 1)!!
- : 1
P(t,z) = o Z (z + vt)In+1 21 Z (z — vi)2n (10.16)

This is in agreement with conformal results [38-40]. In time-like directions the asymptotics
are different. One should represent P as follows :

1 P ' 1 -9 N A2—h)—iX
P(t,z) = .-/ et =M=z gy . / +/ et A =h =z gy (10.17)
27 —00 27 —00 q

The first term here is a decaying wave packet (t = t2;,7 = x4;):

. » 2
L ﬂexp{—g‘ﬂ—z'htm}. (10.18)

2r ¥t 21

Integration by parts of two other terms in (10.17) gives an expansion similar to (10.16).
So the difference between space and time asymptotics is in the wave packet. A similar

difference in space and time asymptotics in the XY model was found in [8]. Combination
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of (10.4). (10.10) and (10.16), (10.18) gives the complete asymptotic expansion for the .V
cu.rent correlator.
Now let us discuss the asymptotics of temperature correlators. In (10.7) we move the

integration contour down in the complex plane and obtain the asymptotic expansion

o0
P(tz21,221) =T Re Z ,—1-6—”Tt“(1+2K)+““’\K (10.19)
Z/\K
K=0
A =vh+irT(14+2x); Redg>0; Imig>0; K=0,1,.... (10.20)

This gives us the complete asymptotic expansion of N-current correlator (10.4), (10.10).

For small temperature the series (10.19) is a geometric one. We can summarise

T) sin qz9;

P(tar,t1) = | —
(t21,t21) (v 3h§(z21 + vtg1)

(10.21)

where v = 2¢. This is also in agreement with conformal results [38-40).

To conclude, let us emphasize once more that the problem of calculating correla-
tion functions for the quantum Nonlinear Schrodinger equation is a rich interesting and
important problem [41].

We are grateful to L.D. Faddeev, A.S. Fokas, M.J. Ablowitz, T. Miwa, J.H.H. Perk,
B.M. McCoy and N.Yu. Reshetigkhin for discussions.
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