DIRECT CALCULATION OF THE 8 MATRIX

IN THE MASSIVE THIRRING MODEL
V.E. Korepin
Exact quantization of the Thirring model in a pseudoparticle basis is known [1]. Filling of
the sea of states with negative energy makes it possible to calculate the observable
characteristics of physical particles [2]. In the present paper,-this approach {8 used to

calculate the S matrix,

Introduction

The massive Thirring model, in both its classical and its quantum variant, attracts the interest of
quantum field theoreticians. Important progress has recently been achieved in the study of this model. Much
attention has been devoted to the connection between the quantum Thirring model and the quantum sine—Gordon
model [3,4]. This connection makes it possible to describe the model either in accordance with ordinary
perturbation theory, or in accordance with perturbation theory for quantum solitons {5}. In [6], the classical
equations of motion were studied and it was shown that these equations are completely Integrable. The
classical conservation laws are carried over into the quantum variant of the model and significantly simplify
the dynamics (7], The specific structure of scattering made it possible to calculate the § matrix explicitly in
the massive Thirring model [{8-10].

Study of the massive Thirring model developed independently, and it led to exact calculation of the
mass spectrum [11], The paper [2] is essentially a translation of [11] from lattice language into the language
of continuous quantum field theory,

In the present paper, we shall consider the neutral sector of the model in the case of attraction.
We use the exact solution of the quantum model in the pseudoparticle basis {1]. The physical vacuum of the
model ig constructed by filling the sea of negative-energy states. Excitations above this vacuum corresponding
to different physical configurations are considered. The energy of the excitations is calculated. Thus, the
mass spectrum of the model is calculated. All the calculations are made for fixed spatial cutoff |xi < L/2
and for fixed momentum cutoff. More precisely, a rapidity cutoff 18] < A is made. The rapidity is related
to the momentum by the formula p = m sinh 3. The first half of the paper reproduces the results of (2]
systematically without reference to [11]. In the second half, the S matrix is calculated in this approach in
the massive Thirring model. The method used to calculate the S matrix is very close to the method of
calculating the single-loop corrections to the scattering matrix of quantum solitons [5]. The S matrix of two
physical particles is factorized into two factors. The first is the 8 matrix of two bare particles, and the
second is the S matrix for scattering of one bare particle on the vacuum polarization produced by the second
particle, The dynamical calculation of the S matrix [s the main result of the present paper,

In the present paper, we do not discuss the equivalence of the Thirring model and the sine—~Gordon
model. All the obtained results relate solely to the Thirring model. However, we find it convenient to use
the language of the sine=Gordon model. The following correspondence between the Thirring and sine=Gordon
models has been established in the literature [3]. A fermion corresponds to a soliton, and bound states of
fermions correspond to the quantum states of a periodic soliton or fwhich is the same thing) bound states of
the basic particles. The bound state of fermions with minimal mass corresponds to an ordinary particle in
the sine~Gordon model, In this language, it is particularly convenient to compare the 8 matrix calculated
in the present paper with the S matrix known in the literature (8, 10].

We now describe the content of the paper. In Sec.1, we dlscuss quantization of the model in the
pseudoparticle basis. In Sec.2, we construct a physical vacuum by filling the sea and we renormalize. We
give the eigenfunctions of the Hamiltonian corresponding to different physical configurations. We calculate
the energy and momentum of these configurations, In Sec.3, we calculate the scattering matrix of ordinary
particles and their bound states in the sine—Gordon model, i.e., bound states of fermions in the Thirring
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model. In Sec.4, we calculate the S matrix for scattering of a soliton on a hound state of ordinary particles
in the sine—Gordon model, i.e., for scattering of a fermion on a bound state of fermions in the Thirring
model. In Sec.5, we calculate the S matrix of solitons in the sine—Gordon model or fermions in the Thirring
model, In the Appendix, we give known results in the sine—Gordon model.

1. Quantization in the Pseudoparticle Basis

The Lagrangian of the Thirring model has the form
L =iy op—mPo—"7s £ : (Prap) (Y9,  y'=0',  yi=ic® 1)

Instead of &, it is convenient to consider the quantities

X~ o= i 0<g<n, O<o< o P @)
{) - 2 2
The Hamiltonian of the model (1) has the form

H = [ da{ig* ooptmap oo t2 £ 9t g ). @)

The normal ordering is defined here by meauns of the pseudoparticle creation and annihilation operators ot

and §. The vacuum in the pseudoparticle basis is understood as follows:

$l00=0, O|yp*=0, {p*(z), p(¥)},=I6(z—y). (4)
It is obvious that the Hamiltonian does not change the number of pseudoparticles. We seek its eigenfunctions
in the form

 ; =j dz,...dz " " (T oy TP () 0 T () 1O, (5)

The wave function y is completely antisymmetric, and it satisfies the equation 6y=~y. Here,
is the [ -particle Dirac operator with delta-functional two-body potential: g L
n T, i
215 i < ? B \{ L%
= Z[ oy =+ maay | +2 g.; Sla—apl. = (| = (6)
dJumi 4

The continuum eigenfunctions of this Hamiltonian were found for the first time in {11, They can be written
in the form [2]

Pl C AT e 5 E S CEVLE S ET

LR

e @in) ] [-1-—i tan(¢/2) s(.t,—zl)l:h(

i=i

ﬁh’j’n')]; BurBr, KL (7)

Thus, to specify an eigenfunction of the Hamiltonian (), it is sufficient to specify the set of rapidities ,...p.
In what follows, we shall see that 8 is an "unrenormalized" rapidity . The summation on the right-hand side
is over permutations of the numbers 1, ..., 1. The parity of the permutation is “‘1' ..., k;]. The function @
is an eigenfunction of the single-particle free Dirac Hamiltonian:
o{-3]
2.

(%)

The wave function (7) changes sign on the transposition of any pair . The scattering described by the
function (7) is purely elastic. Reflection is absent, and there is only an additional advance of the phase. The
many-particle scattering matrix obtained from (7) reduces to a product of two-particle matrices. The wave
function (7) belongs to the continuum if Im 8 = 0 and Im g = m. The energy of pseudoparticles with Im 8 = 0
is positive and that of pseudoparticles with Im g = = is negative. Thus, the Hamiltonian () is not bounded
below above the vacuum {4),

@ (z|p) = u(p)exp {imoz sh f}, u({i)m-ﬁ (8}

We now investigate the question of the discrete spectrum of the Hamiltonian (6). It can be shown
that all the eigenfunctions of the discrete spectrum can be obtained from (7) by analytic continuation with
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respect to 8 into the complex plane. We illustrate this by the example of two particles. In this case, yx is
equal to

X (2, 22 By, Br) = E (=1) " a% (Ba)u (Br) exp {;m (@it )sh( bithy ) ch ( 5»-*[53,) +

2
by

:m(r.~—x=)ch( ﬁ"jﬂ‘ ) sh ( ri"'?’*')} [1 ~ 1 tan(£/2) e (z—a,)th ( ﬁ*"j‘“,}] \

In this expression, we set §,=B+iw, p,=B—io, Im B=0. The expression in the square brackets hecomes equal
to 8(zy,—=,) and suppresses the growing exponential for zy—z,=>0.

In the analysis of a bound state of n particles, it is necessary to continue (7) with respect to ﬂ
such a way that the wave function decreases with respect to all the differences X, = %;. For this, it is
necessary that n factors in the square brackets become ¢ functions and it is necessary to ensure that the
exponentials decrease in the region where the 6 functions are not equal to zero. Such an analysis has the
consequence that not all n particles can form a bound state. If is easy to show that such a state is formed
in two cases.

.. I
sin (p)sin(w(rn—p))>0, p=1,...,n—1, (9
sin(wn)
then there is formed a bound state of n pseudoparticles with mass M,=m,— .
sin @
2, it
sin (op)sin{w (n—p)) <0, p=1,...,n—1, {10)

sin{wn)

then there is formed a bound state of n pseudoparticles, M.=—m, o

The wave function (7) decreases with respect to the corresponding coordinate differences only if the
inequalities (9) and (10) are satisfied, To obtain the eigenfunction of the Hamiltonian corresponding to a
bound state of n pseudoparticles in the first or second cases, it is sufficient in (7) to set

l=n, p=B+io(n—1-2j), j=01,...,n—1, an
and Im B = 0 in the first and Im B = 7 in the second case.

The energy and the momentum of such a configuration are E = M, cosh Band P = M, sinh B. By
analytic continuation of (7) one can obtain a wave function describing the scattermg of a bound state of n
pseudoparticles on the remaining particles.

We discuss the solution of the inequalities (9) and (10). For fixed ¢, this is an equation for allowed
values of n, Obviously,

uc1,2,....[%]+1 (12)

is a solution of (9)., Here, [ ] denotes the integral part. We call this the principal series, TFor what follows,

it is convenient to divide it into two parts, We denote the n that are less than [i] -1, by n, and the n that
@

are equal to [_n_] and [i] +1 by n
® @

n='-n|a for n=i,..., [i] —-1\,{n=m for ns[jt-—] : [ﬂ—] +1. (13)
ol @ @
We denote the remalning solutions of (9) by n:
n=n; for sinwpsinwe{n—p)>0, n>[—n—] +1. (14)
@

We denote the solutions of (10) by ny, :
n=ny for sin wp sin w (n—p)<0. (15)

We now consider the phase shifts for scattering of pseudoparticles. They all depend continuously
on 8. The phase shift of two pseudoparticles with positive energy & and scattering matrix S is, respectively,
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equal to

E’-—- —lie
—iln =0 () =—ilnf —e ). 16)
Its properties are as follows:
O (B)+@ (—3)=0, @(p)—E, Q(ﬁl:"—E- 17
e - 00

The phase shift for scattering of a pseudoparticle with positive energy on one with negative energy is

t g
i) i W OO | S oilory o S (
(+in) = — ln{ e } 18)
and it has the properties
O (ptin); > 2n—§, @ (B+in) b O(Btin) + @ (—ptin) =2x. (19}
The S matrix for scattering of a pseudoparticle on a bound state of n pseudoparticles has the form
- ) (ﬁ.ﬂ_e—lﬁlfnntl}) (eﬂ_e—i.(n-ﬂ) It
e:m,‘:nj — _i n L2iwn 5 &l + o {— ___ﬂ‘ [_ L
e i B+ B.(—p)=0, n<|[Z]+1 (20)

The S matrix for scattering of a bound state of n pseudoparticles on a bound state of m pseudoparticles (in
the principal series) is equal to

n=1 m—{

S"-”‘(ﬂ}tuxp{izz (D(ﬂ+x’m{n-2p-—m+2!))}. (21)

pe=i 1=l

The phase shift for scattering of a bound state of n pseudoparticles on a negative-energy pseudoparticle has
the form

0.t = Y iaf e (ST ). 2

eMie(natl) _ o1t
puab

We consider first the case n=n, (né [i;—] ~ 1) (13). In this case
®.. (p+in) — nt, Ou(ptin)—>n(2n~8), @ulptin)+®n(-ptin)=2an, O.(f+in)=0,(p~in). (23)

We now consider the case n = n, (13); then

On(ptin) —> nE  Ou(Btin)—>(n—2)2n—nt, @u(ptin)+On(—ptin)=2r(n—2), O,(p+in)=0,(3—in). (24

2. Filling of the Sea of Negative-Enerpgy States

In the pseudoparticle basis, the Hamiltonian (3} is not bounded below. Filling of the sea of negative-
energy states of the pseudoparticles makes it possible to avoid this difficulty [2]. Thus, the physical vacuum
of the model is the following eigenfunction of the Hamiltonian (2):

o = jduxxu,..,ag(zh S ﬂw)lP*'“‘(&] Copre () 103, 25)

The set Py, ..., px is the set of all allowed values of the rapidities of negative-energy pseudoparticles. To
regularize the calculations, we place the system in a box of length L with periodic boundary conditions and

make a rapidity cutoff:
[B]|<A, |z|<L/2 (26)

Such a set {Bj} will be finite (34). Subsequently, we first lift the cutoff with respect to x, L — « and then
with respect to §, A — =, The allowed values of 8. can be found from the condition of periodicity of the
wave function (7) and (25) with respect to each of the arguments:

moLsh B =Z @ (3,—By) + 211). 27)

L

Here, B, ranges over all allowed values in the vacuum except B;; ®(8) in (16) is the phase shift for
scattering of two negative-energy particles, For comparison, we give the periodicity conditions in the case
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/| mol_ sh fyf=2xj. (28)
The energy of the vacuum is _
Eu=—mnz ch By 29)

&

In what follows, it is convenient to use the function

PB)=1L(Gs—B), () =p(~B), (30)

which has a finite limit as L = =, To calculate p(g) corresponding to (27), we subtract (27) from the
equation with number j + 1, go to the limit 1. — = and obtain

m,chﬂ==2np(f3)+j @’ (B—a) p{(a) dez. 31)
B e

Later, we find independently (46) that mg = 0 as A—*mgm.=aexp {—[&/(a—E)]A4}. For this form of m, the
considered equation has one solution that does not dependron-fr—we, . P % .
o< 3=4 <7

p(“)ﬂ(aig)zs;g ““(ﬁg “)' :

It is obvious that such p=L~'(a;,—a,) " corresponds to the rapidity distribution

£ ( a ) .
Lsh{———p; )=2nj. 1 (az2)
sin § oy & atg P d j
Thus, we see that the rapidity distribulﬁb'n"iﬁ'fhé vacuum is quasifree. Indeed, (32) differs from (28) by a

renormalization of the mass and the rapidity [5]:

L8

e n-+E

B. (33)

In the vacuum (25) all negative-energy pseudoparticle states are filled for which |8] < A. The number of
pseudoparticles in the vacuum is equal to (22) : —

E .'raL T \..\' i
o sinf n 3h(rc+§ A)'

Thus, a correct physical vacuum has been constricted.

We consider excitations above this vacuum. The excitations are characterized by the eigenfunctions
of the Hamiltonian whose energies are greater than the vacuum energy. From all the excitations, we choose
those for which the total number 3} is the same as in the vacuum (34). This corresponds to our considering
the sector with zero observable charge. We shall take care to ensure that all the Re ;S'J are smaller than A
in modulus. First, we introduce into the vacuum one pseudoparticle with positive energy. In other words,
we consider an eigenfunction of the Hamiltonian (3) analogous to (25) in which the set 8. contains not only
vacuum pseudoparticles Im ﬁj = 7 but also a pseudoparticle with , Im 8, = DOn tfle plane of the complex
B, this set is shown in Fig.1la. Following (2], we see that this ‘Mresmnds to a basic particle
in the sine~Gordon model. The existence of the new argument of the wave function changes the periodicity
conditions. They have the form

| mzshBeY 0 BB +0 (g bin) 120 55)

The energy and momentum of this wave function are, respectively, equal to

Bopr=iiti 2 ch f,+mq ch By, P“,=-—m;,2' sh Butmo sh 3. (36)
&

A

The set {E‘J} differs from the vacuum set {.%} (32) by a quantity of order 1/L. To describe {E} }, itis
convenient to introduce the functions

Wo(B) L (3P, Fn(ﬁ,-}=W(ﬁ;)p(ﬂ,-)-=§’:-_—:B—é’—=fn(f5—{5p), @7
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which have a finite limit as L — =, From Eq. (27), we subtract Eq, (35), go to the limit L — =, and, using
(31), obtain

0=0 (ptin—p,) + | ' (B—)Fo(a)dat2ak,(p). (38)

Here, we can go to the limit A — . It is convenient to differentiate this equation:

0=’ (Btin—p)+ | O (B—c) Fy’ () dot2aF, (§). (39)

As a result of the introduction of the pseudoparticle with positive energy, some of the vacuum
pseudoparticles are pushed beyond the cutoff. It is clear that the numbers of pseudoparticles pushed beyond
A and beyond —A are, respectively, '

AN(A)=—F,(A), AN(—A)=F(—A). (40)
More accurately, the integral parts should occur on the right-hand sides.

Thus, the number of pseudoparticles in the sea (the number of 8, with Im ==, [ReB;]<A) is
N — AN(A} — AN(-A) (24). Thus, the total change in the charge as a result of the introduction of the
positive pseudoparticle, i.e., the observable charge, is

Q=1—AN(A)—AN(—A) =1+ j' Py (p)dp. 41)

—A

We calculate the observable value of the energy with allowance for this effect (29), (36):
Ey=E,,y—Ex=may ch By+mo E sh B (B—s) — mo ch AF(A) +m, ch AF (—A).

Finally,

A

Ep=m,ch 8,tm, I sh pF; (p) dp—mq ch pFp(B) |-s*=ms ch fo—ma I ch pF,’ (B)dp. {42)

-A

Similarly, for the momentum
A

Py=mash By—my _[ sh 37, (3)dp. (42)

—-A

Equation (39) can be solved by a Fourier transformation:

- h(wk —y (& i :
Fy (k)= [ e®F' (B)dg=py' (k) 1y’ (k)= chf(,ffw]} T A (L) O A (44)
where ) 2134 R
- N - sh(20k) p At
) (k)=-£e“(D (Bdp=—2n s, ¥ ms-j; e’ (pHin)dp=2a— (45)

The asymptotic bebavior of F;(B} as |B| = = is determined by the singularities of (44) af the points

k = #in/2(7 = «). It has the form _ { )|
' =1 g n i ) Z ” “
s Blese THE sm(::+§ )ch( at+E ® ﬂ”)) ' ‘: W ,:' 2
Hence and from (42) it can be seen that E;~is finite only if -
3 da _ n &
= [ — —_— J e g - R 46
o “xp{ P A}‘ Y w= 1 4 = He)
Using this, we obtain for the energy and the mo mentum Y i
L ]} n k14 L0 n
= i y Pp= in {— h 5 47)
By Zm;.sm( T s )ch(2(ﬂ_m) {i) P, thsln( e )s (2(1‘__‘”) B)

The first terms in (42) and (42) do not contribute to (46). The "bare™ rapidity f has been renormalized and
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- A 1
-A__J__‘"_:iu- -A e - fz_mfr
‘85:]'"2
Re = » R
a ﬁ? P 0 ét.l o
Imp Img
53 _|' W —t i =5 & g2
53 1 51 * — (1
n_[‘}ffw - :
I A 5w
b _ w by !
Fig.1 Fig.2

transformed into the physical rapidity @ (33). The quantity m,, which in what follows will be the soliton
mass, is equal to

R R (0 (48)
m=as Y ( n+§)‘
The observable charge is equal to
Q=1+Fy" (k) |amos=0, | ;ﬂj _/ (49)
as must be the case for a basic particle in the sine-Gordon model. n=172,.. [ w
We introduce into the vacuum a bound state n_of pseudoparti . This means that we consider

the wave function (7), (25), which is characterized by the following set of rapidities. In this set we have

besides the vacuum Im 3, = 7 a further n = n_rapidities distributed in accordance with formula (11):

p=B+iw(n—1-20), 1=0,1,...,n—1 (50)
On the complex rapidity plane, this set is shown in Fig.1b. The new periodicity conditions have the form

moLsh = ¥ @ (87 —p") +0, (b +in—B) +2x) (51)

(see (22)).

As in the case of (27), we introduce the function

F.(s,)aﬂ’?#. (8-B). (52)

E RN

For it, we obtain an equation analogous to (38) and (29):

0=, (p-B+im)+ | O (3-a)Fa(@)da+2uFu(p), 0=0,' (p—B+in)+ [ O (B~o)F.' (a) dat2nFy’ (B). (52)

The expressions for the observables are similar to (41), (42), and (42);
A

Qx=n+ j-F..' (p)df, En=—ms j ch BF," () dp, P,=—m.j sh BF.’ (B)dp. (54)

—h

In accordance with (22),
n=

0, (p+in)= Z O (int+ptio (n~1-2))). =
Just

o

Hence and from {52) it can be seen that

Fu®)=Y" 1o(3-Btio(n—1-2))) =1.(5-B). (55)

dwa0

The Fourier transform f.'(8) has the form
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ch(kw)sh(kon) —nn
n‘ = . ' nl— == —_— 6}
W= S e—anage ® e o P
Calculating the observables (54) using (56), we obtain T
E“:-M,‘ & =it ——--..:E—........ N = "= H i nd __.. I
oh(2(u_m} B), P.=M, sh (2(;1*@) B) Qu~0, My=2m,sin (2 n_mn) 57)

These expressions and (79) enable us to identify the coupling constants in the Thirring and sine—Gordon
models: i
1/8=0, {/8=ne/(n—q), 0<y'<8xz, 0<y<in. (58)

It can be seen from these expressions that all observables which commute with the Hamiltonian and the
Hamiltonian itself have, when calculated on the constructed wave functions, the same eigenvalues as on the
bound state of n particles in the sine~Gordon model. The wave function corresponding to the introduction of
one particle n = 1 with respect to all quantum numbers is identical with that of a basic particle, We now
consider other eigenfunctions of the Hamiltonian (3), :

We introduce into the vacuum a bound state nfmn2 pseudoparticles (18). In this case, all calculations
are as before. However, in calculating the Fourier transform of @./(+in) (22), (53) we find that the
imaginary part of the rapidity of terms with | = 0, n -~ 1 istoo large. The pole of the integrand passes
beyond the cut, and the expression (56) is no longer valid. Independent calculations lead to the expression

AN oty BEEEO)  fomr iy, F ()=, RO D= 3% (12, 59)

lI A "7 o=
n =70

Calculation of Q, E, and P leads to the results

p 1 Tt
This result is explained by the fact that the obtained (k) does not have singularities at the points k = +in/
2(m — «). This state can be regarded as an analog of the vacuum with nontrivial topological charge and
definite parity. We recall however that in the present paper we are interested in states with Q = 0,

Introduction into the vacuum of a bound state of n; (14) pseudoparticles leads to a state of a charged-
vacuum type:

E=0, P=q, oa[g-(zm)], 1>0. (61)

Introduction into the vacuum of a bound state of N pseudoparticles {15) leads to a state of the type containing
a soliton and a charged vacuum:

Bomeh(gray) Pmeb(riose), o=[Zmadal o, -

Let us consider a'hole." It is described by the wave function (7}, 25), which is characterized by the
following set of rapidities. The set differs from a vacuum set in that there is no filling of the state B=Pn,
The new periodicity conditions are

maL sh b= ZG(B;—-B.) +2nj, j#ne. (63)
Rk

In going to the limit T. — « we shall change n, to achieve B,..,—8s, Bni—Bs We shall eall B, the unrenorma-
lized rapidity of the hole. We make calculations as before and obtain for

Fi(p)= ﬂ-ﬂ&.(p—ﬂ.) (64)
ﬁ,q.r—ﬂ,
the equation
0==@ (3—pu)+ [ @’ (B—a) Fs (o) da+-20F, (B). (65)

The observables can be expressed in terms of F in accordance with the old formulas analogous to (54). The
solution of this equation has the form
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sh{k(n—2m))

)+ (—B) = 7 )
MEHAD=0, (=g (66)
The observables, calculated on the hole, have the form /) "
n : % 1 =, /i " S
B= A = T, e L y AT 67
n mhch(ﬂ{n—-m] th), B, mash(z{u_o_)) Iia.) g / )

This is a state consisting of a charged vacuum and a soliton.

It can be seen from our calculations that the Hamiltonian (3) is positive in the basis of physical
particles (above the vacuum (25), (32)),

The treatment of scattering states is trivial, since all the equations are linear and all the observables
are additive.

It is easy to construct the wave function corresponding to the state of a soliton plus an antisoliton in
the continuum. To do this, we introduce into the vacuum two holes with rapidities .81 and ,82 and a bound
state of n_ pseudoparticles (13) with rapidity p.=(8,+8:)/2. The set of unrenormalized rapidities f charac-
terizing tﬁe wave function of the soliton—antisoliton configuration is shown in Fig.2a, The value of B is
chosen such that the wave function in the rest frame, B1 + ,82 = 0, has a definite parity, The deformation of
the vacuum produced by the holes and the bound state is additive {see (55) and (64)):

moLish Bi= Y, © (o)~ (BiBu) ~ 0 (Br—pa) h On (Bri—(5:+3:)/2) +2;
’ (68)

BB e T B
Fuim = 3B+ Brmt) o (- 250 -

.BI-H‘_ i

All observable quantities are also additive. They have the form (60), (67):

B
2(n—w)

S IO
2(n—w)

T

E=my ch (ﬁ——-ﬁ E,) +my ch (m

pz). P=m, sh( ﬁ.) +ma sh( pz) . 0=0. 69)

The spatial parity of this state is [12]
(—1)"m. (70)

Thus, the eigenvalues of all observables that commute with the Hamiltonian calculated on such eigenfunctions
are equal to the values of the observables calculated on the soliton-plus-antisoliton state.

Note that the functions F'(g) (37), (52), (68) can be called the form factors of the corresponding
particles, i.e., F(B) is the density of the bare particles from the sea in the physical particle (42), 43), (54),
(72).

3. S Matrix of the Basic Particles

In one-dimensional potential scattering, the S matrix can be defined as follows. We place the
system in a box and consider two cases: the potential is equal to zero and the potential is equal to a given V.
The phase collected by a wave function on passing through the box in the first case is 9= kL and in the
second it is ¢, =kL + (1/i) In S(k).

Thus, for the S matrix in the case of motion of a particle in the potential V we obtain the definition
L 1o s =g 0 -0 (0. )

In the case of periodic boundary conditions, as argument on the right-hand side we shall take, for example,
the allowed values of k in the free case. Then ¢ (k) will be a multiple of 27 and ¢, (k) will not be a
multiple of 2w, This formula is literally correct in the absence of reflection. If retzlection is possible, it

is necessary to consider symmetrized and antisymmetrized wave functions for which the S matrix is diagonal
freduces to a pure phase). We consider only even potentials for which the above is true.

We apply this definition to the scattering of basic particles in the sine—Gordon model.

We shall calculate the phase shift of the basic particles as follows. We consider first the wave
function of the Hamiltonian corresponding to one particle with bare rapidity 8, (see Fig.la). We calculate
the phase @, which the wave function collects when its argument varies from 0 to L (along the contour), The
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phase ¢ is made up of the free phase m L sinh 3 and the phase shift resulting from scattering on pseudo-
particles in the sea:

@=mysh Mﬁz O (B—fstin) =moL sh f+ E @ (p—pstin)+ j O (Bi—a-+in) fp (a—3,) da. (12)
] : | —

Here, we have used (20) and (37),

We now turn to the subtraction of @y For this, we consider a wave function corresponding to two
basic particles with unrenormalized rapidities ,61 and B,.

The periodicity conditions for such a wave function have a form analogous to (35),

melsh fim= Y 0GB+ Grtin—p) +0 (Brrhire=Bs) +2a1).
A

The funetion Flz(ﬂ}, like (37), satisfies an equation analogous to (38),

0= (p+in—p) +® (p-Hin—ps) +2nFa(8)+ | 0’ (p—a) Fux(a) da

The solution of the equation has the form (44) Fio(p)=(B—Ps)/ (Bsss—Bs) =fp (B—3) +/o(B—Pa).

We now caleulate the phase ¢, collected by the first particle in the presence of the second on the
passage around the contour (as its argument changes from 0 to L), The calculation of @, is similar to that
of @ :

1

¢s'=an sh ﬁ1+ﬂ+® (fh-ﬁl) ‘["E ] (ﬂi‘ﬁk"'iﬂ) “""anSh ?’I+Z () (ﬁl_ﬁj+m}+j ‘D, (ﬁi*a+iﬂ) (!F (C‘_ﬁl) =
]

fo(e—B2) )dot-sit+@ (B, —Ba).

Here, ®(3,—p,) is the direct phase shift resulting from scattering of two pseudoparticles with rapidities 3{
and B. (16), and 7 has arisen from permutation of the arguments of the antisymmetric wave function. We
use formula (71) and obtain

108" (be—pe) =t O B+ | O(—paortin)fy (@) demart® (i) + [ O (he—pr-rtin) o (o) da

-8

[@ (A+i) AN (A) +O@ (—A+im) AN (—A) ). (73)

It is easy to explain the meaning of each term on the right-hand side. The first fwo terms are simply the
phase shift for scattering of pseudoparticles with rapidities g, and 8,. The introduction of the second pseudo -~
particle deforms the vacuum. This deformation is described ‘hy the function jp{a—B;) (44). It can be seen that
the third term is the phase shift for scattering of the first pseudoparticle on the deformation of the vacuum
produced by the second pseudoparticle. The expression in the square brackets is the contribution of the
particles pushed beyond the cutoff; one can show that this expression is equal to 27, Using (17), (40}, and
{44), we can show that In s''(p) is odd.

We calculate the derivative of the phase shift:
—i—imswﬂ)wms)—rf O’ (p—atin)fy’ (o) do.
i dj i .
The Fourier transform of the derivative has a particularly simple form:

ch{k(n—3m))

B & Bgpaai o AT () T e i il A
Job g S = R R = —2a s

(see (44), (45)),

Calculating the inverse Fourier transform, we obtain finally
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sh (—-—ﬂﬁ—)ﬂsi.n (-’l"’-—) sh 0-Fisin—
T—@m 8

2{n—w) —
S"{ﬁ)= — -.
np i { RO e
sh (-—-—-—-—-2 et ) isin ( “——-—_w) sh(0)—isin 3

Thus, we have calculated the S matrix of two ordinary particles in the sine-Gordon model. This expression
is equal to the known {30).

We consider the phase shift for scattering of bound staies of the basic particles. We consider the
scattering of a bound state of n, particles (12), By'=B,+io(n—1-2p), p=0,1,...,n—1, on a bound state of m,
particles, pl=p.+io(m,—1-21), 1=0,1,...,m—1. After calculations similar to those above, we obtain

n—l m—1

1 4
— oS (B:—B2) =nmn+ZZ{(D(ﬂ;—ﬁ,+lw(n~2_a—-m+2£)}+

Puall [==0

| 0" (Br+io (1—1-2p) ~atin) fp (a—prtio (2b4+1-m))da}.

It can be seen from this that

n—1 m—i

s~@=]] I ER (a+i%(n-—m—2p+2£) )

gl fuml

We have obtained a result agreeing with the known (81). It is here important that, on account of (32), the
expressions (11) and (84) are identical,

It follows from the linearity of all the equations that the S matrix factorizes and the phase shift of
several particles is equal to the sum of the two-particle phase shifts.

4. S Matrix for Scattering of Bound States of

Ordinary Particles on a Soliton

We caleulate first the S matrix for scattering of an ordinary particle in the sine—Gordon model on
a soliton. For this, we consider the scattering of an ordinary particle on a soliton—antisoliton state. The
set of rapidities characterizing the wave function describing this scattering differs from the vacuum set by
the presence of a pseudoparticle with positive energy B = B, two holes with rapidities §, and 82, and the
bound state of n, (13) pseudoparticles with rapidity 8, = (16’I + {32}/2 (see Fig.2b), For this configuration,
the periodicity conditions are

’ ] r + 2 ’ ’
moL sh By =2+ ® (B, +in—Bs) + ©a (p, 'jizj“)t 2: , OBy —B).
It is obvious that (44), (68)

b

Por(8) =228 pr(g)+Fu (5.
ﬁm'—lh

We now turn directly to the S matrix. The linearity of all the relations makes it obvious that the
phase shift for scattering of an ordinary particle on a soliton—antisoliton state is equal to the sum of three
terms: the phase shift for scattering of the particle on the first and the second holes, 8,(Bs—B1), Bu(Ps—p.), and
the phase shift 6, for scattering on the bound state of n, pseudoparticles. For the S matrix S’” of the
considered process, using calculations similar to those in the previous section, we obtain

1 B2

-i—lnS..’=6a(§:—B.}+6n([5.—|3a}+6.. (E:s—-&;—) — O (A+in) AN(A) —O (—A+in) AN(—A), Bs=ps, Bs™Pe (74)
Here, AN is the number of particles pushed beyond the cutoff of the soliton—antisoliton configuration. The
values of &, and &, are, respectively,

8 (§)=—0 (i) + | O (p-cctin)fu(@ddoctn,  Su(B)=Bu(p)F [ @ (p—ctin) fo(@doctnm. = L) (75)

Direct calculations by means of (20), (18), (45), and (56) show that 8a(p)—@ (A+in) AN(A)—@ (—A+in) AN (—A)
are multiples of 27. One can show that (19) and (66)) 6,(B) is odd. It is easiest to calculate the Fourier-
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transform of §/(8) (43}, (66):
ch{wk)

B o

B’ () =—’ (k) +¥" (k) fo" (k) =—27

Caleculation of the inverse Fourier transform leads us to

E ¥ i o il
s (0,—6,) +icos = | [ sh(B, ez)+;m(ﬁ»e—)

Sll*=

sh (85—8,) —i cos "IE sh (Bs—Bs) —i cos (1%)
Here, we have used Eqgs. (76), (74), (33), (58) y'=8no/(n—w), 8=xB/2(n—w). Thus, the S matrix for scattering
of an ordinary particle on a soliton is equal to the known (82)

—_ .\—\ S'(8) =—[sh 8-+i cos (1'/16) 1/[sh 81 cos (1';'16) 15

One can again calculate 6,(8) as the phase shift for the scattering of a hole B, on a particle 8,. We
gencralize the definition (71) as follows, We consider those pseudoparticles in the vacuum whose rapidities
are closest to ,6’3, i.e., pseudoparticles with rapidities Ba-y, Briss (63), and we calculate the additional phase
that they acquire in the presence of the introduced pseudoparticle: @=g.—¢.. Since the momenta of a hole and
a particle in the sea are opposite, the sign on the right-hand side of (71) must be changed. Thus, in the case
of a hole

—:-lnS-sq:i—-qaa. (77)

Direct caleulation in the framework of this definition leads to the above expression for s'(g).

The S matrix for scattering of several particles on a soliton factorizes because of the linearity.
From this there already follows the correct formula for the S matrix for secattering of bound states on a
soliton [12]. Calculations similar to those made at the end of Sec.?, using (44), (45), and (55}, lead to the
following form for the S matrix for scattering of a bound state of n = n particles on a soliton:

\ s-{e)=ﬁ st (H'H}—;(n—-‘l-ﬂp)) .

P

This expression agrees with 83).

5, S Matrix of Sclitcens

The phase shift for scattering of a soliton on an antisoliton, (1/i}ln 8 (77), is the additional phase
that the soliton acquires in the presence of the antisoliton. We consider the eigenfunction of the Hamiltonian
corresponding to the soliton—antisoliton configuration {see Fig.2a). We recall that this configuration consists
of two holes )31 and 5, and a bound state of n, (13) pseudoparticles, B.=(p.+ps)/2. To calculate the phase
shift, we use the definition (77). In accordance with the definition, (1/i)ln S is the difference between the
two phases @, and ¢,, where ¢, is the phase collected by a free hole on the passage around the contour.

The phase @, is the phase which the hole collects on the passage around the contour in the presence of the
other hole and the bound state of n, pseudoparticles. By the phase of the hole, we mean the phase that is
collected by a pseudoparticle from the negative sea whose rapidity tends to 8,.

We caleulate first ¢,:

que—mLshpt Y Q(ﬂlwﬂ.)+¢,(ﬂl+in— ﬁ’;'?").

[
Here, g,, are solutions of Eq. (68). The first term here is the free phase; the second term is due to scattering
on the particles that constitute the sea; the third term is the direct phase shift for scattering on the bound
state of n = n, particles. The quantity Ek differs from f, by an amount of order 1/L. We expand the
second term in a series in this difference:

wim—mLsh Bt Y @ (BB 00 (Botin— ﬁ‘:f” ) =0 (=B Y0 (B.—b) (BuPr)-

The last term here can be written as (68):
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Y, 0 B-p) BF= [ 0 Br-a) Pus(a) dex.
Finally (68)

q,zm{ —moLsh ﬁ.+2 m(pr—gs,.)-bj D' (Bi—a) s (a-m)da} + 8, (Bi—B2) 62 (Bi—Pa). (78)

The expression in the curly brackets depends only on ,Gl:

84 (B) =0 (8)— f da® (- (@), Ss(B)=—0u (2B tin) - [ 0 gt 2T e A e

(see (16), {22), {56), (66), and (53)).

Thus, we have have calculated €. We shall not calculate ¢, but use the fact that ¢, depends only
on §, since this is the free phase. We dlfferentlate the expression —iln § = ¢ = @, {(77) with respect
to B8.. Then ¢, will not contribute to the derivative, as in the case of the expression in the curly brackets
in (78). Finally, we obtain

. (B) =0 (§) - jdwb o) @), o/ @) =2nhe(5) -

The phase 51 is the hole~hole phase shift. The phase 62 is the phase shift for scattering of a hole on the
bound state of n = n, (12) pseudoparticles. The value of 4, can be calculated to the end (59);

v
ch(%ﬁﬁ;}]) sh(igi-i—,f-)
oh (7 P-t3c) (2 -150)

e e n even, ¢%P=
If we bear in mind that 0=np/2(n—w), 1'=8ne/(n—a) (33), (58), it is clear that exp{ iﬁziﬁ}l is equal to U(#8)
(85). With regard to 6:(B), it is easiest to calculate its Fourier transform:

. o @0:(B) - N sh((n—2aw)k)
J' T e dlald o h(kw)ch({n-—m)k)'

(see (45), (66)).

If we compare these expressions with (85) and (86), we see that we have obtained an expression
identical to the known expression for the soliton S matrix, It is clear that from our calculations we have not
found the constant factor of the S matrix, The common factor can be obtained either by means of Levinson’s
theorem [12] or by analyzing the residues of the S matrix. The S matrix of several solitons will be
factorized because of the linearity of all the obtained equations.

I should like to thank L, D. Faddeev, A. G. Izergin, and E. K. Sklyanin for helpful discussions.

Appendix

We describe the well-known results in the sine—Gordon model. The Lagrangian of the sine—Gordon
model has the form

1 1
z=—[ 5 Gw-wa-esa |.
1 2

To describe the quantum results in this model, it is convenient to introduce y = 8my/(87 — y). We denote
the soliton mass by M.. The mass of the bound state of n basic particles has the form

M, = 2M, sin (—1-3 ) (79)
16

The state with n = 1 is a basic particle.

The S matrix for two basic particles has the form [10]
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b._s..__..h

sh(01~03) + isin (i‘a—)

§1{0—0:)= 0y > B2 (80)

’ L

sh (8, ~B2) — i sin (-';—)

The energy and momentum of these particles are E = M, cosh 8, + M cosh #, and P = M, sinh 6, + M
sinh 6 . The S matrix for scattering of a bound state of n basic particles on a bound state of m basic
particfes [9, 8] can be represented in the form

n=1 m—1{

§nm (By2) = H Hsu (e‘m%‘; (n—m+29-2p) ) . 312=9|TQa >0, 81)

=0 g==)

The S matrix for scattering of a basic particle on a soliton has the form

sh 02+ icos (-;2—)
Sy(0ya) = — ‘ (82)

sh elz—l cos ( —'!‘ » )
16

The S matrix for scattering of a bound state of n basic particles on a soliton [8, 8] can be represented in the
form

=1

s"(e.,)=]]s' (euﬂ—:%(n—i—zp) ) . (83)

p==0 -

The S matrix for scattering on an antisoliton is the same. The expressions (79), (81), and (83) indicate
that the bound state of n basic particles can be represented as n noninteracting particles propagating
together with complex rapidities

9,==B+.!—I-}—(n—i—2p), ImB=0, p=0,1,...,n~1. (84)

We consider the soliton—antisoliton S matrix. In this case, the reflection coefficient r is nonzero.
We denote the transmission coefficient by t, It is easiest to describe the § matrix by considering a soliton-
antisoliton state with definite parity (symmetrized or antisymmetrized wave function). In each of these states,
the S matrix reduces to a pure phase shift. We denote these S matrices by ;. It is known that S, =t = r.
In the considered model,

4m 4n
gh — (in+0) ch — (8 +ixt)
S=(0)=ux(0)8(0), us(0)= g Be(@)=~ "
sh-?— (in—0) oh-f— (8 —in)
{85)
4 | 8
" b sh ((-a———z-) x) sh ( if ?:)

T?
§(0)=omp _I z £ 4
o sh (—) ch (-—»z)
2 L
The Fourier transform of the logarithmic derivative of S(#) with respect to the unrenormalized rapidity has
the particularly simple form (22)

i-js”" dlns@ . sh{(a-200) 86)
d sh (ko) ch{(—0)k)

Finally, we note that all the many-particle 8 matrices reduce to products of two-particle S matrices.

LITERATURE CITED

_ A. Berezin and V. N. Sushko, Zh. Eksp. Teor. Fiz., 48, 1293 (1965).
. Bergknoff and H. B. Thacker, Preprint FERMILAB-Pubh-78/61-THY (1978).
. Coleman, Phys. Rev. D, 11, 2088 {(1975); S. Mandelstam, Phys, Rev. D, 11, 2026 (1975),

n o L0 DD e
72 B ol |

. A. K. Pogrebkov and V. H, Sushko, Teor. Mat, Fiz., 24, 425 (1975); 26, 419 (1976).
. L. D. Faddeev and V. E, Korepin, Phys. Rep. C, 42 1 (1978). ) 4 ta

966 V' ; i



6. A. V., Mikhailoy, Pis'ma Zh. Eksp. Teor. Fiz,, 23, 356 (1976); E. A. Kuznetsov and A. V, Mikhailov,
Teor, Mat, Fiz,, 20, 2028 (1977); A. Izergin and J. Stehr, Preprint DESY-76/60 (1976); A, G. Izergin
and P, P, Kuligsh, Lett, Math, Phys,, 2, 297 (1978),

7. A. M. Polyakov, Zh. Eksp. Teor. Fiz., 68, 1975 (1975); P. P, Kulish and E. R, Nisimoy, Teor. Mat,.
Fiz,, 29, 161 (1976).

8, A. B, Zamolodchikov, Pis’'ma Zh, Eksp, Teor, Fiz,, 25, 499 (1977}; A, B, Zamolodchikov, Commun,
Math, Phys., 55, 183 (1977).

9. M. Karowski and H, J. Thun, Nucl. Phys. B, 130, 295 (1977).

10. I, Ya. Aref’eva and V. E. Korepin, Pis’ma Zh. Eksp, Teor. Fiz., 20, 680 (1574); L. D. Faddeev,
P, P, Kulish, and V, E, Korepin, Pis'ma Zh, Eksp. Teor. Fiz., 21, 302 (1975).

11. A. Luther, Phys. Rev. B, 14, 2153 (1976); 15, 403 (1977); J. Johnson, S. Krinsky, and B. McCoy,
Phys. Rev. A, 8, 2526 (1972).

12, B. Berg, M. Karowski, W. R. Theis, and H, J. Thun, Phys. Rev. D, 17, 1172 (1978).

Publisher’s Note, Some corrections to the original paper published in the next Russian issue have been

inserted already in this translation.

'ANOMALIES AND ELLIPTIC OPERATORS

V.N, Romanov and A.S. Schwarz

\.
\\,_ The coefficients of the asymptotic expansion of Sp exp(—tA) in thedimit t = 0 for the
operators of quantum field theory are calculated and it is showp/how the obtained results
can be applied to the calculation of the axial and conformal gabmalies, charge renormaliza-

1 in gauge theories, and to the investigation of two-di sional electrodynamics.

he so-called anomalies in quantum field theoryAfave recently attracted much interest. It is
customary to speak of an anomaly if the quantum expectatipf value of some quantity differs from the naively
assumed value and the difference cannot be eliminated by renormalizations.

In the present paper, we shall investigate apdmalies and renormalizations in the single-loop approxi-
mation by means of the methods of the theory of elliptic operators. Namely, we use the fact that for an
elliptic operator in thg limit t — 0 there holds fie asymptotic expansion

ofp(—t4) | 2>~ Z%(zlA)r."‘.

The coefficients ,(z|4) can be calculagted by quasiclassical methods; for their calculation, it is convenient
to use the algorithm developkd in [1]./ This algorithm will be briefly described in Sec.2, In Sec.3, we give
the coefficients ¥,(z|4) for the opervAtors encountered in quantum field theory (the calculation of these coeffi-
cients must be regarded as theé, mgin result of the paper). In Sec.4 we show how it is possible to calculate
the anomaly of the axial current/and conformal anomalies by means of the results of Sec.3. Finally, these
results will be used to calculate the renormalization of the coupling constant in gauge theories (Sec.5) and to

study the Schwinger model dimensional massless electrodynamics (Sec.6).

In the present paper, all figlds are assumed to be smooth and defined, not in the physical space with
pseudo-Riemannian metric, but on cympact manifolds with positive-definite metric (in other words, we
assume that the so-called Euclidean rotation has been made}, This enables us to go over from hyperbolic
operators in the psgudo-Riemannian spgce to elliptic operators on Riemannian manifolds.

2, Let' A be a differential operator of m-th order on the compact n~dimensional manifold M:

e ): aa(2) D",
lo|sm

..., %, are local coordinates, of=(o,...,o,) is a multiple index, |a|=ast... ta,,
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