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Abstract. A class of two dimensional completely integrable models of statisti-
cal mechanics and quantum field theory is considered. Eigenfunctions of the
Hamiltonians are known for these models. Norms of these eigenfunctions in
the finite box are calculated in the present paper. These models include in
particular the quantum nonlinear Schrcidinger equation and the Heisenberg
XXZ model.

1. Introduction

A lot of two dimensional models have been solved by means of the Bethe Ansatz,
see for example [1-5]. The recently formulated quantum inverse scattering
method (QISM) [6. 7] disclosed the algebraic nature of these solutions. An
interesting problem is the study of perturbations of these models. Such a study
requires the knowledge of the norms of eigenfunctions in the finite box. Gaudin
studied this problem for the quantum nonlinear Schrcidinger equation [8] and
made the remarkable hypothesis that the norm of the eigenfunction is equal to
some Jacobian. A similar formula for the norm of the eigenfunction in the
Heisenberg XXZ model was presented in [9] by Gaudin et al. Authors of [9]
emphasized that the arguments given in their paper do not really constitute a
proof. In the present paper these formulae are proved and a more general result
is obtained. The norms are calculated for any exactly solvable models with the
R matrix either of the X X X model or of the X X Z Heisenberg models.

The contents of the paper are as follows. In Sect. 2 the main formulas of QISM
are presented. The proof of the norm formula is long, so in Sects. 3 and 4 the hnal
formulas are given. In Sect. 5 the explicit expression for the anticipated answer is
examined. We prove that this expression is characterized uniquely by some of its
properties. In the rest of the paper these properties are proved for the norms of
Bethe wave functions themselves. As the calculation of the norm itself is
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complicated, the scalar product of two different wave functions is examined at first.
So in Sect. 6 the description of the scalar product is presented. Note that our
approach to the description of the scalar products is close to that of [10]. The
properties ofthe scalar product announced in Sect. 6 are proved in Sect. 8. In the
proof a special case of the 6 vertex model is used. This model is constructed in Sect.
7 and represents the main point of the paper. The knowledge we have of the
properties of the scalar product permits us to demonstrate the necessary properties
of the norm. So in Sects. 9 and 10 the proof of the formula for the norm.
announced in Sect. 4, is completed.

2. Notations

First of all let us remind the reader of some notations of the QISM. Eigenfunctions
of the Hamiltonian of the physical system are constructed by means of the
monodromy matrix of an auxiliary linear problem T(2). In our case T(7) is a 2 x 2
matrix, its matrix elements being quantum operators, which depend on the
spectral parameter ,t:

Commutation relations between these matrix elements are given by the formula:

R(,1, p) ( r(1)@ 1) (1@ r(p)) : (1 x r(p)) ( r( 1) x I) R(1, p) . (2.2)

Here 1is the unit 2x2matrix, R(A,p) is a 4x4 matrix with c-number elements.
Another way of writing (2.2) is

R " oQ', u) T,(2) rrfu) : Tp(0 \Q.) R, p(1, u\ . (2.3)
This means that T,(1) is a 2 x 2 matrix which acts on the 2 dimensional space with
index a and Tu is a matrix which acts on the space with index p(a +B). The matrix
Ro, acts in the tensor product of these two spaces. We shall deal with R matrices of
the followins form:

R(7, p):

f@.i l  o o 9lo 1 stu,^) 9 I. e.4)0 50.t, ),) I 0 |
0 0 0 f( t t ,A) l

For models of the XXZ tvoe:

sinh(l- p+2i4)

(2.r)"u:(tl:l ii:)

f (4, tt): sinh(2 - ry)
(2 s)

For models of Ihe XXX type:

f(A,p):() , -p+irc) l ( )"-p),  s(1,p): i rc lQ.-1t)  (2.6)

Here 7,p are spectral parameters and4,rc are coupling constants. It is known that
(2.6) is the l imiting case of (2.5). One must replace 7,p,r1in (2.5)by

(2.7)

. isin2r1
gl^,P):  .  . ;  - - --  s lnnu- U)

gry,Ep,EA,



Calculation of Norms of Bethe Wave Functions 393

and let e +0. In the notation (2.3) the R matrix (2.4), (2.5) looks like

R, p(4, p) : [sinh(p - A + id I sinh( p - )')) cos t7' I,I o
* [i(sin q) . cosh(p - ,t + ifilsinh(p- ),)]o]o3, (2.8)
* i fs in24lsinhtt- ,1)]  (o,  o]  + o) o u l :

^+1t)ZO- :  O'  - r  IO- .

Here on.o are the standard Pauli matrices in the spaces with indices u or B
respectively. Let us write down the commutation relations (2.3) for the R matrix
(2.8) explicit ly:

IAQ)+ D(1),  A(t t)+ D(p) l :O,
lB(),) ,8(1t) f :0,  lCQ,),C(t t) f :O,

Afu)n(D : f g. ))BQ,) A( d + sQ, dB(tt) AQ\,
D ( tt) B (A) -- f ( A, tt) B ( 

^) 
D ( rt) -r g ( p, ),) B ( p) D ( ),),

C(1)A(1t): f fu, 1)A(p)C(1) + sQ, 1t)AQ,)C(1t) ,
C().)D(rt): f (1, p)D(tt)c(^) + sfu, ).)D(^)C(ti ,

lc(),,), B(),B\f : sTc,1B\ \AQC)D(A\- A(AB\D?\}
: sQ,c, )B) {D(18)A(1c)- D(^\AQ\} . (2.1s)

Other important objects in QISM are the pseudovacuum l0) and the dual
pseudovacuum (01. These are vectors in the quantum space with the following
properties:

C(,,')10) :0, A(A\10>: a(,1)10) , D(,2')10) : d(^)10)
(0lB(1):0, <0lA(1): a(2)(01 , (OlD(r.): d(1X01 .

(2.16)

Here vacuum eigenvalues a(),) and d(),) are c number functions. The space in which
the operators A(tr), BQ,), C(,i) and DQ,) act is constructed in Appendix A. Note that
aQ,) and dQ,) are arbitrary differentiable functions. The norms and scalar products
in question are functionals of these aQ,) and d(,1). We shall vary a(7) and d(tr) and
study the dependence of scalar products on these functional arguments.

The Hamiltonian of the physical system in question is expressed by means of
the transfer matrix t(tt):A(lt)+D(p). The Hamiltonian and the transfer matrix
have common eisenfunctions which are constructed as follows. Put

pN(uj))  :  B(,1 1 ) . . .B(/ .N)lo), (2.t1\
and suppose that )., satisfy the system of the transcendental equations (TE) :

N

la(l") I d(^,)l ll u (t,,, 1 ) I f (A j, 1,)) : r .
tr=*t,

Then rpr({,tr}) is an eigenfunction of (p) with the eigenvalue:
NN

0(p):a1i fI ttp,)",)+d(A n f(^ jp).
j= t  j= |

Here N is called the number of particles.

(2e)
(2.10)
(2.rr)
(2.r2)
(2.13)
(2.r4)

(2.18)

(2.re)
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Notice that

pr1{,1;}) :  (olc(,11). . .c(, tN) Q.2o)
is a dual eigenfunction for r(4):

,pr({,1;}).t(tt):e0t)rl 'N(1i}) Q.2l)

with the same eigenvalue (2.19). Eigenfunctions (2.17), (2.20) can be called Bethe
wave functions. We consider the case of all different ,a j. If two of them coincide
(Ar--)r) the following phenomena take place. The limiting form (2,*,12) of the
system (2.18) contains (N-1)equat ions, the number of di f ferent, tr ,  is also N-1,
but an additional equation appears [11]:

.d a(A). . {  d f0 ) l
r - ; .  rn  ̂  - r r  ) .  ^  n#+4ctg\241:Q. (2.22)

dAt dlAt l  ; !3 dA1 JIA j ,  A1)

Since the number of equations exceeds the number of , lr, the solution does not
generally exist.

Finally let us present two remarks. First of all new variables

Ex:i lnla()) ld(1*)l+i i  rny1,t x,1)lJei,))) K:1,.. . ,N (2.23)
j ; i

are convenient. For example the system (2.18) takes the form

ex:O(mod2n). (2.24)

Secondly below we shall use the monodromy matrix

( yA(l) t?gl I . e.2s)
"tn' :  

\n 'C( i )  y-  ,Ot l l ) '

which satisfies Eq. (2.2) for any complex y, and has the following vacuum
eigenvalues

a,,(D: w0) , d,( ): y ' .d(A) . (2.26)

Now we are able to formulate the main result of the paper.

3. Expression for the Norm in the XXX Type Models

For models with an R matrix of the form given by (2.4), (2.6) the scalar product of
an eigenfunction (2.11) and dual eigenfunction (2.20) is equal to

(0lc(.11). ..c(AiB(A)...8(,,,N)10) : r" { fi aQ. )d(A ))
[ i=r -  )

[N..N ]

J n II f0t,t '*1y(010)det"{DEKlalj}. (3 1)
['=' f'='] J
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Here the q K are the variables (2.23) and the set of the ; j is a solution of the system
(2.18) (2.6). The derivatives can be written in the explicit form

ali :5.,1, ^u.-^q,l,l.-),* i ,, ?^- ,] ---4--,. (3.r)
?i,  "x i l '  a)1" '  d(^Kl ' ,?r I )*-) ' |2+x2) 0*-) , ' ] l2+x

Formula (3.1)can be used to calculate the norm of the eigenfunction (2.17)if the
following properties are valid. Hermitian conjugation must act as follows:

B*(x):  +C(^), lo)* :(ol .
The set of i, must be invariant under complex conjugation:

{) j } : { ) j } .

In this case by means of (2.10) we have

(0lB+(;1).  . .8+ QJB(L1). . .8( ;N)10) :  (+ 1)N(0lCt) ,  t t . . .C0.NlB(2'  ) . . .8(r .N)10) .
(3.5)

The formula (3.1)is similar to formula (4.1) given in the next section. We shall
f irst prove the latter and then in the end of Sect. 10 we shall discuss how to pass to
formula (3.1).

Several examples of the application of (3.1) may clarify matters. Consider for
example the norms of the eigenfunctions for the quantum nonlinear Schrcidinger
equat ion.  The modelwas treated by means of  QISM in [2.  13] .  The Hamil tonian
is equal to

A: j dx(rlJV,* rc?* V* rl'rp) [V(x), rp*1r,1r:d(,x --t').

The monodromy matrix has the following property:

o lT*1i)o '  : r0) ,  B*6):c0.) .

(3.6)

Here the cross means Hermitian conjugation of the quantum operators. It does
not transpose T(2) as a2x2 matrix. The commutation relation of T(,i) is given by
the R matrix (2.4), (2.6). The pseudovacuum coincides with the usual Fock
vacuum. The vacuum eigenvalues are equal to

c(.1):exp{ - i^Ll2}, dQ,)--exp{iALl2) . (3.8)

Properties (3.3) and (3.4) are valid. To write down the trace identit ies it is necessary
to construct the following asymptotic expansion:

)-  *C * ' (3.e)

(3 3)

(3.4)

,n[(

The Hamiltonian (3.6)

@

A(^t+D(^D exp l i lL l2\ l :  I
A-iq I  K= I

(  3.7)

(3.10)

is equal to

H :( i rc)-  1c r+ c r I  i rcc 116
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duetotheresultsof [14].Theeigenvaluesof I lareequal tol) , l .Thesquareof the
norm of the eigenfunction (2.17) is equal to

(0lB*(,r,). ..8*ON)B( t)...8(in)10):rN fi [t * - "' I
;"x '=rL 1i*- t" t ) t )

a. t. { a *, I r +,i, ru---}^ - ^1*) 
- W+ . A

aQ,ldL ,l)"  " )

(3.1 1)

due to the formulas (3.1), (3.2) and (3.5). To obtain the norm of the coordinate
wave function an explicitly known factor must be extracted, see [15]. When this is
done one sees that the norm is equal to the determinant in (3.11). In this way we
prove the hypothesis stated by Gaudin in [8].

The formula (3.1) can be applied to other models. For example norms in
the XXX model can be calculated. In [16, 17] the quantum lattice nonlinear
Schriidinger equation was constructed. In this model the norms can also be
calculated by means of (3.1).

4. Expression for the Norm in the XXZ Type Models

For models with an R matrix of the form given by (2.4). (2.5) or (2.8) the scalar
product of the eigenfunction (2.17) and dual eigenfunction (2.20) is equal to

(0lc(,r1). , ,cQ"iB(A)

Here the ,1, satisfy the system of transcendental equations (2.18), (2.5). The Jacobi
matrix can be written down in the explicit form

B(,tN)10):(ri"2nf {rq

{ fi fr f0i.^*t\(oto) det"{d E*la)) .
1;= r f+=* )

I

(4.1)

sin4ry
s31 sinh(,l* - A, + 2ifl sinh().*- 7, - 2i4)

sin4ry (42)
sinh(2* - A, + 2ifi sinh(A * - ), - 2ifl '

It would seem that (4.1)has pole whenever two ,i, coincide Qr:72). Remember
that this can hardly ever happen owing to the addition o[ the new Eq. (2.22) to the
system (2.18). But if, by chance, this system has a solution, the l imit of (4.1)is frnite.
Indeed, formally (4.1) has a pole of second order as 1r-Az. So the structure of the
singular part is as follows

ar.( i r -  ) , r l -  2 + ar.() , . -  ) r ) - ' (4.3)
One can show that a, is proportional to the left hand side of (2.22) and therefore
az:0. While a, is zero owing to the symmetry of (4.1) under the permutation
Ar-Az (see the next section). The whole paper is devoted to the derivation of
formula (4.1).

a-r :5. 1,1^4P +oAi " ' I  dAx dlAK)
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Let us calculate the norms for the XXZ modeL The Hamiltonian of the model
is

M

H: L lo ' "ot"*1*o2*o2**r*cos24@3*o?*r- l ) ] .  ( .a)
K=l

This model was treated by means of QISM in [7]. Its monodromy matrix is given
by

r(D: LM()").. .L.(1). (4.5)
Her L* is the weight matrix for the 6 vertex model

L*Q,):1"")'1:'f i',' . i,{s,yzn)oi.l. ro.urA" | - i(sin2n)oi, sinh(2+ i4o'*ll '
This monodromy matrix has the following property at real 4:

T+ (7) : 6z 717],o2 , B. (7) : - c(1) . (4.i\
Its communication relations is given by R matrix (2.4),(2.5). The pseudovacuum is
standard:

to):frT,, (ot:to)*:fr, t , , .  (4.8)
j= r j= r

The notations f, and J; denotes vectors

1: (6), J : (?) (4.e)
at the j site of the lattice. The vacuum eigenvalues are

a(,1): s1n6u1A- iri , d(,1): sinhM(1+ iq) . (4.10)
Properties (3.3), (3.4) are valid, at least in the limit M--+ cn. The trace identities look
like 

A
H: -2isin2n. 

*lnlA(u)+ 
Dlp)ll,= _ir-2M cos24 . (4.11)

The eigenvalues of H are
N

4 .f (cosl;- cos24), @12)

where
t(

) t l

sir

nh(

0)

= (s.

{
Ix

At,

=si

4.1

I
,ln)i)l
1d(4

)t0)

tirt

rJY)

nd
{ip}
an(

(2,)
'1 |
'^  j1

I

,x(
I

+vl

l(Ax

xpt

,2) r

.B(

r'(,

N

\-
lr

[3.s), (4.
calculat

r+(,lN)B(

'(7i- iq

M'x0*,

cf  (1
ber

. .8

rhM

I
. , l i' l

o
0

n.

eans
can

(, i t )

l l ' i
(

: t "Jc

,n

t) '

sir

(_
<0t

mea
7) ct
B* ()

(Nln
det,,

By
(2r
(0t.

r), (4
l(rt

of

t

nh(

reo

lL

AK-

)/sin
uar(

I

; inh(

-xQ

irt)t

sqr

7)N

I
1

+

lhe s

n2/t
Nn

24

),+i t i l .

f the norm of th

- A*t  2i4)sinh(

(4.13)

nction

ziriI-l

(4.14)

igenfu

- AK-

ted:

Ar).

) sin

Kj , i l -

Aj

. tnt l' )

sinh2(/., - ,1*)

lrZri).
- l
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Here the function of two variables XQ,ri  is defined as fol lows:

X(i". rtl : sinZrylsinht 2 - iry )sinh(,1 + iry ) .
Formula (4.14) for the norm of the coordinate wave function was presented in [9]
and explicit ly verif ied by direct calculations for N:2, 3. Notice that the norm
formula for the XXX model may be obtained lrom (4.14) in the limit (2.7). In the
papers [17], [18] the lattice quantum sine-Gordon model was constructed. The
norms in this model can also be calculated by means of (4.1).

5. Properties of the Jacobian

Our aim is to prove (4.1). We shall see that it is valid even if (3.3H3.5)are not valid.
Let us introduce the value

|  2r  . ' . i r l l r : (0lc( l1).  . .c( iBQ L). . .8(2N)10) (5.1)

which is proportional to the scalar product of the eigenfunction (2.17) and dual
eigenfunction (2.20).In (5.1) the values ,1, satisfy the system (2.i8). The formula
(4.1) is equivalent to

l , t l  . . . iN l lN :  deq{AE * l  0 A,} . (5.2)
During the proof we shall put (010): 1.

Let us first of all study the properties of the Jacobian on the right hand side of
(5.2). The most important ones are as follows. The Jacobian is a symmetric
function of all ),. For the proof it is sufficient to interchauge the position of two
l ines and lwo columns

Let us remind the reader that the vacuum eigenvalues aQ,) and dQ) are
arbitrary functions. This permits us to consider the values

V. E. Korepin

(4.15)

(sin24r 
{

I
+K
1

na0r)dlrtl{
J[ '

/(r"j,,r")l (oto)

{511

as variables independent of 2,, see Appendix B. These variables can change freely
at lixed ,1r. We ihall study the dependence of the Jacobian on X r. Let us
reformulate the symmetry property. The Jacobian is invariant under simultaneous
replacement A*<-+7, and X *<--+X . Due to (4.2) the Jacobian is a linear function in
xl

detn{0E*lA),} :UrXr+V., .  (54)

Values V, and U , are Xr-independent. They depend on all other X, P:2, .... N
and on all 2r. Due to the symmetry the Jacobian is a linear function in each X,. The
coefficient U, in (5.4) is equal to another Jacobian

(5.5)

(s.6)

(5.7)

x,:ifrn(ffi)

U,:det"_ t {AQKIA^j} ,  K,  j :2, . . . ,N ,

E,:itnl!,.t +i i r"4&4.dl^Kl 
t7t-  Jvi .AKl

aQ): aQ). f (A,1t), dQ): aQ)j(;.,, t).
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So U, differs from the initial Jacobian by removing the first line and first column
and by replacing the vacuum eigenvalues a(7) and d()") by dQ,) and d(2) lsee (5.7)].
This is a direct consequence of (4.2). Notice that in (5.6) A j, j :2. ..., N are solutions
of a reduced system of TE

lae^\lae)fft  t t ,r, ,  ^j) l fej, i , , \ l :r,n:2,... ,N 
. (5.s)

' i l i

The Jacobian is equal to zero at all X p:0 and ,1, f ixed:

det*{AE*16);} lx,=e:0,  p:1, . . . ,N. (5.9)

Indeed
det n{A q I A i)Q - o : det M r,

and by means of (4.2) and (4.15) rve have

l^.  )t,*: d*,1,4, y()*- ).,.\ttl - y.Q"*- ).,.2q) .

This matrix has an eigenvector with zero eigenvalue:

f t ,*,^r*:0, v*:1.
So detM:0 and (5.9) is proved.

At last

det , { tq, l? i^} :X, : ,  j '  
^#^ 

(5.10)
dt. ,  d l / . t l

I t  is  c lear that  l ) . r . . .1.nJ 
" ,  

see (5.1),  must possess the same propert ies.  We shal l
prove the following.

Theorem. To proue Jbrnrula (5.2) it is sqfJicient to prore that l)"r.../."1, has the
.following properties.

1) 1r is inuariant under simultaneous replacentent

) .**-) . ,  and Xx*Xj.  (5.11)

2) It is a l inear Jitnctiort in X, (5.3)

I  l r ,  .  . . . ix  N: U t 'X |  + Vt .  (5.12)

3) The coe.fJiciert U , is ec1ual to

Lt  t - - l  
^2, . . . ,1.11 

i l10,  .  (5.13)

It is giuenbt' formula (5.1);n the caseof N -l particles. T'he particle corresponding
to )., is rernot,ed and aQ\ and d(i) are replaced by AQ.) and dQ") [see(5.7)].

4) It is equal to zero ot all X r:g and )", f ixed

l l t ' . . ' '1""  l - :O and Xo:0,  p:1, . . ' ,N.  (5.14)
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(5.1 s)

(s.16)
respect to X, is

(s.17)

(6.3)

(6.4)

by cardA and for

The proof goes by induction in the number of particles starting from N: 1
[compare (5.10) and (5.15)]. Assume that (5.2) is already proved for N:1, "',q-l'
We shall show that it is valid for N: Q. Let us consider the value

/ n:  l l7 r .  .  . ,  ln l lu -  det  n(Av *10 A t)  .

It is a l inear function inX,, see (5.4), (5.12). The derivative with
equal to

a / ql ax | : l l  7 r, . . .,,1q l l f:dl - detn - r{0 E *l A I ),

see (5.5), (5.13). The right hand side is equal to zero due to the inductive
assumption. So A/nl0X r:0 and /nisX, independent. Due to the symmetry (5.11)
/ndoes not depend on any ofXr.  But due to (5.9)and (5.14).

5) For the one particle state

l l , t '  l l r :X '  '

Sr= { , i f ,  . . . ,  
^cN, ^8t , . ,  

l f , }  :  { )c\v {18\

into two disjoint subsets $Aj and {iD}:

{AA}oQ,D} :A,  { , t1}u{ l .D} :5n.

Let us denote the number of elements in the subset {, i/ l
{2D} cardD (cardA-FcardD:21{) .  So we have:

/n:0 at  X o--0 ,  P:  l ,  . . . 'q. (5.1 8)

So /n:g identically. So (5.2) is valid for N:q, which concludes the proof of the
theorem. In the remaining part of the paper we shall prove that llLt...,t"ll [see
(5.1)] possesses the five properties mentioned in the theorem.

6. Description of the Scalar Products

We begin with the study of the scalar products in the generic case

(olc(,rf). . c\ciBti\...B(,lf,)lo) . (6.1)

All the )f and 2p are assumed to be different and independent; in general they do
not sadsfy any equation. The left hand side of (a.1)is a particular case of (6.1). We
shall deal only with the R matrix (2.8). By means of (2.9H2.16) one can calculate
(6.1) completely. For example,

<olcQlBQ\1}) : s()'c , )"8) {a()c)d]"B) - a(AB\dQc)} . (6.2)

Let us try to characteri ze (6.1) for any l{. Notice that after the calculatio n each ),1
and i[ must become either the argument of a()") ot of d()').ln this way each term in
the expression for (6.1) corresponds to some partition of the set

(ol c(,tfl . . .cQcN)BQ.i)

: ou,.Io.,"'(lj:l
B(r.f,)t0)
1 181 q card ,4 card D

) , ,1) f l  ar i fr  f l  dt)f l i .  (6.5r
\/.  l l  i= l  \  K=l
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The coefficients KN are some explicit functions of all the ,1, constructed by means
of / and S (2.5), independent of vacuum eigenvalues. We claim that the only
nonzero elements in (6.5) are those for which

cardA: cardD: N. (6.6)

Indeed let us apply formula (6.5) for the monodromy matrix (2.25), depending on
arbitrary yeC.The left hand side of (6.5)is manifestly y independent, while on the
right hand side each term is multiplied by the factor exp{cardA-cardD).lny}. So
the y independent terms are characterized by (6.6). All other terms must vanish.
Let us rewrite (6.5):

101 fi cr,rfr ff r,ri,lo>: I {i1 ̂^i,0,^1,}*"(illij=r -  K=1 purr i r ion. t . l=r  )  \14'- i

The number of terms in the right hand side is equal to Cr{,. In
expression for K the following intersections are essential:

{AA} o{Lc} :  {1n' \  ,  {AD} oQs} :  Uo' \
{7A} oP,B} :  {^ou} ,  {AD} o{Au} :  Uou} .

Obviously one has following trivial identit ies:

(6.8)

{LAc\v{^ABl1:  {Ao} ,  Un'}u{LDc}:  {Ac}
{ADc} v gDB} : {A'} , {Aou} v Uou} : {^ul . 

(6 9)

The number of elements in the subsets (6.8) satisfy the following identit ies:

n: card(DC): card(AB) , card(AC): card(DB): l{ - n . (6.10)

An example of the partition in (6.7) is

{^n}:  {^r}  ,  {^r} :  {^u} . (6.1 1)
In this case we have

{1n'} :  {1 ' }  ,  { )nu}:a,  U." \ :a,  { lou\ :  { )u}  ,  n:0.  (6.12)

We shall call the term in (6.7) corresponding to this partit ion the highest term. In
Sect. 8 we shall demonstrate the following properties of K". First of all the highest
K is equal to

^"(11:l l i: l) :gN({;f } {2t},{,-[,i,,rnn -'ot.-)ftl (6 r3)
Here Q, is a function of 2l{ variables, which is symmetric separately in all 2f and
in all l.[. Q" depends on an individual ;l.f for fixed values of the remaining variables
as fol lows:

QN(.{2\ ,  { i "c}) :  e-(N- r t ; '? .p *  -  rkt '?)  .  (6.14)

polynomial of degree (N- 1), with coefficients depending on all
Similarly Q" depends on individual a! as follows:

Q*()ul ,  Ut)) :  e(N- 1) ' ' f rFN- ,k t 'Q),

401

lfii) rc7)
the explicit

Here Pr_,  is  a
other variables.

(6. 1 s)
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where Fr-, is another polynomial of degree (N-1) The most remarkable
property is the following. If one of the ,tB coincides with one of 2c, say 21: ),'r, ou,
Q, is expressed in terms ol Qn-, with if and ).1removed

rN
Qr(^?\, {)1il|4 = ; 7:( - isin2rll I .f l  sinn(,t?

\A = Z

fN

j 11 sinntl.f - )c, - 2i4

Notice that Qt has already been calculated in (6.

Qt:  - is in2q '

)- )f,-2idl
t^)lQr_,(u.r=

?)

^,(l;: l  l ;; i): ' ,( l;: l  l i i){n rl,, inr' ' ,,?- , i, l  6,8,
Here the Laurent polynomial z" is equal to

, ) , { ; [* , ] ) .  (6.16)

Due to the symmetr l  of  Qx i t  can be reduced to Q* - ,  in al l  points ) i :  ) i
show that all these properties fix p^' in a unique way.

An arbitrary coefficient in (6.7) is expressed as follows:

(6.17)

One can

l{). ' \  {2u}'
'. f i;' i i' ;'i) : o - -'({)''u }' {i,' })Q'( )'o'}' {i " } )

I n I sinhtL,Dc- irtc-zit1t\{f l  f l  sinht,,Du -). iB-2iryt). {6.19)
l i .  oc x. .sc I  l i .on xc, ta I

For n see (6.10). The double product in the third factor ou the right hand side
means that i lc runs through all the set {l,Dc}. and 2f c in an independent way runs
through all the set {,,., 'c}. The last factor has a similar meaning. So we have
completed the full description of the scalar products. We shall prove these
formulas as follows. In the next section we sl-rall construct a special case of the 6
vertex model with a lot of free parameters. We shall apply formula (6.7) for this
model and choose parameters in such a way that all ternts. except one, on the right
hand side wil l be equal to zero. This wil l allow us to investigate the properties of an
individual coefficient K,. Notice that scalar products for the XXZ model itself
were studied in [10].

7. Special Case of the 6 Vertex Model

We shall consider the inhomogeneous generalization of the monodromy matrix
(4.5). Namely we assume the spectral parameter in the l- matrix (4.6) to be site
dependent

, lsinh(,t - t *- ir1o3*) lor, sin2a . ILr{/ - r'^'l: 
I - io} srn24, sinh(,1- 1,K + i4oi)l

:cos4'sinh( i-  r '^)-  io3'  oj* 's in4'cosh(1"- v^)
-  is in24(o- .o[  +o* .o1).  (7.1)
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The monodromy matrix

T() . ) :  1117- v r) .  .  .L t ( i -  v , ) (1.2)

obeys the commutation relations (2.3)with the R matrix (2.8). The pseudovacuum
is the old one, see (4.8). The vacuum eigenvalues are now equal to

M

aQ): n sinh(, l -  y i- iq),
M

d(1.): fl sinh(,i- v,1-iti. (7.3)

0.1)

Such an inhomogeneous generalization was used for example in [19-21]
Let us consider the soecial state

(1.4\

Here the number of the particles [of the B(2)] is equal to the number of the sites in
the lattice N:M. Below we shall write N instead of M. All i , in(7.4) are free. In
Appendix C it is shown that in the state (7.4) all spins are overturned, see (C.9).

BQ"i . . .B(1.1)10) :  Q. Z N. (7 5)
Here Z* is a c-number and

u,). (7.6)

The defrnit ion of Z" is
N

Z r(),),{ ' '*}) : rz f l B(/"). l0) .

Several representations for Zr are given in Appendix D. Let us study the
properties o[ the 2,. Due to \2.10) ZN is symmetric in all a". Z. depends on
individual 1." as follows (all other variables kept f ixed):

Zr:exp{- (A/- |V=\PN ,@"'"). (7 8)
Here P"-, is a polynomial of degree l{- 1. with coefficients dependent on all
other variables. Indeed, one can see by inspection that B(,,i.) depends on a l ike (7.8).
From representation (D.21) one can see that Zr depends on r', in an anlogous
fashion. Z" is symmetric in all t ' ,. Z* depends on an individual r ', as follows;

Z" :  exp {( l {  -  1)r  j }  Pn -  ,  (e -  2 ' , ;  .  (1 .9)

Here P"- ,  is  another polynomial  of  degree N-1. Formula (D.24) shows that i f

t ' r : ) " r+i \ .  (7.10)

tlren Z. can be expressed in terms of Z^_, with r', and ), removed:

| .N IZ \ l ' , ) . ,1^{r ' , } )1, ,  -  ) ,  - i4:  -  i  s in24lTI  s inht ; r  -  vr-  iUt l

rN. I' I  f l  s intr tz: , -  ' ' ,  - t ry)1.Z^_l{) . ,+,} , { r ' r* , } ) .  0. l t \
[r= 2 )

o: fl
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Due to the symmetry of Zy, similar formulas are valid in all points vx:i4-t 7u.For
N:1

Z r: - isin2rl . (7.r2)
In the next section we shall use this model to study the coefficients in the formula
(6.7). Notice that the norm of the highest eigenvector of the transfer matrix(7.2)
was calculated for the very special set of v* in [10].

8. Proof of the Formula for the Scalar Product

Let us calculate the scalar product of the state (7.4\ and the dual state

(0lc(,r:)...c(,r$), N:M (8 1)
in the inhomogeneous 6 vertex model by means of formula (6.7). We shall try to
choose the free parameters v, to annihilate all terms on the right hand side of (6.7)
except one. Put e.g.

v,: ),1 + i4 .
Now the vacuum eigenvalues (7.3) are equal to

"@: fisinh(,l- l j-2ifi,
j= r

N

d( ): n sinh(A-,t j) .

(8.2)

(8.3)

(8 5)

the right

(8.6)

(8 7)

(8.8 )

As d(,1[) : 0 all ,1f must become arguments of aQ). So on the right hand side of (6.7)
only the highest term remains:

(8.4)

(ot fl c(lj1 fl B(2f)to)
j=r t - r

/ ! )C\ , ;8\ \  N N: 
^" (i;i iu') " ,q J, sinh(r.fl - rf) sinh{;[ - )l - 2ial

Let us calculate the left hand side
N N f  N . l f  N I(0t fl c(lt fl B(,rf)10): j<ot fl c(2i)ollrz fl nr,tfrto)f

j=t l=1 (  j=1 J t  j=r  )

: z N(^f\, {rf + i4}1 2 rl?f}, {^f + i4}) .
Here we have used the formulas (7.5),(7.7) and (D.17). The first factor on
hand side of  (8.5) can be calculated by means of  (7.11)

Com

If  we

NN

z*(Ul\, {)c, + iq}): 
"U, ,LI, 

sinh(,i[- 1l -2iq).

bining (8.4F(8.6), we obtain

,.  l{). ' }  {r, ' } \  r N IK"{ , , . i  ) , r i  l :1f I  n s inh- ' t , i f l -  
^ l t lzNv"f l . l^ l+ iq l t .\ l / .1 \ / -  l t  [ i  rx r  ]

change the notations

Q r()"i l,'J"i |) :- z N{juI \, { 
^f 

+ i4\),
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then it will be obvious that (8.7) and (6.13) coincide. Also properties (7.8ff7.12)
turn into properties (6.14H6.17). In this way we have proved all the properties of
the highest term and of Qr.

Let us discuss now an arbitrary coefficient in (6.7). We fix the partition
corresponding to one of the terms in (6.7) {An\,{1o} and choose

This leads to

Yi :  Al  +iq '

NN

a(1): ff sinh(,l- f!-zid, d(D: n sinh(,l-,1f),
j=t  j=r

and so dQ"i):0. All the ,lf must become the arguments of a(,1). Therefore the only
nonzero term on the right hand side of (6.7) just corresponds to the fixed partition

N N (N N )

(01 fl c(,ii) fl 8(,1110): j II fl sinh(,l{- 
^i-2idlj=t t=1 r . (=1j=1

(8.e)

(8.10)

(8.1 3)

{i,q sinhe,p-tt)} ".(11;i l]ii) (811)
Let us calculate the left hand side

NN

(01 fl c(2t fl B(iil|0) : zN(AI|, {Al + i4}1znvn, {^i + i?D. (8.12)
j=r l=1

Since the intersections {,11c} and {AAB} are nonempty simultaneously, the right
hand side of (8.12)can be transformed by means of (7.11). We obtain

(01 fl c(^i) ll s(,rf)10) : Q,({Ao,\, {)"ou\)Qr _,(Aou\, {Ao,J)
j= |  I= 1

(N N ]jn n sinh(,tf -; i-zi7tl l l l  f l  sinh(2fc- L[c-2iq)\
|. ; -1a=1 -  )  l i .ocxe,tc )

{ n ll sinh(2fB- AIB-2i41\.
IKeDB jeAB )

Here we use the notat ions (8.8),  (6.8),  (6.10). I f  we combine (8.11F(8.13),  we obtain
(6.18), (6.19). In this way we finish the proof of all the formulas given in Sect.6.

9. Norm of an Arbitrary State

Thus far we have described the general scalar product. To obtain the formula for
the scalar product of the eigenfunction and its dual (4.1) we just do two steps. First
of all we must let,irc tend to )"1 in(6.7) in order to have the expression for the scalar
product of an arbitrary wave function and its dual. Secondly we must let ;f : ), i
:,t; tend to a solution of the system of TE (2.18), (2.5). In this section we shall
make the first step gradually. Let

) . \+ t i :  / . ,  . (e 1)
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while all the other )f and,tfl are fixed. we are interested in the dependence of thellmlt on the vacuum eigenvalues. There exist four types of terms on the right handside of (6.7) which have different behavior in the limit (9.1).
,r^1),I.rT,r corresponding to partitions with the following properties icre{)A},Aie {^^}. Ihese rerms have finite limit and their dependenc" bn the vacuumeigenvalues of argument ,i, is the following : a21A11.

2) Terms corresponding to the partitions -lle$D), ile$D|, whose de_pendence is d2(ir).
3) Terms corresponding to the partit ions

' )"cre {)"A} , ),Bre {iD} .
We use following enumeration:

trcr: ) l :  )1, ,  ).?: LD1: )?B .
These terms have a pole in the l imit (9.1) due to the factor

sinh 'Q| - 
^l): 

sinh - ,tS,u, - ;11

IJere j :2, . . , ,  l /  and the summation is carr ied out by part i t iorrs of
Sn_ r :  0f  *r lv{) !* , }

rnto two disjoint subsets {)l*r} and gl*r}, for which
card A: cardD : card C : cardB : l{ _ 1

in the expression for Krr (6.18). Let us calculate the resiclue. The terms ol'the thirdtype are summed up to give

(e.-5)0e r d( 2t\L K, ti:i,'ii iii ;ii) !, a e i ) d G! )

(g ) l

rg 1l

(:9 4)

(9.6)

[compare with (6.3), (6.4). (6.6), and (6.7)].
To calculate the residue we shall rewrite K" from

Kr.:sinh 'Our- 
^l{ [ l  , i"r '- ' ( , , ,?- 1i)] {lx=-:  "  ' l  l i

(N "  , - , - - , , , . ,  ^ , ' l  l l { ) ' ' }  { ) 'ut ,
{TITI, i"r ' '0?-) i \}",1(ir"t  {)"u,,

(9.5) by means of (6.18)
Nl

fl sinh-'0-i- )"fl|

)l (s 7)
/ | ) . i1c ' -  ) .DB

Irr Appendix E it is shown that il )lc :l"fs, then z^ is reduced to z*_ , with zl.f andl"f rernoved. Finally we have for tire siniular pari of each K* in iq.St

K.*- - i(sin24)sinh-,(t"f- rf) i  f i  fe1, i ,1 y1i,, ; f l1| r,_,({, l f : , !  i i , i , l)' t r " .z"  ^J ' \ l ) . i=, I  l ) .?- ; )
(e 8)

Here we use the norar ion (2.5),  (6.19) and formula (E.2).  By means of  (6.7) one canshow that the singular part of the sum (9.5) is proportronar to the scalar oroduct



Calculation of Norms of Bethe Wave Functions

for N- 1 particles

, isin2rl ##+ (qfi c0?,fi8(.1i)lo)-'d

at)lld?ll N
isin24.:#.(01 fl c(Ai) fl B(,1il10)-'d

Slnn(/ ; - / t i l  j_2 '  t=2

407

Here "mod" means that during the calculation of this scalar Droduct we must out

AQ|o> : a(Dl}>, dQ): aQ)fQ, 
^,),D(,l)lo) : i(.r)lo> , fr(;): aQ)f QD A) .

(e.10)

Before analyzing the frnite part of these terms, let us study the terms of fourth type
4) These terms correspond to the partit ions

),cre {)D} , )!e {)A} (e.1 1)

These terms have the same denominator (9.4), see (6.18). The singular part of the
sum of these terms is calculated in just the same manner, by means of (E.5). This
part is equal to

(e.e)

(9.r2)

(e.13)

(e. l5)

and cancles (9.9) exactly.
Now we are in a position to calculate the finite part of terms 3) and 4). We must

use I 'H6pital 's rule. After calculating the indeterminacy one sees that the sum of 3)
and 4) depends on the vacuum eigenvalue with argument ,1, either as a(2r)'d()r) or
as a'(Ar)d(ir), a(Ar)d'(7r). To calculate the coefficients of the last two terms is very
simple. It is just the same as to calculate the residues (9.9), (9.12). The answer for
the terms with derivatives is as follows:

NN

i sin 24la' Q ) d( 1,) - aQ )d' Q,)1. (01 fl cQ) n B( ;f )10)"d

Thus we can write down the dependence of the scalar product in the l imit (9. 1) on
the vacuum eigenvalues of argument 1,, in the explicit form

NN

(01 fl c(;,q) n B(,rf )10) : E. a2()" ) + F . d2Q ) + v. a(i,)d(A,)
j= t  l= 1

+ (J - a(i,). d\A,tlnlog,)1,t0)). (e.14)
' d). ,

The coefficients E, F, Y U are independent of vacuum eigenvalues of argument l.r.
The last one is equal to

NN

u:isin2ry(ol fl c(ii) J] B(2i)10)-"d

fsee (9.13), (9.9). (9.10)].
Just now we can do the first step all at one. We let 

^cj-r^?:,1r. 
Here all the 1.,

are different. It is easy to check that the results of the previous analysis will not be
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broken down. So the scalar product o[ the wave function and its dual is equal to
NN

(01 fl c(,rj) fl B(,rj)10) : E. a2 (t r) 1- F . a2(1 r) + v. a(^ r)dQ" r)
j= r  j= t

+0aQr)dQ.)!haQ.)ld\A,). (e.16)
'  d l ,

The coefficients E, F, t and 0 are independent on vacuum eigenvalues of
argument ,1, and

N

0:tsinzq(ol fl c(,r, n B(,ij)lo)-"d.
j=2 j

Here "mod" means (9.10). This is the end ol the first step. In the next section we
shall do the second step. Namely we shall make ,1, the solution of the system of TE.

10. Proof of the Norm Formula for the Eigenstates

Let us rewrite (9.16) in a form close to (5.1)
NN

(ol fl c(Aj) fJ B(,rj)lo)
i= |  t= I

ffir(sin2ryyN{l[ a(,t,)dt,t,)f { l l  fOi.^Kll
t t=t  J [ ;*x=r -  J

:  E,4! a p,41lJ-
'dl t r l  -  a lAt l

+v1+u, i+rn*4,  
( lo ' l )

'dl t  d(At)

(9.171

(10.2)

where

ft -v l -

NN

(ol fl c(,rj) fl B(;j)lo)-'d
J-L t-z

(sin2ry)N- , 
{,if ur Mt^,,}{,.[ ,f().,,t.*1]

i l l , ,  . . . ,1^ l l ,  :  Vr l  U rX r ,

U t  :  1172,. . . , ,1"11i l10, .

Here we use (9.10), (9.9). Now let /., become a solution of the system of TE (2.18).
By means of

;
a(l,)l d(A,) : n f(^j, A )l fQ p ),j)

j=z

the dependence of the first two terms on the right hand side of (10.1)on c(,1,)and
dQ) may be eliminated. The dependence on X r:idlnlaQ,L)ld(),1)l ldA, fsee (5.3)]
can not be eliminated by means of TE, see Appendix B. So the value of
l l,tr,...,, ir|1,u in (5.1) depends on vacuum eigenvalues of argument ,1, only by
means of X,

where

Here we use (10.1), (10.2), and (9.10).

(10.3)

(10.4)
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Now we are in a position to check all the five properties of the theorem in Sect.
5. The symmetry property 1) is obvious from (2.10). The property 2) is proved by
(10.3). The third one is proved by (10.a). The fourth one is proved in Appendix B
[see (B.3)]. To prove the fifth one we must consider the limit )B - ),c in (6.2) and use
the definition (5.1). Thus our argument is now complete. we have proved formulas
(5.2) and (a.1). The proof of the formula (3.1) is similar. From a formal poinr of
view one does not even need a separate proof as all formulas for the R matrix 1z.o;can be obtained directlf from formilas for rhe R matrix (2.5) in the limit (2.7).

Appendix A. Construction of the Quantum Space
we shall show that a monodromy matrix, which satisfies relation (2.3) with the R
matrix (2.8) and possesses arbitrary a(),) and d(tr), can be constructed. A nontrivial
problem is to construct T(1) which possesses arbitrary ratio a(l)lde). Indeed,
under multiplication of T(A) by an arbitrary c number function u(2) the vacuum
eigenvalues are changed as lollows : a())+s(]1q?). d.()")--+D())d(1).

In the beginning we shall show that the models known from the literature give
us a rich set of a()')ld(,l). First of all let us give an example of two models with the
same R matrix but with different vacuum eigenvalues. The monodromy matrix of
the lattice sine Gordon model (LSG) is equal to

TQ)--  LMQ"). . .Lr(A), (A.1)

as in (4.5). The statistical weight t(1,)was constructed in [17, 1g].It depends on the
spectral parameter 1., the coupling constant 4 and on the step of the lattice r:
L(1): L(^,11,r). The vacuum eigenvalues are equal to

a( l ) : l l+2rcosh( i l .+2ir i f r ,  d(^) : [1 *2rcosh(2|-2ir i f r .  (A.2)

Thus the monodromy matrices of the 6 vertex model (4.5), (4.6) and of the LSG
(A.1) possess the same R matrix (2.8), but different vacuum eigenvalues (4.10) and
(4.2T,

Let us show that by means of the LSG model we can construct the T(i), for
which a(l)ld(,1)depends on an infinite amount of parameters. Indeed T(,1) for the
inhomogeneous lat t ice is equal  to TQ):Lue-vsa,\ , ru) . . .Lr(1_vr,4,  r r ) .  Here
the spectral parameter and the step of the lattice are site dependent. For this
monodromy matrix we have

(A 3)

The r" and v4, K:1,..., M are free parameters. we shall achieve our aim if
M-at.

Now let us give the full solution of the problem by means of an algebraic
scheme independent of the models. we shall construct the quantum operators
A(p), B(lt)' c(11, and D(p) at frxed a(A) afi de). First we shall consrruct the space in
which these operators act. The basis vectors are

q"({2;}) : B(r.N).. .B(r"1)10) . (A 4)

a}. l  _ # I t+2r*cosh(2)+2i4-v* l l
dA - *t=t rlt + z, * cosn1z.l, - zia - r Sl
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Here N varies from 0 to oo and all the ,1, are free. The whole space consists of the
linear combinations of the basis vectors. We shall define all four operators by
means of their action in this space. The action of these operators on the basis
vectors can be calculated by means of (2.9)-\2.16). Operator B(,u) acts as a raising
operator. The action o[ the operator A(pr) is well known [6]

A(p)B(),)  . .  .B(2N)10) :  A. B() \ ) . .  .B(, tN)10)

, f n,,.Bk) fi B(rj)ro),
where

NN

A: a(tt) l l  f 0t, i), A,: a().,)g().,,, p) f] f ()",,| j) ,
i  = t 

i=.t,
as well as that of the operator D(U)

D(p)BQ ). . .8(2N)10) :  t r .  a(t , ) . . .8(2N)10)

+ i ),.n1pr fi rlr,lto).
N

't:d(ti n fQ"jtt), l,:d(i,)g(tt,;,) Il f(Li,A,).

(A.s)

(A.6)

Operator C(p) acts as a lowering operator
NNNN

c(p) fl B(;j)10): L M,,f] B(;j)10) + L MK,B(p) fJ B(/j)10), (A.7)
j= |  x-  1 j+n K>n j* f  , ,

where
M,: s(tt, i,). a(p). dQ.,,l lI f ()i, ),)f U, 2 ) + g(1,, p)a(i,)d(ti

J+n

' n f0i, P)f(^,, )"i\,
J+n

{N IM x,: d(Ax). a(A,)-s1t, )*). s(l* ti.f Q",1") I fl .f 0 j,1)f(^,, 2 j)l
[ j  * r* ' '  

)
f N l+ d(i,)a\*)s0t, ).,)s()'*, tt)f (ix,,i.,)l fl f (^ j, 

^,)f 
eK, ) j)f . (A.8)

lj +rr(' x )
In this way the action of our operators on any vector in the quantum space is

delined. By means of direct calculations one can show that all equalit ies containing
in the relation (2.3) are valid.

The dual vacuum (01 can be defined as a linear functional in the space
constructed above. The main properties of this functional are as follows:

N

(010):1,  (01 
, [1 8(2)10):0,  for  Ai  >1.

Then the second line of (2.16)can be simply proved. Commutarion relations (2.10),
(2.13),(2.14), and (2.16) permit one to prove (2.21).
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Appendix B. The Norms at Xo:Q

Notice that in Appendix A we showed that operators A(tL\, B(p), C(p), D(p) can be
realized in the case of arbitrary a(i) and dQ). Let ,1, be a solution of TE (2. 18). We
shall show that the variables

x.:iftt"ffi (8.1)

(8.2)

(B 3)

(B 8)

are,1, independent.-They can change freely at hxed ir. Indeed. let us choose the
new function dQ)ldQ,), which coincides with old one only in the points ,ir:
a(A,)ldQ,,):ZtQ")ld(2,). The set of 2, satisfy also a new system of TE

N

la();la(4)f ll ll(;,, )" j)l f 0 j, )",)): | ,
j ; '^

but t lre variables X * are changed.
Let us use this transformation to prove (5.14)

l^1, . . . , i r l l ru:0 aI  Xr:0,  P:1, . . . ,  1r1

We construct the new function as follows:

a(Dl; | . , - ) :a7" j ) l ( t (^ j ) ,  t f  i ; -s. i .<;+s.  (B.4)

It is constant in some vicinity of each 2r. Since all the 1., are different, let us choose

ot: Hl Vi- 2*l (B.s)

In other regions A0)lA0) must be smooth (see Fig. 1). Let us calculate the
l l l " , .  . . .  1". ] ] ,  for the vacuum eigenvalues. As al l  X^:0. now. we have

11r.1. . . , t^ , ,11'"* :  l l i , . . . ,1nl l " 'o l r"=0. (B.6)

So to prove (8.3) it is sufficient to show that the scalar product of the eigenfunction
and i ts dual

(0lc(1.1\ . . .c(^ iB(^) . . .8(2N)10) :0 (B.7)

for t lre new values hQ) and i1l.;. Notlce that now not only the 1., are solutions of
(B.2) but

) ,10):)" ,+1' .  -s<y<S

o(I)
d(r)

Fig. I
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are also solutions of (B.2), due to the fact that .f(),,,),,)
difference i,- Ai and AQ)lA(A) are consrants in this ,.gioir.
scalar product 

N N
(ol I c(,lj) fl r1,t,+y;10)=G(r)

j= t  j= t

V. E. Korepin

depends only on the
We shall see that the

(B.e)

is equal  to zero al  any 0<y<S, -S.) , .0.  Indeec],  the object
NN

(01 fl c(,lj)lA(rr)+t(p)l fl B(1,+y)10)

can be calculated in rwo ways. Either lA(ti+ D(p)l goes to the left or to the
As both states are eigenstates we have two expressions for (8.10)

where
0(p, {A,})G(t') , or 0(p, {),+ y}).G(1),

NN

0(u, u,j): a(p) Il f tu, ),) + d(D ll .f ()1, il ,

(B.10)

right.

(B.11)

(8.12)

(c.1)

(c.2)

(c.3)

(c.4)

(c.s)

(c.6)

see.(2.19).  As 0(p,  {A,})+011t,{ i ;+v})  at  v#g we have c(y):0 at  y*Q. As the
scalar product (8.9) depends on y in a continuous way we have G(0) :0 and
therefore (B.7), (B.3), and (5.14) is valid.

Appendix C. Eigenvalue of S. on the Bethe States
we discuss the inhomogeneous 6 vertex model. The operator of the third
component of the total spin

M
s-t-  S -3" -  / ,  "K

J{-1

is important. The pseudovacuum (4.8)and the state O (7.61are its eisenstares
s3l0):Ml0),  srp:-MQ.

Any state (A.t) wittt free ), is an eigenstate of 53

s' fr Bej)lo> :(M -2N)lo).
See for example 122].For completeness we shalr give the proof. we use the identity

and localitv
LL^0),o3+a|1:9.

lL*(A),di l :0 at  K +1.
Let us calculate the commutator

M

I l l . ) ,s3]  :  L L*L,  _ r . . .L** r lL*,o3*l  L*_ r . . .L,
K=1

M
:  -  I  Lr , . . . lL*,o ' f  . . .Lr :  - lTe),o31
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Here o3 is not a spin operator but a 2x2matrix. From (C.6) we have

[B(r.),s.]:28()"). (c.7)
combination of this formula and (C.2) gives us (c.3). Let the number of B(l) be
equal to the number of the sites in the lattice N:M. Then (C.3) gives

M
s3 fl B(,ij)lo): - Mlo). (C.8)

j= t

Comparison with (C.2) leads to
M

I B(,1j) lo) :zN.Q. (c.e)
Here Zr is a c number.

Appendix D. Construction of the General Version of the 6 Vertex Modet
The inhomogeneous 6 vertex model has the following weight matrix:

L,K(),- v*): cos { .sinh(,i, - vx)- I sin ry .cosh(2, - v *)olo317
is in24@, o[  +oj  o^) (D.1)

This statistical weight corresponds to the lattice vertex with the same index (see
Fig. 2). The matrix indices of the a'h space correspond to spins on the horizontal
edges (a,, b,), while the matrix indices of the Kth space correspond to spins on the

,o^
oo -t-0. rrr^rl i l i

Fig.  2 'b6

vertical edges a*, b*. Before constructing the model itself we shall mention some
properties of the l, matrix. Its commutation relations are given by (2.3)

R 
"B(i,, 

) p) L 
"K Q, - v *) L o *Q, - v *) : L p x() o - v *) L,6(), - v y)R opU.,, ) p), (D.2)

with R matrix (2.8). one can change the position of the vertical and horizontal
spaces

R*,(v,,v *)Lo*()"- v *)L,,()"- vr): Lo,()o- t,r)Lo*()n- v*)R^,(v,r,*) (D.3)

If v^ - A": irl, the Z matrix is especially simple

Lox('x- ),.: iq): - isin24ll"*. (D 4)
Here 11 .is the permutation matrix

n"K(i,Ki),):fr*.io. (D.5)

413
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Here d and fr are two-component c-number vectors. The index shows the space in
which this vector is situated. Then the L matrix (D.1) has two simple eigenvectors

L,*()"- r")(J,f 
"): 

sinh(2" - v* - iry) (1,fu)

L"*(),- v^)(J"J^): sinh(, i" - \ 'x- in) (J,1^)'

Here we use the notation (4.9). The last property of ,L is

lL,Kl) . , -  r '*) .  af  oj l  :  0 (D.7)

We shall construct the inhomogeneous 6 vertex model following [23]. Let us
consider an inhomogeneous square lattice with l{ l ines and l{ columns (see Fig. 3).

(D.6)

Yl\2v3
l^

).2

l1Fig. 3

Each ), corresponds to a horizontal line, and each l'r corresponds to a vertical
l ine. The statistical weight (D.1) is associated to the intersection of the a'h and K'h
lines. The summation is carried out over the spins on the interior edges. This
summation is reduced to the matrix multiplcation of the L operators in the
corresponding spaces. The spins on the boundary of the lattice are fixed. The
boun{ary consists of four l ines. We denote spins on each of these lines by ;i(r,),
iQ.,). d(v i). /(1.,) correspondingly (see Fig. 4).

d(v,)  .  .  d(v,)
t ( rs )

r(rr )

7(r3 )

i ( r r  )

Fig.4 o(!

The part i t ion function is equal to:

(D.8)

In th is product Z"^ stands to the lef t  of  Lu, i f  Nn*K>NP+1.\ f  x+0 and K*/
these Z commut€. l l ct: B or K: / thev are multiplied as matrices in this soace. We

Zr({A.},{,*}): {ff Ar",}{fi a,,r}

{"i .t, L"K(^.-,.,}{"!, (;")}{it Jr,,)}

d(v, ). . . d*(v, )
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shall use the transfer matrix method to rearrange the partit ion function. Let us
collect the L matrixes alons the horizontal l ines

T,(),r: fi ,"*rr.,- t,*l: (1lD :11'l)
.rr_r '  \c(L, l  Dl) . , \ l

(D.e)

Here I is represented as an explicit 2x2 marrix in a'h space. This T coincides
exactly with the monodromy matrix (7.2), (7.1). In terms of f the partit ion
function is equal to

,": {,q t(,,)} fi ((;,,)r,e.,ti(;."1{fi at,,,t} (D.10)

(D.14)

Notice that 10.,)\(),")i(,i.") is a scalar in the e space. To have another representation
for Zn let us collect the l, matrixes along the vertical l ines

tr(r'y': fi r,,{^,-"r,: (3ll,l] ;t) (D.11)

Here r, is represented as an explicit 2x2 matrix in 7 space. The commutation
relations of r, are

R*,(v,, v*)z*(v^)r,(r '1) : r,(r,1)t1(r'a)R^,(r'1, r 'r) , (D.12)

with the R matrix (2.8). due to (D.3). In terms of t(v) the partit ion function is equal
to:  

t  N -  j  r  N -  I  f  N IZr:  I  f l  i i ; , r f  l  f l  ; , r ' , )r ,(r ,)d-(r ' , ) f  l f l  r t ; , t ; .  1D.13)
('  t  l t ; - t  l ( r - l  )

The following boundary conditions are of special interest for us:

t.: $,,)LL\ t"X"q fr,r"*,^'-".,X,q t) ("q
Due to (D.10) we have

IQ,) :  L,  r i (u*) :  J.
r lA, l :  1, .  d(  t ' * l :  I  *  .

In this case

t , )  (D.15)

z N({) . , } ,1r ' ; }) :  OB(L/. . .8(, i  r )10) . (D.16)

Here we use f,d(,I.)J":B(L)and notations (4.8), (7.6). Notice that (D.16) and(1.7\
coincide, as the number of the sites in the lattice coincides with the number of BQ).
One can show that

Z NQ^,\ ,  { ' ' , } )  :  (0 lC(;1).  . .CQ.iQ . (D.17)
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Indeed, let us introduce the operator

V. E. Korepin

(D.18)

U2: l  . (D.1e)

(D.20)

NN

u: fl (o"') fl "1.d= |  K= I

This operator has two properties:

I  I I  I
lu'"LI' nrt"*(^"-u.'l :

Here we use (D.7). So

z,,: (flJj)(flr"l u {n F.""} u(fllj)(flJ")

: (flri) (IIl"){R fl t".}rflr,)(f11") ,

which leads to (D.17). To manifest the v, dependence of Zr, let us use repre-
sentation (D.13). By means of Jrrlv)fr:C(v) we obtain

Z r({4"},  1v;})  :  (01 C(v"). .  .C(r, ,  )o. (D.21)

This means that Z* is symmetric in all v, due to (2.10).
Let us show at last that if r,, -, i, : 14, then Z, is reduced to Z * _, with 1., and

r', removed. We have by means of (D.4)

l r r (u,  -Lt-- i r i : - i 's in2r1' I I r r .  (D.22)

Notice that this I is the one farthest to the right in the product (D.15). Let us
calculate

Appendix E. Properties of the Scalar Products

In Sect. 6 the properties of the coefficients in the formula for the scalar product
(6.7) are given. Here we shall give some corollaries. Let {LAC} and {,1D8} be

1N \r  N \  i  N \ r  N \r , , {  f I  t , ) (  n t , } : - is inz4[t ,  f l  1 j ) {1,  f l  J"} .  {D.23)
\;=1 ' / \a=1 /  \  j=2' l \  a=2 |

Thevectoronther ighthandsideistheeigenstateofal l the Lr i (Lr-v1), j :2, . . . ,N,
see (D.6).  I t  is  a lso an eigenstate of  a l l  L,r( i , -vr) ,a:2, . . . ,  l {  for  the same reason.
After application of all L,and Lo, to the right hand side of (D.23) we have

Z n({ tr,},{v,})l ", - trr = i4 : - i sin2r1 
{i 

rnnt,t, -,. -,Ol

f N. I.  
{  n s inhl , t "  - r r - i i l l .Z*_r({A.*1},{v j+1}) .  (D.24)
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nonempty sets as in (9.2), (9.3). Let us study the limit

Alc :  Tora:1r.  (E.1)

Then from (6.19) and (6.16) we have

-(U' i \  { , t i } \  /N D_)_1;- \a i rh()_2 \
,uNIr , . r r  ,or  I : ( - Is in2a)[  f ]  s inh(2f  -  A,-2i f ls inhQ,-) i -2 i41|

\ t^; j  1t '7| t  \ . ,=z /

rJ)c I  J:B tr""-'(i;1;;i i';:i"i) E2)
Similarly if {AAB\ *0 and U"o'\*g we shall use the following enumeration:

^l: 
)?: )?c , )i: 

^l: 
)lo . (E.3)

The interesting case is

) ,?c:  ) lB:  ) . r .  8.4)

The formulas (6.19)and (6.16) lead to

t{) l \  { ;P}\  1 N \
-  t t " j '  \ " j  '  1:(- i  s in2at(  [ l  s inh(, i ,  - ) i -2 i4]s inh(, l f  -  )" , -2 i t1 l l" " \ t r i )  uf l l -  \ j=z |  " i

11''1, ' l t;,?. ' )\'  t r ,v-r \  
\ ) ,"1- ' r l  l^" : , ' r \ )  

tE'5)
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