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Introduction

The quantum field theory in its present state of progress had begun the search of non-perturbative
methods. They seem to provide the only hope for this elegant mathematical scheme to remain
the basis of the elementary particles theory.

Indeed, the multiplicity of the elementary particles and the complicate hierarchy of their inter-
actions make useless the concept of the fundamental Lagrangian which is constructed in terms of
the independent local fields for each particle. To keep the idea of thg fundamental Lagrangian
valid one ought to be able to compose it with a small number of fields and make it capable to
describe a wide spectrum of particles’ masses.

The most popular expectations of a strong interactions theory of this kind are connected with
the model known as the “standard theory” or quantum chromodynamics. The fundamental fields
of this model are represented by the multiplet of the “colored” quarks and their interactions are
maintained by the massless Yang-Mills fields. The special features of these interactions such as
the strong infrared divergencies are believed to provide the confinement of the quarks which
make up a sufficient number of bound states representing mesons and baryons. The confinement
mechanism is not yet worked out but most of the theoreticians support this hypothesis [1, 2, 3].
We are not going to discuss these problems in our survey.

The last three years had revealed the development of some other method for the description
of the elementary particles mass spectrum, the method that is quite different from the perturbative
ones. It is based upon the existence of the spatially localized solutions of the nonlinear classical
field equations for a considered model. These solutions differ from the usual decaying wave packets
by keeping the physical quantities, e.g. energy density, in a compact spatial region of a constant
size that does not extend during the time evolution. In the simplest case the time-dependence of
these solutions appears to be the movement of an object as a whole.

These solutions had been known to exist for about a century in some problems of applied
mathematical physics. Some time ago they were named “solitons” after the term “solitary wave”,
and we are going to use this term also. Between 1958 and 1962 some authors, among them Skyrme
[4] and Finkelstein [5] (see also [6]), declared that with every such a solution there can be asso-
ciated an elementary particle in the quantum version of a model. To their papers had not been paid
the proper attention at that time. Three years ago a number of groups of authors almost simul-
taneously had demonstrated that the quantum particles really correspond to these classical
solitons.

Faddeev and Takhtajan [7, 8] proceeded from the exact solution of the sin ¢,-model, having
found the action-angle type variables that proved the particle-like behaviour of the soliton solu-
tions. Their arguments will be discussed in section 1. Dashen, Hasslacher, Neveu [9, 10] developed
semiclassical methods in the quantum field theory, and within their general method exhibited the
correspondence of the particles to the solitons. Jackiw and Goldstone [11] displayed the same in
their variational approach. Afterwards, the attention of a great number of investigators was
attracted to the soliton quantization problem and quite a few papers on this topic appeared
[12-28]. Now the principal points of this problem are clear.

The survey that is presented below sums up this development. We are going to discuss in detail
the connections of the solitons and elementary particles and present the methods of calculations
of the masses and the scattering amplitudes of these particles. We shall not describe all the methods
worked out in the recent literature, but we aim to obtain all the known results by the single method
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that was developed by the authors at the Leningrad department of the V.A. Steklov Mathematical
Institute. This method is based upon the use of the functional integral for the quantum theory
formulation. It is the functional integral formalism that enables us to describe the quantum
theory in terms of the classical one. No wonder that the specific role of the non-trivial solutions
of the classical equations of motion can be displayed in this kind of the formalism most clearly.

Now we shall explain why the spatially localized solutions of the classical equations have an
influence on the mass spectrum of the quantum problem. The connection of the particles and the
fields in the framework of the perturbations theory can be explained through the asymptotic
behaviour at || — oo of the fields that obey the equations of motion. Let us consider, for example,
the scalar field u(x, t) with the equations of motion

Ou + v'(w) = 0. (1.1)
Within the limits of the formal perturbation theory all these solutions at |¢| — oo are solutions
of the free equation

u(X; 1) =2 UowlX, )3

O +m?up, =0;  v(0)=m?

out

(1.2)

Indeed, u can be obtained from u;,, by means of the non-linear Yang-Feldman integral equation
u(x, t) = upp(x, t) — j([] + m?) e (v () — mPu) dy (1.3)

and one can see that when |t| — oo this u is reduced to the solution of the free equation which we
denote by u,,. The energy

J H(uw)dx = de[%u,2 + H(Vu)* + v(u)] (1.4)

and other observables expressed in terms of u,, coincide with the corresponding expressions for
the free fields: out

1T /dul, \? 0 TR
H(u)dx = J%O(u?n)dx=—J ’—out> + (VU )2 +m*u )? |dx = |dk/k* + m? p, (k).

out 2 dt out out out

(1.5)

Here p;, (k) is the spectral density of the in (out) fields. This Hamiltonian when quantized exhibits
out

the spectrum of the particles of a single sort. The only quantum correction is the mass shift due to
the self-action effects.

The existence of solitons makes the asymptotic representation (1.2) invalid. Indeed, the main
property of a soliton is that it does not decay as the wave packet does and the nonlinear term
—m?*u + v'(u) at u = u, does not disappear in (1.1) at |¢| — co. The simplest example of a soliton is
the stationary solution with the finite energy

—Au, + v'(u) = 0. (1.6)
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According to the Lorentz invariance every such a solution generates a set of solutions

—_— t —
uy(x, t|v, q) = us(“x lv 2q>, 1.7)
v

which is parametrized by the phase space point (v, g) that is the position and the velocity of the
soliton’s center of mass. The solitons’ energies are

j%(us) dx = M/ /1 - 2. (1.8)

Another typical example is given by a family of the time-periodic solutions

w(x, E;—T, T) = w(x,%, T), (1.9)

that generate a set of solutions

—_ p— t —
W, 1o, T, g,2) = w S04 L ”"Z—i;r), (1.10)
VI -0 JI—v* 2=

which are parametrized by points in the four-dimensional phase space (v, ¢, T, ). The new variables
T, o are connected to the internal momentum and the initial phase. In general we can imagine a
soliton as a finite-dimensional set of non-decaying classical solution u/(x, t|{p;}, {¢,}) that depend
on v,q and also on the internal coordinates and momenta. The energy of a soliton of that kind is

_ M({p;})
j%(us) dx = *ﬁ

where M({p;}), v¢ {p;} is the soliton’s mass. The important property of this solution is the possi-
bility of making the soliton to rest. -

When a soliton solution is properly localized in space, a sum of a number of these solutions
with the centres separated sufficiently would satisfy a motion equation with high precision. Solitons
that move with different velocities are getting farther and farther as |t| — oo, so we can assert the
asymptotics of eq. (1.1) solutions to have the form

{r:}.{a:}) (1.12)

(1.11)

ux,t) 52 uly (x,t) + Z ui(x, t
out 13

as long as the solitons exist. These asymptotics contain the sum of the one-soliton solutions in
addition to the free equation solutions u?, . In general case we have the different sets of solitons

out

in the (1.12) at t > —o0,t > + co. The solution energy is expressed through its asymptotics as
follows:
= 0 i — 2 p) M{{p,})
Hwydx = | Kol ydx + 5 | #(i)dx = k* 4+ m?p, (k) dk + ) ———=. (1.13)
out i : out [N 1 - V;
Here we assume the wave packet and the solitons to move away asymptotically with different
velocities and so to be localized far apart. We see that the phase space of this system is bigger than
that of the free scalar field. It is parametrized by the number of solitons of every kind by their
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internal and Lorentz momenta and their coordinates in addition to the generalized momenta and
coordinates contained in u;,, and u,.

The energy contribution from the solitons looks like the energy expression in the occupation
number representation of the quantum field theory. This implies that the particle spectrum of the
system provided by the consistent quantization should contain a set of soliton particles along
with the particle, corresponding to the original field in perturbative sense. Every structureless
soliton generates particles of one sort while a soliton with internal degrees of freedom generates
a family of particles with different internal states. It’s worth mentioning that the energy contribution
of solitons looks like quantized in the classical field theory already.

These general observations had been taken up as the basis of the soliton quantization problem
technical account that is given below in this review. The consistent definition of the S-matrix by
the functional integral method makes use of the classical solutions asymptotics at large time.
Regarding the nontrivial properties of these asymptotics when the solitons exist we can modify
the S matrix definition in a natural way. The stationary phase calculation of a functional integral
makes it possible to develop a perturbation theory that manifestly exploits the solitons’ presence
and that is an expansion over the coupling constant likewise. The physical observables of the
solitions such as e.g. particle masses, scattering phases, are found to be not analytically dependent
on the coupling constant, they contain a contribution inversely proportional to the coupling
constant. It is interesting that all the non-analytic contributions are of a purely classical origin
and the quantum corrections to them are analytic. Owing to this semiclassical contribution solitons
interact strongly when a coupling constant is small and generate a rich spectrum of bound states
[29].

Let us mention that in some models the solitons possess the “topological charge”, i.e. they can
not be deformed continuously into the vacuum. So we become sure that a quantization will leave
these solitons stable and not reduce them by the fluctuations.

At last we should outline the survey contents. In section 1 we are going to describe some well-
known classical solitons including the sin ¢, model solutions which will be used to examplify
the general expressions later on. The role of the topological charge in the quantization of solitons
will be explained in the same section.

In section 2 we give a general definition of the S-matrix for a classical system with solitons.

Section 3 is devoted to the diagrammatic technique of the physical observables calculation for
solitons. This technique is based on the stationary phase method calculation of the functional
integral which describes the soliton’s propagation.

In section 4 the semiclassical contributions to the solitons’ masses and scattering phases are
derived, they are found to be inversely proportional to the coupling constant. The number of the
periodic soliton’s quantum states happens to be inversely proportional to the coupling constant
too, hence reaffirming the strong interaction of solitons with the small coupling constdnt. All the
general formulae are illustrated by the sin ¢, model.

In section 5 we calculate the one-loop corrections to the physical observables on the pattern
of an arbitrary scalar theory of a two-dimensional field.

Throughout this paper we choose h = 1, ¢ = 1. Every paragraph has its own numeration of
the formulae. The index of a formula contains two numbers, the first is the number of the paragraph
and the second that of the expression itself. Formulae from another section or appendix are
referred to by means of the index of three numbers, the first being the number of the section or of
that of the appendix.
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1. The classical relativistic solitons

This section has a number of objects. Firstly, it supplies an information on the classical localized
solutions that will be used in the discussion of the quantum theory in other sections. Secondly,
it will illustrate by the concrete example the introduction’s formulae about the asymptotic proper-
ties of an arbitrary solution of the classical equations of motion. At last, the important property
of the most interesting soliton solutions that is called the topological charge will be discussed.

This section is an auxiliary for the following material, so it will present just a brief survey and
the reader can find more details in the original literature we refer to.

1.1. The sin ¢, model

All the soliton activities had a great stimulating encouragement in a field model that supplies
most of the soliton solutions calculable analytically. This model is the famous “Sine-Gordon”
equation in the two-dimensional space—time that was named so by Rubinstein due to an obvious
alliteration in [30]. The title “model sin ¢,” seems to be more rigorous for this system. We will
use it everywhere avoiding the slang.

In this paragraph we will describe the known results on the classical sin ¢, solutions and
their interpretations. This model will be used as a'main illustration of the general quantum solitons
theory formulae in the following sections.

Let us consider, in the two-dimensional space-time, a non-linear chiral field which is associated
to the Abelian group U(1), i.e, a complex field x(x, t) that satisfies the condition

lx(x, )| =1, xx, t) == 1 (1.1)
It is possible to deal instead with a real u(x, t) such that

x(x, 8) = exp {iu(x, )}; (1.2)
u(x, t) must not vanish at the spatial infinity. The asymptotical condition for u is weaker:

u(x, t) == 0 (mod 27). (1.3)

The Lagrange function

o]

1
¥ = > de[auxaux +miy + x* = 2)] =

- a0

dx[—(6 u)> — m*(1 — cos u)] (1.4)

2| =
8““38

defines the model with the mass m and the coupling constant y. In the second representation the
Lagrangian would take a more convenient form after the renormalization

u— o, (15)

but we shall not do it. The classical motion equation
Uy — U, + m?>sinu =0 (1.6)

does not contain y at all in our formulation. The y reappears instead in the Poisson brackets

{u(x), u(y)} = v3(x — y); (1.7)
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this demonstrates why the perturbations theory in y will coincide with the semiclassical expansion
in the next sections. The equation (1.6) that looks in the light-cone variables as follows

Uy, + sinu =0, & = Im(t + x), n = im(t — x) (1.8)

and defines here the relativistic quantum field theory model had been known for a long time in
various branches of the applied mathematical physics and had enjoyed much attention. Some
years ago it was treated successfully by the inverse scattering method [39, 35, 31] (see also [32,
34,37]). The explicit Hamiltonian dynamics formulae that were obtained in [7, 8] incited our
formulation of quantum soliton theory.

Let us now apply the inverse scattering method to equation (1.6). It can be represented as a
commutation condition for the operators

16 1 .
X=—ig—£—5u,-S3+klcos%S1+k0'smgS2; (1.9)

16 1 .
T=Té?——2—ux-S3+kocosgS1+k,smgSz.

Here S; = 40,, 0, are the Pauli matrices, k = (k,, k;) is an arbitrary vector on the mass shell,
kZ — k? = m? and u(x, t) is an arbitrary function. Indeed it is easy to check directly that

TX = XT (1.10)

if and only if u(x, t) satisfies eq. (1.6). One can understand the last relation in such a way: the
operations X and T generate the displacements in the space-time. This observation possibly
deserves more attention but we will not employ it here.

Owing to (1.10) the equations

Xy =0; (1.11)
Ty =0, (1.12)

are compatible.

The first of them can be regarded as an eigenvalue problem with the vector k playing the role
of a spectral parameter. Meanwhile, the operator X is defined in terms of the initial data u and u,
for the equation (1.6). The complete analysis of eq. (1.11) can be performed as it is usually done
in the potential scattering theory, by introducing the Jost matrix solutions and the transition
matrix for any real k and investigating the solutions in search of a discrete spectrum. This program
is carried out in the mentioned papers. We shall restrict our attention to listing the scattering
data resembling that of the Dirac equation.

The two coefficients a(k,) and b(k,) make up the transition matrix

a, b
= (—B, a>, (1.13)

which connects the Jost matrix solutions G(x, k) and F(x, k) of eq. (1.11), defined by the asymptotic
conditions

Fliow = 8,05 G k) xa— o = E(x, k), (1.14)
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where the matrix &(x, k) is

&(x, k) = exp { —ik,S;[cos Ju(c0)] - x}, (1.15)
in such a way that F(x, k) = G(x, k)T(k). Here a(k) and b(k) should obey the conditions

la(k)|® + |b(k)|* = 1, a(—k) = a(k), b(—k) = +b(k) (1.16)
and a(k) has an analytic continuation in the upper half-plane of k with conditions there:

a(k) = 1, |k| = oo a(+k) = a(—k). (1.17)

The zeroes of function a(k) are located symmetrically around the imaginary axis. In the generic
situation a(k) has a finite number of simple zeroes with none of them on the real axis and no
degenerate ones. Let us denote the purely imaginary zeroes by k = ik; and the zeroes that are in
the right half-plane by k = {,,.. The zeroes of a(k) correspond to the discrete spectrum of the
problem (1.11). More strictly, at k = ik, there exists a vector-solution ,(x) of eq. (1.11) such that

v ﬁ(ll)e v E’C(:)e (1.18)
with C, a real number, and at k = {,, there is a y,, that

Ym =5=2 (:) g itmx; Vm = d,,,(;) gitm* (1.19)
with d,, the complex transition coefficient. The data

S = (b(k), x;, Cy, $ s i) (1.20)

define the set of so called scattering data for the problem (1.11). The pair of functions u(x),
uqy(x) = u,(x) from some special class and the scattering data set S are in one to one correspondence
which is a nonlinear generalization of the Fourier transform

u,uy > S. ' (1.21)

Almost all the conditions on the u, u, and b(k) concern their smoothness and their Fourier trans-
forms’ smoothness properties. The only condition of another sort

b(k)| < 1 (1.22)

follows from the “unitarity” condition |a|? + |b|> = 1. We did not include a(k) into the scattering
data because it is defined uniquely by b(k) and the zeroes k; and {,,. The connection (1.21) is not
trivial, its evaluation requires the solution of the linear integral equation. Though it makes possible
to express the Poisson bracket of the initial data and even the Hamiltonian

1
H= 5 J dx[3u? + $u2 + m*(1 — cos u)] (1.23)
through the scattering data. It was found that the Hamiltonian depends on the canonical momenta
only. This means that the scattering data define the variables of the action-angle type. Let us
write down the Hamiltonian in terms of the variables that are most convenient for the quantization
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- 8
H = J‘dpp(p)./p2 +m*+ Y /pt+ M*+ ) /p: + (2Msin6,)?, M= Tm (1.24)
] n

This expression of the Hamiltonian was the first strict demonstration of the fact that the solitons
really correspond to the particles in the quantum field theory [7, 8].

The quantity 0 < p(p) < oo means the usual particles density, — oo < p, < oo is the Lorentz
momentum ofa soliton, — o0 < p; < o0 is the Lorentzmomentum of a periodic soliton,0 < 8 < /2
is the internal momentum of a periodic soliton. These canonical momenta can be expressed through
|a(p)], x; and ¢, only. In the semiclassical quantization all the canonical variables become operators.
The p(p) operator has the eigenvalues of the form ) ; 5(p — p;) and displays the contribution of the
basic particles, the only particles than can be obtained by the perturbations theory. The eigenvalues
of the p, and p, operators may be any real number. We shall see later that the 6 operator has a
finite number of eigenvalues. These variables bring about the solitons’ contribution.

The second equation (1.12) describes the time dependence of the scattering data which cor-
responds to the functions u(x), u(x) — change according to eq. (1.6). Noting that the operators
X and T look especially simple when |x| - co we find that

b(k,t) = exp {ikot}b(k, 0); C(t) = exp {iko,t} C;; d,(t) = exp {iko t}d,. (1.25)
The canonical momenta are expressed through the variables that do not depend on time:
alk,t) = alk), k() =x, L) =2¢, (1.26)

ko, = /Mm* — K, ko, = /m* + (2
The square root values are chosen so that ky, > 0 and Im k, , > 0.

The last formulae enable us to examine the solutions of eq. (1.6) completely and particularly
to find the two types of the soliton solutions:

1. A simple soliton without internal degrees of freedom (a structureless soliton)

— vt — 8
us(x, t|v, go) = 4tan™! exp{-_i-m_ x—vt.l—_;_—‘_ 'vqo}; p= _;n S - (1.27)
=’

1 —?
defined by the parameters p, g, and also by an integer-valued parameter ¢ = +1 with two values
that can be interpreted as a charge, as we will show in paragraph 1.3.
2. A periodic soliton of velocity v = tanh ¢

T - sin [mcos 61 — «
= — = 4tan" {tan 6 . ; .
w(x, t|v, T, g, o) w(r, > T) 4 tan { anf —- [m sin 8 — g cosh (p)]} (1.28)
T = tcosh ¢ — xsinh @, r = xcosh ¢ — tsinh ¢
. VI L e (1.29)
mcos 0 Y

One can exhibit the general solution of eq. (1.6) at large values of ¢ as a free wave packet and a
linear combination of the solitons mentioned above,

u(x, t) TS i u?n (x’ t) + Z usi(x’ tlva’ qa)in + ; w(x, t|vb’ ’I;n Qb ab) (130)
out a out

in
u out
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The distinctive feature of this model is the conservation of the number of solitons and of the
number of the soliton types from ¢t = —oo0 to t = + 00 and also of their individual momenta.
The only change due to interaction is the additional shift of their coordinates (comparing with
their uniform motion without interaction):

Din = pout’ oin = Bout’ q?n # qgut’ a?n 7& agut' (131)

In particular, there are solutions with purely soliton asymptotics. They are called the polysoliton
solutions. The inverse scattering method provides the explicit expressions for them. We present
two examples now. ‘

1. The solution

— inh ((d d,)/2
ul,vz,ql,qz)=4-tan“%tanh(p1 ¢, sinh (4, + !2)/ )%; (1.32)
1~ 42

dy, =mcosh @, ,(x — q,,) —msinhe, ,-¢

u(x,t

describes the scattering of two solitons of the same charge and behaves asymptotically so:

u(x’ tlvlsvb qd1» q2) :ﬁm_’ u:(x’ tlviln > qiln ) + u:(xa tlvizn aqizn ), (133)
out out out out
where
Vese = vl =013,
' 2 P — @
2= G = In coth | =——2 1.34
qout qm m cosh (01 n CO ( 2 b ( )

-2 1~ ¢
1 L — 2 = ——_l t —l— .
qout din mcosh PR n co h( 2 H (] > (PZ

2. The solution

ug(x, tloy,v_,q94,9-) = 4tan™! {coth ((p+ ; (p_> : cS::)ns}lll i((j: : j:))g))} (1.35)
describes the scattering of two solitons of different charges and asymptotically is

X, 804, 0,44, 4-) =2 U (% tfuih L g ) + ug (X, tvin L g0 ), (1.36)
where out out out  out

vE, =vE = 0%,

Qouws — Gin = TncoszT% In coth (‘ﬁ%&) (1.37)

- - =2 P —@_
- ¢, =—— Incoth{ ————— ], >Q._.
qout . qm mcosh(p_ n co < 2 q’+ fP

Note that the solution (1.28) is derived from this one by the analytic continuation in the relative
rapidity ¢, — @_ — i(r — 20). It is already clear that w is a classical solution that corresponds
to the bound states.
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The solution which describes the scattering of a structureless soliton on a periodic one is also
revealable but its expression is too cumbersome to be written down here. Just note that the momenta
of both solitons remain the same, i.e. pl,, = pi.. P = Pia» and the internal motion period stays
unchanged, 6,, = 0,,, (the internal momentum is conserved). But the coordinates of the simple
soliton, g, of the periodic soliton, g, and the internal phase of the latter « change. Supposing the
simple soliton’s velocity bigger the coordinate shifts look so:

0 0
: - q; =__(I) Sa w’ s owu - mz——(l) Sa w’ s
Gout — Tin PP (r*, p%, 0) Qow — 4 e %, p%, 0)

0
Goys — Uy = 1y6 5O0Sp"0):;  p,=Msinhg,  p”=2Msinfsinh g, (1.38)
8 .
O, p*, 0) = — —;‘— + K(ie - e®~ %) 4+ K(—iei® - e®~ %) (1.39)
.8 r xexp{—i9}+1>
K(x)=1-1d0In - . 1.40
) yj < xFexp {=16} (1.40)

The scattering of two periodic solitons looks similar. All the momenta are conserved and
coordinates obtain the following increments ¢, > ¢,,:

0
Qoui — qin' = ™ F(py,; Pw,; 0y 0,); Qom — qin = F(py,; Pw,s 015 0,);

op™?
(1.41)
Wi Wi a W2 Wiy __ y 6
(xout - ain 16 60 (pwl’pWZ’el’BZ) aoul - aln 16 66 (pw;’pwz’el’ 2)
F(pla Pa, 91, 62) — K(e‘Pl—le . ei(or—oz)) + K(_elm—lpz . e‘l(91+92)) +
+ K(—e® 2 ¢i01+02)) | K(e®1~92.6i02-00) _ {gn2/y (1.42)

Consider now the scattering of any number of solitons. It turns out that all the momenta remain
conserved, all the coordinates become shifted due to the interaction, with the total increment of
every coordjnate being the sum of the two-body shifts

qum = ;A%k, Aa:ot = ;Aaik' (1.43)

The reason of the solitons’ number, types and momenta conservation is the existence of an
infinite number of conservation laws in this model. All the conserved quantities have the local
densities that are expressed in terms of u, 4, and their spatial derivatives. Inserting the asymptotics
(1.30) of the general solution u(x, t) into these densities we obtain

S ot Jdk'kz"“'l)an(k) ZPZ"“+jdk-k2"“'pom(k);
(1.44)

Z pa‘“ pai J‘ dk - k" kOpin(k Z paom Paom J dk - ko S pout(k); Pg = \/m

with summing over all the solitons types in the initial and final states. These identities ensure the
conservations mentioned above.
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1.2. A brief survey of the known classical solutions

Many classical solutions of soliton type have been found up to the present time. We are not
going to undertake their general classification which was done in [36-41,42-51]. Instead we
present some remarks and references to original papers.

The fact of solitons existence depends strongly on the dimension d of the space-time, hence the
cases of various dimensions ought to be examined separately.

1)d=2.
The existence problem of the structureless solitons for the scalar fields
Uy, — Uy + ') =0 2.1)

is simplified by the mechanical analogy. The substitution of u(x, t) in the form

x — vt
u=ul——— 2.2
( - vZ) 22)
transforms eq. (2.1) into
W = (), (2.3)

which is the Newton equation for a particle in the potential —v(u). Thus the soliton solutions
appear to exist when 1(u) has two nearby minima of equal magnitude.

The periodic solitons do not seem to take the treatment by the general considerations of that
simple sort. The numerical experiment [52] proves the existence of the periodic solitons in models
other than sin ¢@,, but they are not absolutely stable. Such solutions may correspond to the series
of resonances in a quantum theory.

2)d=3.

The most interesting example with soliton solutions is the nonlinear chiral field a(x) with the
values on the two-dimensional sphere S? (r-field). In the parametrization of n = (n,, n,, n3), n* = 1
the Lagrange function is

¥ = % f dx(0,m)*. (2.4)

The classical equations become

On + n(d,n,d,n) = 0. (2.5)

The stationary solutions obey the equation
ne + n, + n[(n.n) + (n,-n)] =0. (2.6)

It is easy to verify that if a satisfies the system

{nx+n/\ny=0;

n,—nAn, =0, 2.7)

then it satisfies eq. (2.6) too. The system (2.7) can be reduced to the Cauchy-Riemann set of equa-
tions. It can be checked by regarding S? as a complex plane C!. Substituting formally
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2u 2v w40t -1

= Hy = — Hy = o 8
1+ u?+0? 270+ w2 P+t 41 (23)

ny

we see that the equations (2.7) reduce to the condition for w = u + iv to be the analytic function
of the variable z = x + iy. Employing this observation we arrive at the infinite set of solutions
of eq. (2.6) with the finite energy [53]

H = jdzx(nxnx + nyn,). (2.9)

Note that this set is degenerate. If n(x) is a solution then m(Ax) is a solution too with the same
energy. So the n-field’s solitons do not realize even a local minimum of energy.

3) d =4

The most popular soliton was found in the system of the Yang-Mills field interacting with the
Higgs field. It is the t'Hooft-Polyakov monopole [54-56]. The Lagrange function in the case of
O(3) groups looks like

—1 1 A
¥ = jd:“x tr [4?2— Fﬁv + E(Vu(p)z - Z((pz - [1.2)2:|, (210)
where ¢,, a = 1, 2, 3 is the scalar isovector field and

V.o =00+ [A, 0] (2.11)

The stationary solutions are found by
=Zeur);  af= - —5)  A5=0 2.12
<Pa—ru > i — EiapXp| alr grz’ o=Y 12)
which leads to the next two radial equations

u” + %u’ + (u? — 2g%a%u — ® = 0;

4 3 (2.13)
a'+-d - 5a—g**a® — g*uta=0.
r r
They are proved to have the solutions with the boundary conditions
u— pi 112 r— o0; a—0, r— oo. (2.14)

Particularly, the magnetic field (F&¢®) behaves in the infinity as const/r? and this shows the solution
to represent a magnetic monopole. Its mass is of the order of M/g?, i.e. very big for the usual theory
of the electromagnetic and weak interactions. Here M is a mass of a vector particle.

This system also has a time-periodic solution that corresponds to a monopole with electric
charge — a dyon. This solution was found by Julia and Zee [57] by the stationary substitution
{(2.12) changed so:

Ay # 0, 8 — X(r). (2.15)

It becomes periodic in the physical gauge Af = 0.
Quite a number of soliton solutions which are stabilized by an extra conservation law was
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described by Lee et al. [18, 58]. The periodic solutions were investigated in [60, 59].

The nonlinear n-field does not produce solitons at d = 4, as one can see from the simple scaling
considerations [61]. But one may get over this hindrance by changing the Lagrangian, by adding
a term with the higher powers of derivatives into it. An example of this was given by Skyrme [4]
with the n-field on the S® sphere. Assume

¢ =(01,0:,03,04), 2 0i=1 (2.16)

and consider the Lagrangian
@ = 2%] d3x[(0,9)* + £%(0,9%0,0° — 0,9°0,9")?]. (2.17

The spherically symmetric solitons are found by the substitution

;= ?f(r), P4 - gr), fP+g*=1 (2.18)

One can find the Skyrme model generalization for the gauge fields in [62].

1.3. The topological charge

The soliton solutions had exposed one more interesting aspect of the nonlinear fields theory,
the existence and the significance of the so called “topological charge”. The nonlinear fields are
naturally connected with the maps of the compact manifolds. The space manifold or the vicinity
of its infinite point is regarded as a preimage, and the manifold of the field values or its asymptotical
values at infinity form the image. The maps of this kind are classified in the topology by integer
valued invariants — the homotopy classes. We shall not go deep into this branch of mathematics,
one can find a good introduction in Finkelstein’s paper [63]. We shall display a number of
characteristic examples instead. The dimension of space is of great importance again.

1) d=2

The field x(x) in the model sin ¢, defines the regular map of the real axis R! onto the circle S*.
The regularity means the identity of the values y(— o0) and x(o0), so from the topological point of
view R! acts as the circle S! too. Obviously, an integer number n can be assigned to the field x(x),
a number that denotes how many times the field circulates while x runs from —oo to co. This
number is calculated by

1
n=ﬁ[u(oo)—u(—oo)]=% f x=2~1— f L~ ldx. (3.1)
It may be regarded as a charge associated with the current
1 1 1
Ju - % guvavxx = z—nsuvavu’ (3'2)

which is conserved irrespective of the motion equations and exhibits the simplest example of a
“topological” current. The two characteristic properties: a) the conservation irrespective of the
motion equations; b) the integer values of the charge; — may be assumed as a basic of the topological
charge definition.
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2)d=3
Regarding the n-field example from section 1.2, one can see that the current
L, = 8,00 N G,n, n) = ¢,,.0.n"0,nn (3.3)

is conserved. The less obvious fact is that
1 1 ,

can have only integer values for the fields n(x) with a fixed asymptotics at |x| — co. It can be
examined by the parametrization of n-field by

sinp cos¢@
n=|sinp sing |, (3.5)
cos p

where p and ¢ are the functions of x. In this parametrization Q becomes

1
Q=Zgjdp/\dcosq) (3.6)

and shows how many times n circulates the sphere S* while x rans through the plane R2.
3)yd=4.
We can introduce a current similar to the one rendered above for the n-field on the S* sphere.
In the parametrization

X={0.}, Y@0a=1;, a=1,...4 (3.7)

this current looks so:

1 .
S, = 32 Evpet?0,0°  0,0" 0,0° ¢* (3.8)
and makes possible an important generalization. Indeed, the S* is a manifold of the SU(2) group
parameters, and the x field can be thought of as having its values in the SU(2) so we can rewrite
4, in the parametrization — independent form

1
n = 4? suvpa' tr [Lv’ Lp]Lo" (39)
where
Lu = auXX_l- (310)

In this form the current can be readily generalized to an arbitrary principal chiral field x that has
its values in a compact group G with the last formulae valid (corrected by another normalization
factor) and the tr regarded as the Killing form.

Another series of the topological currents is yielded by the field models with non-trivial beha-
viour at infinity. In the system of the Yang—Mills A, and the Higgs ¢ fields with the values in the
adjoint representation of a gauge group one may construct a current
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Ly = Eupe T FV,0, V.0 = 3,0 + [4,, 0], (3.11)
which is conserved. Indeed
0ufy = Euypo IT [(VqupV,(p) + vaVuVo(p]. (3.12)

The first term in the right side becomes zero according to the Bianci identity. The second term
disappears due to the V,V, antisymmetrization and the fact that

(Vuva - Vovu)(p = [Fuo’ (P] (313)

Unlike the previous examples, the charge density ., is the total divergence
Fo = 0;P;, P; = ¢y, tr (F,;0) (3.14)

and so the corresponding charge Q does not vanish if only the F,, and ¢ do not decrease too fast
in the infinity. The charge Q is identical to the magnetic charge for the t'Hooft-Polyakov mono-
pole. The integer valuedness of this charge for the SU(2) group follows from the equivalence of
the current (3.11) of the ¢ field with asymptotically vanishing V,¢ to the current

Fu = Eupe 11 [0,0,0,0]10,0 = €,,,,£°0,9°0,0°0,0°. (3.15)

Here .#, is also a total divergence; in this case
Fo = 0;P;, P, = Sikjgabcak¢aaj¢b¢c (3.16)

and comparing it with (3.3) we see that P; is analogous to the current .#, defined before for the
two-dimensional n-field with values in the S2. Fhe charge

Q =f]0d3x =J‘Pidsi (3.17)
is not zero if only ¢ # 0 and it is integer if
x| o0
@°9°||x) = = const. (3.18)

We conclude the discussion of the topological charge examples by commenting on their importance
in the theory of solitons. It happens so that if a model possesses solitons and permits a topological
charge, then usually a soliton has a non-trivial topological charge. What is more, its mass can be
estimated from below by means of the topological charge [51, 53, 64, 65, 66, 115].

The first of these properties can be verified directly. The expression (1.27), (3.1) exhibits the
structureless solitons of the sin ¢, model to have the charge + 1. The t‘ Hooft—Polyakov monopole
has the charge 1 that is associated to the current (3.11). At last, the two-dimensional n-field’s
solitons may have any integer value of the topological charge (3.4).

Let us look more attentively at the second property, beginning from the sin ¢, model. The
stationary soliton’s mass is expressed by

M =

(__>8

dx[{u? + m*(1 — cos u)] (3.19)

o

1
Y
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and allows the estimate for a monotonous function u(x) of the kind
u(o0)

2m 1 — cosuu d 2m sin ] d 4m co u
—_— _— X =— —Jdu = — -
y JV 2 ¥ Y 2 y %2

(— 00)

- (3.20)

[eo]

A non-monotonous function requires an obvious generalization. For a soliton with charge 1
the last expression has the value of 8m/y what is exactly its mass.
Consider now the two-dimensional n-field. Apparently, we have

41 szx(a n? > szx(a n A d,n, n) (3.21)
and so

1

y —M = Q. (3.22)

This estimate becomes saturated by the exact solutions, because if (2.7) is satisfied then the equality
in (3.22) holds.

For the tHooft-Polyakov monopole the mass is estimated from below by the current’s (3.11)
charge; it can be seen immediately by comparing the expressions (3.11) with the energy density

H= J‘ds |: ! 1k + Z(Vt(P)Z + - ((P —4a ) :| (323)

In the limit of 2 = O the estimate is saturated by the exact Sommerfield—Prasad [64] solution which
satisfies the equality

%sikijj = gV,0. (3.24)

At last, it may be worked out by similar considerations, that the charge of current (3.8) estimates
from below the static Hamiltonian of the Skyrme model or its generalizations to an arbitrary
chiral field that is defined by the Lagrange function

1

2
£ = 2| L2d%x + % J tr([L,L,]% d>x. (3.25)

This property is crucial for the existence and stability of solitons.

2. The S-matrix definition within the functional integral formalism

In this section we shall define the S-matrix for solitons and outline a scheme of a modified
perturbation theory for its calculation. We shall use the functional integral so that the perturbation
theory will be given by the stationary phase method. All the formulations will be presented for a
two-dimensional scalar field with the Lagrange function

e8]

J‘ dx[3(0,u)? — v(u)] 0.1)

— o0

%I'—‘
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for simplicity but all the results do not depend on this particular example and can be directly
generalized to the four-dimensional case.
The coupling constant y does not enter the classical equations, but it enters the Poisson bracket

{u(x), u(y)} = y(x — y), (0.2)

so the quantum model will depend on 7. In our constructions and definitions we shall use the
experiences of the functional-integral formulation of the quantum mechanics and of the quantum
field theory. The S-matrix is represented there in a path integral form, as a functional integral
over the paths that asymptotically coincide with the solutions of the free motion equations, see,
e.g. [67,68].

First we shall recall these formulae and then perform a natural generalization of them for
solitons.

2.1. The S-matrix definition within the functional integral formalism

Let us write down a form of the S-matrix in quantum mechanics and in quantum field theory,
suitable for the generalization to the soliton case.
The path integral

t”,q” t
-2
. m
Gt q"|t, q) = f eXp{ i f Z(q) dt} [1dq@), g = Tq - 1(q), (1.1)
t
t'.q t’
a0, =4q,  qO)- =q";

expresses the propagator (the transition amplitude) in the configuration representation

2
G(t",q"|t,q) = {q"|exp{ —i# (" — )} |q'>, H# = ;—m + g). (1.2)

To obtain the S-matrix in the usual operator formalism we have to evaluate the limit

2
S = lim exp(i#,t")exp { —iH(t" — t')} exp (—iHt); Hy = 5_m (1.3)
t"" =
t'>—w
In the functional integral formalism we obtain this result by adopting the following rule: we have
to let the time variables in the expression (1.1) go to infinity, " — oo, t' - — o0, making the g”

and ¢ variables dependent on t” and ¢’ according to the classical equations of motion

"

p P ,
n —_ —t” " 7 _ _tl . 1.4
q" =1+ 4o, q=_1+4o (1.4)

The limit of (1.1) will be proportional to the S-matrix in the momentum representation. More
strictly, the S-matrix is equal to the limit

, . G t”, ,‘,t” m + " tl’ ’t’ m + ’

Lo J2mGo(t, p't/m + g |to, 4o)N/27G(to, 0|t P'T/m + go)

The denominator contains the free propagators. This limit does not depend on ¢4, 40, 9o, 9o-
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We illustrate this by a single-particle problem in quantum-mechanics. The transition amplitude
(1.1) can be represented as

o1 [ dk —ik3(t" — )2 i ’
G(t’,qlt,q)=ZE J_ﬁ)l{ 1w£) Li m}[f:c da) + dla”) fla)]

oo

+ Y exp { —iE" — £)}0,a")0ud). (1.6)

Functions g, f and ¢ are the Schroedinger operator eigenfunctions, see Appendix (4.9). Their
asymptotic at |g| - oo is

(@) — s(k) e ™%, q — o,
gk q e—ikq + r(k)e“’“‘, q - —©
(1.7
B e+ikq . r( )S(k) —lkq q-— 00, )
/9 - S(k)
s(k)e "+, q— —oo;

k2 . k* . 1 d?
Zn‘gk,kﬁ‘—z—’;ﬁnk——%@f"'v(‘l)-

Let us calculate the transition amplitude (1.5) for a particle in a potential with the initial and
final momenta p” > 0, p" > 0. We obtain it by evaluating (1.6) in the stationary phase method

) m ) (qt/ _ ql)z q/r _ q/
= /mexp{lm ——T——} s(m T (1.8)
and similarly

m . (¢ —4q)
A PO 1.9
Go(t » 4 ‘t »q ) zni(tu _ t/) €Xp {lm 2(’:” ) } ( )

Substituting the expressions (1.8) and (1.9) into the right-hand side of (1.5) and using the formula

) iN oo x2
I‘IJI_I*‘I:O /Eexp{—lN —2—} = 0(x), (1.10)

we get the following expression for the transition amplitude

p'|Slp'> = ép" — p)s(p). (1.11)

The formula (1.5) was written for a nonrelativistic particle in a potential, but it can be easily
generalised for the many-body problem in quantum mechanics with a translation-invariant
interaction. The corresponding formula looks like (A.1.9):

~

ke, = ~E,p,, E, > 0, J(p.f dg = 1, kg, =

G(t"’ q// '

. 4;3t, {4:}) 112
el Sl = Mmoo ng |zo, O)H”ﬁcco(to, LIy o

" p/, ” ”., ’ pl '
q] =;’t +q%; q; = mt + g7 (1.13)
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This formula is correct in the space of any dimension. The numerator of (1.12) contains the
N-particle propagator and the denominator contains the single-particle propagators. This formula
states the S-matrix to be different from the propagator by the external lines amputation.

Let us turn now to quantum field theory. The momentum representation is not natural in this
case. The generating functional for the normal form of S-matrix is used most frequenty. This
functional makes it possible to define the S-matrix in terms of the functional integral over the paths
with the classical asymptotics. The S-matrix generating functional is [67]

. 1 .
S(4*, 4) = ,'lrllnw J‘exp {Zfdﬁ[(a;afﬁ —aga_p)| + 2a5 agl,» + 2a; agl, ]

v @

+ iJ(mu, - %)dzx}]_[du(x, t)dn(x, t); #="ny —l—u,z, + ;—V(u);
x,t

2 2y
(1.14)
u(x) = \/%_Jvdﬁ[a; exp { —imsinh fx} + azexp {imsinh fx}];
n
n(x) = \}T‘ f dp cosh Bla, exp { —imsinh fx} — agexp {im sinh Bx}]. (1.15)
n
The quantities a; (1), ay(t) at t” and ¢’ are equal to
a; | = AF exp {imcosh pt"};
(1.16)

agl = Azexp { —im cosh pr'},

when A" and A are independent functions here. The S-matrix elements are obtained by the dif-
ferentiation of the generating functional

5N’+N”S‘(A+, A)

Q4pi TR e TTN <
tpi TR LEY

S|{pi}> = , p=msinhp. (1.17)

At =4=0

The relation (1.17) shows that we have to use 4™ () and A(p) localized in momentum space. Then
u and = will be localized in the configurational space,

2ni

fdﬂA*(ﬂ) exp {im(t”" cosh  — xsinh )} - [————_ A7 exp {im\/(t")* — x?};
m S Eaman

(1.18)
X
tanh B, = o
and the wave packet goes to infinity faster than it decays. Note that, we can perform integration
over all the internal = in (1.14) and obtain a manifestly Lorentz-invariant expression (except of the
boundary terms).

These examples are sufficient for the S-matrix definitions for processes with structureless solitons.
The solitons with an internal degree of freedom correspond to periodic finite motion, and this
motion is known to generate bound states in the usual quantum mechanics. So we complete the
description of the quantum-mechanical results by the S-matrix definition for processes with bound
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states. Classical mechanics regards bound states to be the finite periodic motion so we can take
a motion of a particle around a circle as a single-particle quantum-mechanical model.
The Schroedinger equation of this model is:
2

[— L v(a)]w.,-(a) = EY0);  ilo + L) = Ygla). (1.19)

We shall start from construction of a single particle propagator which is non-trivial in this case.
It is expressed by a functional integral

t”,a” t”

G(t", o"|t', o) = J exp {i j Z(a) dt} [T da(), (1.20)
t',a' t !

Ot(t") = a”, O((t') = a’; z = %dl — v(a).

We have to integrate over paths with an arbitrary number of circulations because any two points
separated by an integer number of circulations are identical. This expression can be simplified by
the following consideration. Let us take the same equation as (1.19) but on the whole axis and with
a periodic potential

d2
I:— %'a? + U(a)]l//v(a) = Ev‘pv(a); U(a + L) = U(a)

Yoo + L) = ey ().
The propagator of the last problem

(1.21)

|t o) = j exp {i j L) dt}l_[da(t) (1.22)

t,a t

is not equival to (1.20); roughly speaking we do not consider identical the two points separated
by an integer number of spatial cells, and so we integrate here over the paths with [(a” — «')/L]
“circulations” only. The kernels (1.22) and (1.20) are related by

G(t",a"|t, o) = f 30" + nL,t"|o, 1). (1.23)
n= -0

The spectrum E, of the problem (1.19) appears to be easily calculable by examining the function
(1.22). It is derived from G by the following formulae:

d [—iln G(nT, nL|0,0) + nET| _

dT n
—iln G(nT,nL|0,0) + nET (1.24)
= 2nk;
n
n — 0.

Let us explain this expression. We write G in a bilinear form in terms of the Schroedinger equation
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eigenfunctions

~

G(t", " |t o) = f d*L YW (o) exp { —IE(t" — 1)}, (1.25)

L
Jl'pv(“)lz de =L

Here v is the Floquet index entering the condition y(x + L) = e™(x). The spectrum (1.19)
is evidently given by the equation

WE,) = 2mk. | (1.26)

The asymptotics of G at large values of t, « is

G"’(tu, (x”ltl,a — (pvo(a )(on( ) Xp ( "o (X,) . iEvo(tn _ t,)},
L\/2miE}(t" —
Lo (1.27)
vo L.(TuTt/) - T'

The function ¢ (a) = ¥ (o) exp { —iva/L} is periodic. Substituting (1.27) into (1.24) we find (1.26).
From (1.24) we can calculate the spectra of energies E, and of the corresponding periods 7. So
this is a method to obtain characteristics of a periodic motion by reducing it to an infinite motion
in a periodic potential.

Following this idea we can write down a definition of the S-matrix for systems with an internal
coordinate which is quite analogous to (1.12), (1.13). Consider a number of particles with the
translational and the internal degrees of freedom. Let the function

G(t", {a;} {05} ]t {qi}. {3}) (128)

be the corresponding propagator with the internal coordinate having its values on line R!. Then
the S-matrix can be defined as (A.2.3)

,, o (1 %O RO1G, 1)}, ()]t (gt (o)
UL PRSI (731> = i, e g e o O L S 2T, 01 g

(1.29)
Here we imply
qj =pjt'/m+q"; g =pit/m+q;
CX;-, = th”/T;(j; a'i = Litl/T;ci’ (130)

as we always do. The denominator of (1.29) contains a product of single-particle propagators.
The ki(k;) in the right-hand side are the quantum numbers of the lth(}th) soliton. The spectra
E, T, of each interacting particle are defined by the corresponding G, and ¥(0) = |y(0)| is the
wave function value at « = 0.
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2.2. The S-matrix of solitons

Now keeping in mind the discussed formalism we are going to deal with the solitons of the
field defined by the Lagrange function (0.1). The field propagator is described by the functional
integral where | # dx is the corresponding Hamiltonian. This function

!”,(p” t
<p"| exp{—i(t” - t’)J dex} lo'> = J exp {i J‘ PL(u) dt} [1du(x, o), (2.1)
t', @ !

uty = 9", ult) =9,
defines the soliton S-matrix at t” — oo, t' > —oo when the functions ¢"(x), ¢'(x) are properly
constructed. In analogy with (1.13) we have to make the functions ¢"(x) and ¢'(x) to be dependent
on t" and t' in such a way that ¢"(x, t") and ¢'(x, t") will be solutions of the classical equations.
In the limit they must turn into the sums of purely soliton solutions, and the continuous spectrum
degrees of freedom (the usual particles’ degrees of freedom) must be frozen.
At first we look at the structureless solitons. Let the function

us(_x____q._.__vt ’ 2.2)
— 0

be a single-soliton solution. The configuration

N” "
x_qj .
ww = § o )

=1\ J1 = @)
) u( x—d ) 2.3)
=\ - @)

describes N”, N’ solitons situated at {q}} or {g;} points when t = t" or t = t' and these t", |¢'| are
large enough The function

GG, (4|1 (45)) = Cuy- SICXP{ r')jmx}wm 0.4

1=

can be regarded as the soliton propagator in the soliton configuration representation. The S-matrix
is defined by a formula analogous to (1.12), (1.13) namely [25]

t", {aj}|, 14i})
i} S |{vi}> = 11 - (2.5)
l I i HJ V2rG(t", q lto,CIo HN N, 27TG(to,‘10|t ‘1)
q;=vjt" + q?",
q; = vit' + g7, v = tanh ¢.

Here in the denominator stands the product of the single-particle propagators. Their asymptotics
are, owing to the relativistic invariance:

M
B \/ Yy ror ey e A A B T U S

t)? —

"
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The mass M is not necessarily equal to the classical soliton mass, it is changed by the quantum

corrections. In contrast to the quantum mechanics, our S-matrix is the function of velocities but

not of momenta; it is the use of velocities what enables us to make the perturbation theory mani-

festly Lorentz-invariant. The calculation below will show the right-hand side of (2.5) to be a sum

of products of the J-functions which mean the conservation laws, with the factors (the reduced

S-matrices) represented by the functional integrals in the vicinity of the purely soliton solutions.
We turn now to the periodic soliton case. The function

<x~vt—q t —ovx _oz_T>
J1-0" /1 - 2m

is a solution of the classical equations. We assume w to be localized at x = vt + g. The phase
value « should be taken at the spatial density maximum. The function w depends on a periodically
with the period 2#. But according to the quantum-mechanical experience we consider the variable
o to be varied along the whole axis, thus the points « and « + 2nn being not equivalent. We define
a single-particle propagator in analogy with (2.4)

wix, tlo, T,q,0) = w 2.7

v, Q"

Gt q" o' |t,q o) = J exp { j Z(u) dt} [1du(x, t);

<

m2 m2
ft) (q)o,()), o = (xt

The periodic soliton mass spectrum should be calculated just as it has been at (1.24), [25]:

d [ =iln G T,0,27n[0,0,0) + MnT]
dTI_ n

II’

\/(7 @, O) 28)

= 0;

—iln G(uT.0,27n]0,0,0) + MnT 29)

n

= 2rk;

n — 0.

From this we derive M, and T,. It should be noted that the number of the internal states {k} is
finite when the internal momentum varies in the compact domain (as it may happen in the one-
dimensional case). Next, the configuration space propagator of an interacting periodic solitons
group is:

"

¢, {q;} {ai}e, {ai}, {o}) = jexp{ fﬂ’(u)dt}]"[du(x ); (2.10)
'y
7 20 O &) ,O,O>;
&

. e 2.11)
‘% I _(Q_’__(ﬂ, 0, ())
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The expressions (2.11) have all the terms separated in space when |t| - co. To obtain the S-matrix
we perform the usual limit evaluation. In analogy with (1.29) the S-matrix is defined so

<{k”}, {U”}'Sl{k'} {U'}) = lim G(tI,5 {q;,}’ {d;"”t,’ {Q;}’ {(X:}) [Hl,J‘PJ(O)lP:(O)]

oo [TV /206Gyt g5, af|to, 0,0) [TV /27 Go(to, 0, 0|1, g}, )’
(2.12)

" UM On, (A PV 0.
q; = vit" +q;"; 4 =t +4q;;

o = 2nt"/T, ; o = 2nt'/T,,.

J

Calculating the expressions of (2.8), (2.10) by the stationary phase method we have to account
for only one stationary phase point, because the points a and a + 27n are not equivalent. We do
not need to calculate the values of ¥,(0) = |,(0)|, they become ready known from the propagators
and the unitarity condition.

At last let us look at the scattering of the usual particles and solitons. We take the structureless
solitons for simplicity. Everything necessary for a generalization to the periodic solitons case
was discussed above. Consider an object which is an S-matrix element for solitons in velocity
representation and a generating functional for the S-matrix of the usual particles [25] (1.14)

N” N’ -1
o), AT|S|{vi}, 4> = ,llri_l.n l:nﬂ/ZnG(t”, q7)t% g% [ /27G(e% q°|¢, q:-)]
o j i

t'—— o0

X jexp {%fdﬁ[(a;afﬂ — aga_g)

The boundary conditions are to be specified in the following way. According to (1.18) we can
localize the solitons and the wave packets of the usual particles at different places one far from
another at large values of t", —t' and supply them with the independent boundary conditions
(2.3), (1.16). The first boundary term in the exponent of (2.13) is generated only by the wave pockets.

These definitions provide the topological charge conservation. Really, there exists no time-
continuous path that joins the field configurations with different topological charges; and the
discontinuous paths have an infinite action value so that their contribution to the functional
integral is zero [63].

All the definitions given above make it possible to develop a consistent perturbation expansion
in powers of y. To do this we must evaluate the integrals (2.1), (2.8), (2.10), (2.13) by the stationary
phase method. The right-hand sides of (2.5), (2.12) turn out to be proportional to the delta-functions
with factors that are the functional integrals over the vicinities of the purely soliton solutions.
The denominators of (2.5), (2.12), (2.13) and the numerators in the one-loop approximations form
the conservation delta-functions. The denominator in the higher approximations accounts for
the single-particle states renormalization. This results are manifestly Lorentz-invariant.

The details of this technique and its diagrammatic representation will be described in the next
section.

”
+ 2ag a,

t

+ 2a; ag

¢

]+ i j(nu, — ) dzx} [[dud=.
t'Z v

¥ (213)
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3. The diagram technique

In this section we shall describe the diagram technique for the calculation of the solitons physical
observables. The definitions of section 2 will be exploited. The diagram technique arises naturally
as a description of the expansion of the functional integral

G(t", {q;}|t, {qai}) = f exp{ fg(u) dt} [Tdu(x,1); Z = ;J‘dx( — v(u) 0.1)
t’,¢ ’

with the boundary conditions
t”(x II)

“(N/(t")z ] )2) ;
N’ —_
e = o = 3ol =)

within the stationary phase method. The stationafy phase points of the integral (0.1) are the
solutions of the classical equation
Ou + v (@) =0 0.3)

with the boundary conditions

ut) = 9" =

"M2=

02)

ud|t" — (pll, uCI|t’ - ¢I' (0.4)
For the evaluation of the integral (0.1) we perform the change of variables
u(x, 1) = u(x, 1) + \/9(x, 1) 0.5)

and expand the action into a series of powers of \/5 We obtain the expression for G as an integral
over ¢:

Gt", {q}}|t, {4} = exp{ ~[“,?(u“) dt}
(0.6)

t” t”
X jexp{— 3 f @Hp d?x — ; ni m2-1 -jv""(u“')q;” dzx} H do(x, 1),
t t’ ’

with the boundary conditions

ole = ol =0. ©0.7)
The quadratic form in ¢ in the exponent looks as

t t
-1 f @Hp d%x = %f dt j dx[8,90,0 — v"(u")e?], (0.8)
J

rd

H=0 + v 0.9)
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and does not depend on y. The higher order terms nonlinear in ¢ contain the higher powers of y.
In the expansion (0.6) any y-power term can be expressed as a Gaussian-type integral

j exp { - %j oHo dzx} 1:[ O™ (x;) g de(x, t), (0.10)

which is easily calculable and is naturally described in the diagram technique language [69].
Finally G takes the form

6", {5}t {ai}) = exp{ 3o W} ©11)

where W, is the sum of the connected (n + 1)-loop vacuum diagrams which are described by the
Green function H™! and the n-prong vertices v™(4°"). The expressions for the first lowest order
W, are easily written as

-
W, = ijg(u°') dt; (0.12)
J

Wo=—3TrinH-Hgy', Ho=0+m?  m?=yv"(0). (0.13)

This correspondence between the functional integral (0.1) and the diagram technique is generally
valid and is not limited to the structureless soliton case. The only thing to be changed in case of
the periodic solitons or the continuous spectrum is the boundary condition (0.2), (0.4). The
characteristic behaviour of the series

T W, (0.14)

n=-1

as a function of t” and ¢ when the solitons are present is that this series grows linearly with ¢”; ¢'.
We can demonstrate this representing the general classical solution as the sum

= Uy + 0 (0.15)

of a soliton part uy, which becomes a sum of single-soliton solutions at large values of the time
variables and a function ¢ which is a packet of plane waves (we shall call ¢ the continuous spec-
trum). This packet decays as 1/\/2 at large values of t. The classical equation becomes asymp-
totically

Ouys + v'(uns) = 0, Oe + v'(uyde = 0. (0.16)
We substitute (0.15) into (0.12) and represent the action as
o

IJ g(uNs) dt + %J dzx((puuN,u - U’(uNs)(p) +
t’ t’
o o 0.17)
1 1 &
+ — | d%x(@?, — v(uy)@?) — — J(")us " d2x.
2)}4{ x(‘/’lu V" (uns)e?) y”;3 v"(uns)e
v )

t
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The last term does not contribute to the linear growth, it tends to a constant at t” — o0, t' > — ©
because of the decay of the wave packet. The second and the third terms behave similarly which
can be proved by the integration by parts and by using the equations (0.16). The leading part of
the first term is equal to the sum of the single-soliton contributions which are linear with respect
to t”; t' (see, e.g., (1.8)). The same can be demonstrated for any W,.

We shall use the expansion (0.11) together with the definition (2.2.5) for the S-matrix calculation
in paragraphs 3.1 and 3.2. As a matter of fact, the integral (0.1) has more than one stationary
phase point; they correspond to the processes of different connectedness. Every term arising from
a corresponding stationary phase point will be represented as a product of conservation laws
delta-functions and a reduced S-matrix element, which is equal to a functional integral in the
vicinity of a fixed classical solution for the process under consideration.

In paragraph 3.3 we shall discuss the zero-mode problem [11], which consists in the following.
At first sight it seems that the inverse operator H ™! does not exist. Indeed, the quadratic form
(0.8) is degenerate; it vanishes on the functions

d <l d cl
a u, dr u-, (0.18)
which satisfy the equation
d d
H—u =0, H—u'=0. :
i u " u 0 (0.19)

Hence the diagram technique seems to be undefined. However we are going to demonstrate that
all the zero-modes of type (0.18) belong to the continuous rather than discrete spectrum of the
operator H. We shall construct a correct definition of the operator H ™! which accounts naturally
for the zero-modes.

In paragraph 3.4 we describe the diagram technique for calculation of quantum corrections to
the periodic soliton mass and to the two structureless solitons propagators.

In paragraph 3.5 the soliton quantum theory renormalizability is demonstrated.

3.1. The single soliton propagator
According to the definition (2.2.4), (2.2.3) the soliton propagator is

G(t”, qll

t,q) = fexp {if,?(u) dt}n du(x, 1), (1.1)

v

¢ =u <—Lx —4) ) ¢ =u (ﬁ——t,(x —4) ) (1.2)
AWt V) - (@)

we shall calculate G by the stationary phase method. The first two terms are (0.12), (0.13),

)
G, q'|t', q) = exp {i f L dt} det™V(H - H3Y). (1.3)
J
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The stationary phase point u°Y(x, t) can not be an exact single-soliton solution. It is obvious because
the solitons configurations velocities are not the same at ¢” and ¢ in general q"|,~ # ¢'|,. The
classical solution is

—_— t —
U = us<£—-?———g> + @(x, t);

J1 =2

" ! ’ n ” ' (1'4)
q"—4q 1 qg-t"—q"t 1
=1 = —, =2 1+ 0[]}
v tll — tl + O(t”) q t" _ t, + (t”)

We shall see below that the function ¢ has no influence on the soliton observables.
It is convenient to perform the Lorentz transformation and use the variables

r=(x—ot) /1 — v? T=(t — ox)/ /1 — v2 (1.5)

Let us calculate approximately the right-hand side of (1.3), replacing u® by u,:

t

G(t",q"|t', q') = exp {i f L(ug) dt} det"YX(H-HyY, (1.6)

H =1 + v"(u). (1.7)

The action evaluated on the path u, is

¢

j‘ Lu)dt = — M. /1 — v¥(t" = t) = — M J(t' = t)? —(q" — ¢')* + const; (1.8)

t

M, = %j dx(3{uz(x)]* + v(u(x))).

To calculate the second factor in (1.3) we note that

d2 5 , d?
H(u,) = 7 + K(r), K(r)= — Oz + v"(uyr)). (1.9
The operator H is degenerate and the function u(r) is the eigenfunction of H with zero eigenvalue:

Hul(r) = Kul(r) = 0. (1.10)

Indeed, the differentiation of the classical equation
2

d
37 ufr) + v'(ulr) =0 (1.11)
with respect to r leads to
2

— 30 + ) ) = 0. | (1L12)

We represent the operator H in the form:
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d2

H = 32
with P the projector on the subspace spanned by the functions of the form F(t)uy(r), F(t) arbitrary.
The determinant of the operator H is

P+ H(I - P), (1.13)

2
det (H- Hy1') = det (dd ) det H(I — P)H; . (1.14)

The determinant of the operator d2/dt? which acts in the space of the function of 7 can be evaluated
most easily as a product of the eigenvalues of the problem:

2
S = A )i @l = @ = 0. (L15)

These boundary conditions are derived from (0.7). We obtain the expression
2

:_rz_ =t =7 =1 - X" ~ 1) (1.16)

We will show in section 5 the second factor in (1.14) to be equal to (5.2.12)

det

det Hu ) — P)- Hy' = exp {2IAM /(t' — )? — (¢" — q)*}, (1.17)
where AM is the soliton mass correction. At last we obtain the expression for (1.6):

M
G t”, ” tl’ N — S ex _lMs t" — t 2 _ " __ N2 . 1.18

If one takes into account the wave packet ¢ from (1.4) then the right-hand side of (1.18) will contain
the constant factor w,

t

w = exp {i f de[ L) — Z(us)]} det Y2H(u)H ~ Y(u,). (1.19)

So we have proved the soliton propagator to have the form (2.2.6).
Now let us calculate the S-matrix element in a single-particle sector

| S |v'>. (1.20)
Substituting (1.18) into (2.2.5) we obtain
3 " 2 _ 2 — )2 — )2
<v”| S 'UI> — lim /l ‘\/(t tO) qO) \/(tO t) (qO q)
g N an\/u == —=7q)?
x exp{ —iM[/(t' =tV —(q" —q4)? — /(" =t —(@" —40)* — /(¢ — 1) —(q' —qo)*1} W
(1.21)

q” = v"tll + qlol’ ql . vltl + qb.



32 L.D. Faddeev and V .E. Korepin, Quantum theory of solitons

The limit is equal to
" ’ . _1_ "o '
S = 7 e" — @). (1.22)

Here we have used the rapidity ¢, v = tanh ¢. The factor W became 1 because the u®! from (1.4)
is now

x —_ vt _ q q” - ql th" _ t"gl
= —— = — = . t)y = 0. .
u us( \/‘1—__07>’ v PR q ——— o(x,t) =0 (1.23)

The reason for this is the equality of the soliton configurations velocities due to the delta function.

This is a general fact within the stationary phase calculations of (0.1). The classical solution
(0.3) which fits the boundary conditions (0.4) is not an exact soliton solution, but differs from it
by an additional wave packet ¢(x, t). But having the propagator (0.1) calculated in this manner
as above and substituted into the S-matrix expression (2.2.5) one can neglect ¢(x, t). Indeed the
S-matrix will be a product of some delta functions and a regular factor. The stationary phase point
for the regular factor expression will become a pure soliton solution according to the conservation
laws and the integration should be performed in the vicinity of this soliton solution.

Returning to the structureless soliton case again, we write the symbolic formula for the mass
correction, see (0.11), (1.18)

. & 1
—iAM /1 — v* = :hglo 20 V"W, x (7———t’> (1.24)
> -

Here W, is a sum of all the (n + 1)-loop graphs with n-prong vertices v"(u,(r)) and the propagator
~1 (1.7). The method of H ™! operator construction will be explained in paragraphs 3.3 and 3.4.

3.2. The S-matrix element for scattering of several solitons

We shall use the definition in section 2 of the soliton S-matrix element (2.2.5):

G(t", {q;}|t', {ai})
SCAINCE 7 2.1)
N foe T14/20G(", 97 |te, 4°) [ 1 /276G G0, g2, q)
q; = vit" + qq, q; = vit' + qo. (2:2)

Let us evaluate the right-hand side by the stationary phase method. In a general case there is
a number of the classical solutions which describe a given scattering process. For example, one
solution may describe a simultaneous interaction of all solitons, and other solution may describe
an interaction of a group of solitons in one point and another group in a different point. These
solutions must lead to different terms in the S-matrix with different numbers of delta functions.
Everyone of these terms can be represented as a product of the two factors

o 9(t", {a;}|1', {ai})
NS> = M, e, ajlie.%) [l 2560 2. ) -

G(t” {q }‘t {ql})
li
x tl—{rzo g(t J}|t’{ql})

q; = vit" + qq;; q; = vit’ + go;- (2.4)
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The function g is constructed with the purpose to make the first factor a product of delta functions
and the second factor a reduced matrix element. These delta functions make the stationary phase
point of the functional integral which represents G to be purely soliton solution.

In the case of a simultaneous interaction of all solitons the function g should be taken as

9" {q7}|t. {qi}) = qu dt [ 6", q}|t, 9 [ ] Gt q]¢', 4))- (2.5)

The first factor in (2.3) will turn into a product of the two momentum and energy-conserving
delta functions.

In the case of the N soliton scattering with the individual momenta conservation the function
g should be

g(t", {4}t {a;}) = H G(t", 45|t q))- : (2.6)

The first factor in (2.3) becomes a product of N delta functions. The reduced matrix element is
then

G t” t
S(wy,-.-vy) = lim (", {47 ’}’l »145})
oo [T G, 45t q)
for the structureless solitons case.

For the periodic solitons scattering with the individual Lorentz and internal momenta conserva-
tion the reduced S-matrix is, similarly

2.7

Sy, oni ky - ky) = lim G, fqﬁ(}j(tf“q”’ l{tq'j i“)}). (2.8)

In these formulae (2.7), (2.8) we imply the usual limit, (2.2.5), (2.2.12).

3.3. The zero-mode problem

Let us examine carefully the operator H (0.9) which is important for the diagram technique
construction. Differentiating the classical motion equation, we note that H has some eigenfunctions
with zero eigenvalues

d cl d 1
—dxu , —dtu (3.1)
d cl __ d cl _

This property is usually understood as an indication that H does not have an inverse operator.
Indeed, the zero modes (3.1) situated in the discrete spectrum of H would have made 1mposs1ble
the existence of the operator R such that

HR =L (3.3)
Only an operator R would exist which satisfies the condition:
HR =1 — P, (3.4)
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where P is the projector on these zero eigenmodes. This would have modified the Feynman
rules essentially. Quite a few methods to modify the diagram technique were worked out [13, 14,
17, 70-81], most of them are based on the introduction of collective coordinates [82].

However, we are going to prove that the zero-modes (3.1) are situated in the continuous spectrum
of H. As a matter of fact they decrease rapidly with respect to x but do not decrease with respect
to t. Hence they are not square integrable and so they make no obstacle for an inverse operator R
construction [83, 84].

A correct definition of the H ™! operator may be based upon the following observation. At the
finite times t”, t' we have to integrate over the fluctuations around the soliton solution which turn
to zero at ¢t” and t' (0.7). The quadratic form

1 j eHp d2x (3.5)

is not degenerate because the zero modes do not turn into zero at t” and t'. So the operator R=H !
is defined uniquely on the finite time interval and the diagram technique is not singular. In the
limit t” — o0, t' = — oo this operator acquires an infinite term. We shall prove this term to make
no contribution to the sum of the diagrams. Hence it can be rejected. The resolvent R regularized
in this way satisfies the equation

HR =1 (3.6)

and can be used for the diagram technique construction.
Let us realize this program in the structureless soliton case. The operator R = H ™! (1.9) with
the boundary conditions

R(x,, t5x;, t)|i = = R(X3, ta]xy, t)|i=r =0 (3.7)
looks in this case as (A.5.11)
ul(rul(ry) (.7 z 3?2
R(XZ,t2|x1,t1)= 2|Tu;”21 { ZAI —K(Tz +T1)+X_A + |TZ "'TII
i [{ dBexp{—imcoshf|t, — 1 . "
b g | Lol = (esgie) + g 69

i W72)Pr . —
+ izﬁ—%exp{—l./mz — E, |t — 14|},
r=xcoshg —tsinhgp, t=tcoshg —xsinhe, |juf*= jdr[u;(r)]z.

Here the functions ];, ds, @, are the eigenfunctions of the Schroedinger operator (A.4.9)
2

T dr?
Ko, = (m?* — E,)o,, Ku, =0, m? =v"0), O0<E,<m?
A=3t"—-1);,  Z=31"+17)

Py

R = + v"(ufr),  Kfy = m*cosh’Bf;, K, = m*cosh? Bgy,

(3.9)
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These solutions are described in the Appendix 4. The zero mode u(r) is orthogonal to all other
“meson” modes fj, §;, @, 2t any moment .

We affirm that adding the expression aul(r,)u.(r,) to the Green function (3.8) [83, 84] does not
alter the diagrams sum. This will enable us to eliminate the third and the fourth terms from (3.8).
Let us show this in the lowest orders of the loops expansion. The principal correction to the
structureless soliton propagator is

det Y2 H(u(r)H . (3.10)

Consider the differential d Indet HH, ' = Tr H ™ 'v"(4.) du,. The right-hand side of this equality
contains only one term dependent on «, it is

o f W)?v"(u,) du, d?x. (3.11)

Let us see that it is equal to zero due to the equations of motion. Differentiation of the classical
equations (0.3) gives

Hdu, =0, Hu,=0. (3.12)

Differentiating the second of these equations we obtain
Hu! = —v"(u)(u))>. (3.13)

Multiplying the first of the equations (3.12) by u, and subtracting from it the equation (3.13)
multiplied by du, we obtain

f d2x du - v"(ug)(ul)? = f dd (dus ddu >— 0. (3.14)

So the det H does not depend on a. But we are not going to say that the zero-mode does not
contribute to the observables. Its contribution had been written down in the one-loop approxima-
tion (1.16), (1.18). With no account of the first term in (3.26) (the zero-mode’s contribution) one
would obtain a wrong expression of the two-loop mass correction [85, 86, 87].

Consider now the two-loop approximation. It is represented by the graphs

{0 +H<=+400. (3.15)

The sum of the graphs is a polynomial in a. Let us make it certain that all its coefficients are equal
to zero. The coefficient at «> is proportional to

fdrv"’(us(r))[u;(r)]3 =0. (3.16)

This is a particular case of (3.14). The coefficient at «? can be pictured as

'Y +%>_<+%/Lk.mo). (3.17)

The wavy line is u,(r). The last term is equal to zero according to (3.16).
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Let us differentiate (3.16) with respect to 7; we obtain
J dr j dr{(uy)*v*(uy) + 30" (u)w)*ul} = 0; (3.18)

Hu! = —v"(u)(u)?, ul = — Rv"(ug)(ul)>. (3.19)

Substituting (3.19) into (3.18) we see that the two first terms in (3.17) disappear, hence the coefficient
at a2 is zero. The coefficient at the first power of o is pictured by

18+ O+ %‘g + HO~ (3.20)
It is zero due to the translational invariance of the one-loop correction (1.6),

Wy = —iTrin(0J + v"(r + a)). (3.21)
Really,

~O=L =0 1+ 2T =L w =0 3.22
=dz e =" a 4""0"""'4‘3—&7 o =0 (3.22)

In the N-loop approximation we meet the following situation. The approximation is a poly-
nomial in . These polynomial coefficients can be proved to be the derivatives of W, k < N with
respect to a, the spatial coordinate of the soliton. All these derivatives are zero due to the trans-
lational invariance (see Appendix 3).

So we have demonstrated that the sum of the graphs does not depend on « and the third and
the fourth terms in (3.8) can be rejected. It is demonstrated in Appendix 3 that the supplementary
term

. d
B[“;(rl) (;i—(p“s("z) + (ﬂus(ﬁ)u's(rz)] (3.23)
does not alter the graphs sum too. Hence we can reject the second term in (3.8) also. Note that
B p— (324)
do ufr) = —tuy .

is an example of a growing zero mode. In a general situation of a polysoliton solution the number
of growing zero modes is equal to the number of usual zero modes (and is equal to the number
of conservation laws). In the case of two zero modes (3.1) we have two growing zero modes, they
are the derivatives of the polysoliton classical solution with respect to the total energy and to
the total momentum:

d d
— — U 3.2
dP uNs’ dE Uns ( 5)
The first term in (3.8) does not lead to a linearly growing with time term in Y ;2o y"W, (1.24),
hence it can be rejected too.
Thus we find that the diagram technique for the soliton mass correction (1.24) is to be constructed
with the Green function
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ul(r)ul(ry) dBexp { —imcosh B |t; — 1,|}

i
R(x3, t5]x1,ty) = —m—lfz -1, + g;tﬁ StA)

< L) + e o] + 5 X 29 exp i/t = E, o2 1) 626

+ auy(ry)ulry) + Bulrulry)(zy, + 1),

and the sum of the graphs will depend on neither « nor g.

The general situation can be treated similarly. The operator H is degenerate on the zero modes
and on the growing zero modes. The method of the resolvent construction is hinted by considering
first the case of finite times ¢ and ¢'. At the finite ¢”, ¢’ the resolvent R exists and is uniquely defined
by the boundary conditions

H™ (x,, t2|x1, tl)'u:t" = H™(x,, t2|x1’ tl)|12=t' = 0. (3.27)

In the limit t” —» oo, t' - — o0 a linearly growing with the (" — t') term in the resolvent kernel
arises; this term is always bilinear in the zero modes. In the case of two zero modes (3.1) this term is

au (Nu(2) + bu(1)uf2) + c(u(1)u(2) + u1)ul2)). (3.28)

Also as it was done above, the addition of terms bilinear in the zero mode can be proved not to
alter the sum of graphs, i.e. the growing term in H ~ ! can be thrown out and the regularized resolvent
satisfies the equation

HR =L (3.29)

This resolvent can be also reduced by using the fact that the graphs sum is not altered by an
addition to the resolvent of a product of a zero mode and a growing zero mode (3.1), (3.25).

Returning to the structureless soliton, let us note that the Green function expression contains
a term with |z, — 7,|. So one may be afraid that the sum Y, y"W, would grow faster than (¢ — ')
at t” - oo, t' = —oo. It can be proved in the perturbations theory that this is not the case. The
papers [87, 88] also deal with this method.

34. The diagram technique for the observables

The diagram technique construction is reduced to the construction of the resolvent kernel
H™! = R(x,, t5|x,,t;). In this paragraph we describe the expressions for the R kernel in the
cases of a periodic soliton and of two interacting structureless solitons.

First we consider a periodic soliton

w(r,t/T, T), v = tanh ¢, 4.1)
r =(x — xp)cosh ¢ — (t — t,)sinh ¢, T = (t — ty)cosh ¢ — (x — x,) sinh ¢.

The operator H in this case is

d? d?
H=O+vw) = 3297 + v”(w(r,—;,—, T)) 4.2)

The potential here is periodic in T with the period T and tends rapidly to m* at |r| - oco. The
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operator H has two zero modes
dw/dr, dw/dt 4.3)

and two growing zero modes. Appendix 5 explains that the resolvent R is conveniently constructed
using the solutions of the homogeneous equation

Hy =0, (4.4)
We take for this purpose the Floquet solutions

Y ur, T+ T) = e ™Y (r, 1) (4.5)

The Floquet indexes may happen to belong to the “discrete” spectrum, then i, (r, 7) is square
integrable in r. If v belongs to the continuous spectrum, then y (r, 7) is

@B /), @ xu* @), (4.6)
see Appendix 4. Here u is the vector with the components

ut) = exp { - ,LT”E t}, (4.7)

and matrices § and f are the matrix Schroedinger equation solutions:

d2 . 2 .

5 T 4.8)
2 1 12
kin = \[(” i "") — M vy = J dt exp {%(n - t)t} (' (W) — m?),
The solutions are used in Appendix 5 for the resolvent construction with the result:
. mT+2n
1 F - —-1av
R(ty,rafty,1y) = m; J dva(t,) £2(r)D7 s Mk, 1G4 (ruy (z4)
mT
+ Z Yo (t2s rzl‘ﬁ:(fl, r) | Wolra, T)W(ry; 74) = W(rs, Ta)We(r1, T4)
CO AR —— 2[Wiw,]
WT(rZ’ tZ)W(rla 1:;) Tgw(rZa TZ)WT(rb Tl)’ 7, > 1,3 ch = dw/dq),
[wo.wr] wr = dw/dT.

The sum of the graphs will not be changed by addition of a bilinear form of zero modes (4.3) to
the resolvent or a combination of zero modes and growing zero modes products: wwr, ww,,
wwp, ww,,

Consider a periodic soliton within the sin ¢, model. The corresponding H operator has no
“discrete” spectrum. The matrix Schroedinger equation (4.8) S-matrix is diagonal

R::f = 0’ [Djﬁ‘-(v)]ln = [Dg(v)]ln = [Dq-'-]ln = [Df]ln = 5lna(ﬂn)’ (410)
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see (A.4.24). The resolvent is

i d
R(r,, Tzl r,Ty) = — j a(g) Vg (12, rz)’//p (t1>71)
, . . (4.11)
w2w'(1) — w2)w, (1) = wr{2)w(1) — w(2Jw,(1)
+ 2[WEW¢] + Z[WgtWT] ’ 12 > Tl‘

We have introduced a variable §, v + 2nn = mT cosh § and used the notation w(1) = w(r,, 7,),
w(2) = W13, 13).

Let us look now at the scattering of two structureless solitons. Let the classical scattering
occur without reflection, u(x, t|tanh ¢,,tanh ¢,) be a corresponding classical solution, the
tanh ¢, , the asymptotic soliton velocities. The H operator is

H =010 + v"(ug) (4.12)
The zero modes are

uy, = du/dx, u,, = dug/dt, 4.13)
and the growing zero modes are

uy = du®/de,, uy = du*/do,. 4.14)

With these solutions the resolvent is constructed in the Appendix 5 and it looks as follows (A.5.26)

N PV, _L dﬁd'}’ — (N - +(' ¢
RO =5 | o patg =g o0 + O

1 _: _ " (pm 1)¢n1(r1) exp{ -1\/“;2 - EnJT; - TIZI}(pnz(r;)(Pn;(r’Z)
+5;exp{ iym? —EJti — 1} N —; NCET

[cosh @ * u(x", t") + sinh @, - u(x", t")]u5,(x', ) _ ug,(x", t")
2t ] sinh (@, — ) 2] sinh (0, = @)

cosh Py u'ss(xh, t") + sinh @, u;s(xn’ t”) (415)

2||ui,||? sinh (0, — @2)
x", t")[cosh @, -t (x', t') + sinh @, - u,(x', t')]
2||uy,||? - sinh (@, — @2)

2 = f dxtui () [l = j dxtunx),

see (4.2.3).
This resolvent expression has the same arbitrariness as the previous one.

x [cosh @, -y (x',t") + sinh @, * ul(x', t')] —

x uz (x,t) + U, (x

, t, > t;

3.5. The soliton quantum theory renormalizability

In the soliton quantization the ultraviolet divergencies do appear. We are going to show
these divergencies to be eliminated by the same counter-terms as the usual particles quantization
divergencies [11, 14, 13, 74, 26].
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It is clear that at large momenta the soliton diagram technique elements turn into
R=(0O+v"(uy)" ' = (@O +m)"}, Uiie) = UG)» (5.1)

because the Fourier transform of uy, decreases exponentially at large momenta. So the soliton
diagram technique asymptotically coincide with the usual diagram technique. These general
considerations show why the old counter-terms are sufficient for the soliton divergencies elimina-
tion.

For the more rigorous demonstration let us compare the soliton propagator and the S-matrix
generating functional for the usual particles [68] (2.1.14)

¢

S(A*, A) = J‘exp {i J L + ﬁtp)dt}n do(x, t); (5.2)

d

ud(x’ t) W uas(A+, A)a
which are given by the same integral with different boundary conditions. The only unidentical
thing in the perturbations expansions for both integrals is the stationary phase point. For the
usual particles let us denote it by u°, and for the solitons by uy,. Both diagram techniques are
constructed with Green function R and the n-prong vertices:

[O+ @R =1, o™(upy). (5.3)

In the diagrams evaluation one meets the same ultraviolet divergencies in both cases:
iy'In A | dkC(u3,). Here C(u) is the local functional calculated on the different classical solutions
u® and uy,. The both divergencies are eliminated by the same counter-term

—y'"*1nA J d%xC(u). (5.4)
This counter-term is, i.e., in the one loop approximation
g% D(0) jdlx[u“(u) —m¥], DO = jdzk(kz +m?) L, (5.5)

These reasonings on the quantum solitons theory renormalizability do not depend on the type
of the model and on the dimensions of the space-time and are quite general.

4. The semiclassical approximation

In this section we shall calculate the amplitudes of several processes in the semiclassical approxi-
mation (known also as the tree approximation) using the definitions of section 2 and the methods
of section 3. As we have said in section 2, to calculate the propagators and the reduced S-matrices
one has to evaluate the functional integral

G = Jexp {i J Llunx, 1) + /(. 1)) dt} [1de(x, 1). (0.1)



L.D. Faddeev and V .E. Korepin, Quantum theory of solitons 4]

Here uy,(x, t) is the classical equations solution, it defines the soliton process. Note that uy, is the
stationary phase point in the integral (0.1). Calculating (0.1) by the stationary phase method we
obtain in the main order of y:

G, {4j}|t’, {qi}) = exp {i J ZLuuys) dt}- 0.2)

The contents of this section is limited to this approximation; we shall call it the tree approximation
in analogy with the quantization of usual particles.

4.1. The single-particle properties of solitons

The only property of a structureless soliton is its mass. In our approximation it is equal to the
classical value:

1 (T1/du(x)\?
cl __ ~ - s
M¢ = . _ﬂ:Z (——dx ) + v(us(x)):l dx, (1.1)
which in the sin ¢, model is equal to
M = 8my/y. 1.2)

For a periodic soliton the classical soliton is

(1.3)

. t cosh ¢ — x sinh
w((x—q)cosh(p—tsmh(p, cos qomxsm (p—%, T>,
1

where T is the period in the center of mass system and v = tanh ¢ is the soliton’s velocity.
To obtain the mass spectrum we use the formula (2.2.9)

d —iln[GnT.0.270.0.0)] + nTM _
dT n o

—iln[G(nT,0,27n|0,0,0)] + nTM _
n

(1.4)

2nk;

n — 0.

The soliton Green function

t”,0" t”
G(t", q", |t q o) = f exp {i J Z(u) dt} []du (1.5)
t', o t
can be evaluated by the stationary phase method as described in paragraph 2.2,

t
Gt q",a"|t, q', o) = exp {% f d2x[3w? — v(W)]};
J
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X —qg—uvt t — vx o
w=w . -—— T 1.6
(ﬁ—uz T/i-o o > 1)

"o ot tlI _ tl 2 _ "ot 2 tl "o__ tll '
R L
t" —t a — o " —t

It becomes clear that

T @
lif =18 g—‘nT%—l—’znn 0,00 _ %Jdt J dx[3w?, — v(w)] (1.7)
0 - v=0
Inserting this into (1.4) we have
U ax a5, T) = 2mk: (18
" X WA x5 = ; 8)

- oo

1 ot a '
M = ; | dx[%w2<x, T T) + 1w 2<x,T, T) + v(w(x,-T—, T>>]

Note that (1.8) can be regarded as a direct generalization of the Bohr—Sommerfeld quantization
rule. In the sin ¢, model the classical solution is given in (1.1.28) and the expression (1.7) looks so:

lim 6 E0, 2nni6,0,0) _ if;‘—’—‘(e ~ tan 6); 19)

n—+ o n

the expressions (1.8) become [9]
M, = 2M,sin G, 0, = ky/16, M, = 8m/y. (1.10)

4.2. The scattering matrix for solitons

Consider the scattering process of two (in general different) solitons. Let the classical solutions
corresponding to them be

u((x — q1) cosh ¢, — tsinh @), uy((x — g,) cosh @, — tsinh @,). (2.1)

In the semiclassical approximation the only classically permissible processes have non-zero
amplitudes. Let the classical solitons pass through one another at some rapidity ¥; — ,. The
classical solution

u,(tanh y,, tanh ¥ ,, q,, q5), Y, >0y, <0 (2.2)

has the following asymptotics:

uss(tanh l/ll’ tanh ‘/’2: 91, q2) = uls((x - ql) cosh l/ll — tsinh Ipl)

+ Ua((x — gz) cosh ¢y, — tsinh y);
(2.3)
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ss(tanh '//19 tanh ‘pz: 91, q2) t—® uls((x - ql)COSh l//l — tsinh l/ll —_ gdllM;lllz))
1

+ uzs<(x — gy)coshy, — tsinhy; + w>
2

In the classical limit the collision preserves the solitons’ individual momenta but produces the
complementary coordinates shift, compared to the solitons’ uniform motion,

1

Ady = M, cosh ¥,

AW, — ¥,);
24)
Agq, = —

m AW, — ¥y).

The shift is defined uniquely by the Lorentz invariance principle. The solution (2.2) will be used
for the semiclassical S-matrix calculation.
For the reduced S-matrix we have (3.2.7)

exp {i | L(u,)dt}
= G510 Tt 40)
G(t",q"|t,q) = exp { —iM (" - ) —(q" — q)*},
qi{ — 41 = tanh @(t” — t); q; — q> = tanh @3(t" — 1).

S_1(@) — 03) = 11 (2.5)

The exponent of (2.5) contains the two-soliton solution (2.2) that describes the propagation of
the first (second) soliton from the point 4, g3 at ¢’ to the point ¢7, g at t".
In the other words, the exponent contains the solution with velocities

- 1 Mo, — ¢

tanh wl,z = tanh (pl,z + PIY Ml’z cosh(pl’z' (2-6)
Finally we obtain for (2.5):
S_1(@y — @)= llm CXP{ f[g(“ss(tanh Y, tanh §,)) — Z(u;(tanh ¢,))
l - — oo
— Z(uy(tanh @,))] dt} = exp { —iK(p, P2)}; 27

qi,2 = v(p; )", qi,2 = v(py )t

The function K introduced here is the generating function of the canonical transformation that
describes the classical scattering. Indeed, one can see that

0 .
E—K(Pu p2) = Aqy ,, P12=M,, sinh ?P1,25 (2.8)
P12 -

with Aq, , introduced in (2.4).
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The equalities (2.7) and (2.8) have the general meaning. The relation between the semiclassical
S-matrix and the canonical transformations’ generating function is valid in every Hamiltonian
system for the scattering with the conservation of all momenta. We shall exemplify it by a one-
dimensional particle in a potential.

The exponent of (2.7) contains the difference between the action calculated on the interacting
particles and the action calculated on the free ones that are situated in both cases in the same points
q1.» and g} , at t” and t' moments respectively

K(py,p2) = So(q] 2, t"|q1.2:t) — S(q}.2,t"|q} 2, 1) (2.9)

with p, , the asymptotical momentum. To prove equality (2.8) we need the derivative of K in the
following form

d dv d

— = — — K. .

dp K dp dv (2.10)
Exploiting the expression for the asymptotical velocity

v=1(¢" - @)t" = 1), (2.11)
substituting the expression (2.9) for K into the right-hand side of (2.10) and using the equality

d "

i S=p (2.12)
we obtain

dK dv

— = ——(t" — )Pins — Po)- :

dp dp ( YPint — Po) (2.13)

Here the p;, and p, are the momenta of the interacting and of the free particle respectively. Their
difference is connected to Ag in such a way

_dr __d _4q
pint pO _E‘v—(vint UO) - dU (t” . t/)‘ (2'14)

And finally we obtain (2.8),
dK(p)/dp = Aq (2.15)

Q.E.D. [29,89].

We have proved the elastic scattering semiclassical matrix phase to be the generating function
of the canonical transformation. We shall use this below for calculation of the periodic solitons’
S-matrix.

We rewrite finally (2.5) and (2.7) as

PL— @2

S_i(@y — @) = CCXP{—i j A(B)dﬁ} (2.16)
0
For the A(f) see (2.4). The constant ¢ is obtained by the limit evaluation in (2.7).
The sin ¢, model solution that describes the soliton—antisoliton scattering had been written
down in (1.1.35). The A(B) can be extracted from that formula (1.1.37),



L.D. Faddeev and V .E. Korepin, Quantum theory of solitons 45

16 —Q_
Mo, —@_)= y—ln coth (?%), Q. > Q_. (2.17)
The S-matrix calculation by (2.7) and (2.16) gives [29, 13, 14, 89]

. . 8n% 8 - Ee™i9 4 1
S_ —Q_)= —+ —-{d0In|—— s .

(p+—@-) =exp {1 ; yf n(é n e*"’)} (2.18)

0
_ s — 2M? + /s(s — 4M?
{=er70 = 2M2( )’ s = (Pl + P2)2 (p, + p2)>,
EeTi0 4+ 1

K dfIn — . .

&= J <€ n _,9) (2.19)

(]

The scattering of two identical solitons in the sin ¢, model is treated in a similar manner and
supplies the following form of the reduced S-matrix expression: :

. 8 [ gemi +1 _
Si(py — @3) = exp {;jdeln (W)} E=em792 > |, (2.20)

For the corresponding classical solutions see (1.1.32).
The derived S-matrices obey the crossing-invariance principle

S.(AM? — s +i0) = S_(s + i0). (2.21)

This property was first noted by Coleman [89].

Let us attend now to the scattering problem of simple and periodic solitons in the sin ¢, model.
It is simplified by exploiting the statement on the generating function of the classical scattering.
The first pair of canonically conjugated variables for a periodic soliton is g and p, the coordinate
and the Lorentz momentum. The second pair is « and I, the phase of the periodic soliton « and
the reduced action

T @
1 2 t .
L J a f dxw,<x,T, T>, (222)

within the sin ¢, model I = 160/y. The shifts of the soliton’s center and of its internal angular
variable have been listed above (1.1.38). We have seen the canonical transformation generating
function to be

F = K(ife ) + K(—ife') — SVL E =% 7% > 1. (2.23)

The final S-matrix expression is [14]

vy, vl | S v, vl n')

2
= exp {i ?yl — iK(ie™*¢) — iK(—ie"""é)} Hops — )N @u — Q.o (224



46 L.D. Faddeev and V .E. Korepin, Quantum theory of solitons

s — M? — M2 s — M2 — M2\?
_ < n s n -1 M. = 2M si
& MM +\/< SMM, ) 1 n = 2M_sin 0,

where s is the Mandelstam variable

s =] +p)* — by + pz)* = M? + M? + 2MM, cosh (¢, — ¢,,). (2.25)
The scattering amplitude of two periodic solitons with velocities tanh ¢, and tanh ¢, and quantum
numbers n, and n, can be obtained in the same method [14], (1.1.42)

”n S ’ ' ! ’ — 6""”,25”5",2 5 " ! 6 1 ’
{vy, ny, 01’"1| IUZs"Z, vi,ny ) = “MZ (05 — @3) (@) — ¢1)

x exp { —i[K(¢ exp {i(0,, — 0,,)}) + K(—&exp {—i(6,, + 6,.)}) (2.26)
K(—¢exp {ify; + 0,,)}) + K(Z exp {i(6,, — 0,,)})]} exp {i 16; };
é = e®17 02 > 1’ on 1‘))6 n.

The generating function for N solitons scattering is equal to the sum of pair solitons generating
functions (1.1.43), (2.18), (2.20), (2.24), (2.26). So the N soliton quasiclassical S-matrix is equal to
the product of pair soliton S-matrices [14].

It is worth mentioning that the perturbation theory for the soliton S-matrix is quite different
from that of the usual particles. The soliton S-matrix is unitary in every order of the perturbations
theory, but its analyticity is restored only by summing of all the orders of the expansion.

4.3. The scattering of a usual particle on a soliton

Let us consider the scattering of a usual particle on a soliton, using the definition of section 2.
The definition of the S-matrix generating functional for a single soliton looks so:
G(t",q", Ay |t,q', Ap)
t —~oo 27G(t", q'|0, 0)G(0, 0|t q)

ve, A5 | S |vi, Ag) = (3.1)

and after a transformation similar to (3.1.21) it becomes
1
(v, Ag |S|vg, Ag) = i G~ !(t",tanh ¢" - t"|t’, tanh ¢’ - t)3(0" — @)

1 "o
X jexp{ ~fdﬂ[a,, alp —aga_gl| + - j dBla; agl + aj agl,] (3-2)

e 2
+ ij[nu, - (7; 2 4+ %u + v(u))]} ];Itdu(x, t) dn(x, t).
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We represent the integration variables in the form

u = uyxcosh ¢’ — tsinh ¢’) + \/}jﬁ;
1 1 (3.3)
n =—t(xcosh ¢ — tsinhg’) + —=#&
y Jr
i = \/%J‘dﬂ[a; exp { —imsinh - x} + azexp {imsinh - x}];
n
34)
= T dp cosh p[a; exp { —im sinh Bx} — agzexp {im sinh Bx}].
Then (3.2) can be rewritten as
o
v, Ay |S|vy, 45> = —5((p" - (p)fCXp{ Jdﬁ[a;afp — aga_;] (3.5)
v

J dBla; agl, + ag agle] + 1j[nu, R+ a2 +o"(u)d®) — Y Y " uXa)"] dzx}dﬁdﬁ.
n=3

Here u, is a solution from (3.3). In the first order of approximation we drop the last sum in the
exponent so (3.5) takes the form

1
o, Ag |S|v, 4> = 2 2@ — @) f Iﬂ dag (t) day(t)

(36)
x exp{ f dBla; agl, + af agly] + 1! dt dﬁ[‘—’L“"L—u Y@ + a2 + v'(u )aZ)]}

At first we shall derive the forward scattering amplitude. Remember that the integration variables
at moments t” and ¢’ have values

a; |~ = Aj exp {imcosh pt"},

agly = Agexp { —im cosh Bt'}. 37

The integral in (3.6) is of Gaussian type and the stationary phase evaluation provides its exact
value. Let A7 and Ap be localized in the region B > ¢’. The stationary phase point turns the
expression

f dg dt{ —ﬁ—“” 9 — %% 1z 4 g2 4 v”(us)ﬁz)} (3.8)
Al
t

to zero, and only the value of

Jdﬁ(a;apl,u + a; agl) (39)
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is left to be calculated. Mention that

agt") = s(f — @Az exp { —imt” cosh f}; (3.10)
a; () = s(B — @)A; exp {imt' cosh fi}, ’

where s(f) is the penetration factor of the plane wave through the potential in the Schroedinger
equation (see Appendix 4)

2
[ :2 + v"(ug (r)):| F5(r) = m? cosh?Bryr). (3.11)

The representation (3.10) follows from the properties of the asymptotic f;,(r), ds(r) (A.4.9) and from
the localization of & and # in the left (right)-hand side of the soliton at u(r). Finally we obtain for
the amplitude (3.6):

1 aoc
o', Af|S|v, 4p) = M&((p” - ) exp{ J dpA; Ags(|p — (p|)}. (3.12)

Adding the similar treatment of the particle’s reflection we come to a complete result for the
S-matrix generating functional:

o0

’ 1 n r
v, A ||V, Ap) = 7@ - ¢)eXp{ j dfA; Ags(|p — o))

o 0 (3.13)

¥ j dBry_ A, _zAy — -9 "’)s(ﬂ P)AS,_ ﬁA}

@

Here r(f) is the reflection factor derived in the Appendix 4. In the sin ¢, model [14]

sinh  + i

smmp-1v 0 (3.14)

s(p) =
Thus in the lowest order approximation in any model the usual particles do not interact with
one another and are scattered by a soliton like by a non-relativistic potential.
The scattering of a usual particle on a periodic soliton is treated analogously. To describe the
S-matrix formula in the lowest order approximation we must display the solutions of homo-
geneous equation (see Appendix 4)

Hy =0,

" t
H=O+v (w(x, T T))

In this case it is easier to describe the formula which is analogous to (3.13) than to write it down.

The Lorentz and the internal momenta of the soliton are conserved during the collision. The
usual particles do not interact with one another. The S-matrix of the usual particle-soliton scat-
tering is equivalent to that of the plane wave-potential scattering in the equation (3.15). We define

(3.15)
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Y5, which describe the scattering as (A.4.18)

exp { —im(t cosh B— xsinh B)} + Y r/ (n, B)exp { —im(t cosh B, + x sinh B,)},
" x— —o00; (3.16)

Vo502 | S 41 (n, B)exp | —imlt cosh B, — x sinh B}, x = 00;
cosh B, = cosh B + 2an/mT.

To learn the fundamental particle-soliton scattering means to find out all the factors d,, r,;
do(p) is the transmission coefficient without change of the energy; d,(f) is the transmission coeffi-
cient with the energy change by 2zn/T; r,(f) are the analogous reflection coefficients. The scattering
of a fundamental particle on a soliton that moves with the velocity v is obtained by changing x to r
in (3.16).

Let us lay the following requirements on a plane wave-periodic soliton scattering matrix: an
incoming negative (positive)-frequency wave must become again the negative (positive)-frequency
wave after the collision. This will serve as a criterion of the theory stability. In other words,

dp) #0, rB)#0 (3.17)

must be only if m cosh § + 2nn/T > m.

Consider the fundamental particle-periodic soliton scattering (1.1.28) in the sin ¢, model.
The equation (3.15) is solvable directly (A.4.23). It can be extracted from the formulae that describe
the scattering of two periodic solitons, see Appendix 4, and it leads to (1.10):

rn=0a d,,:O, n-,é0,
d(p) = sinh B + isin (ky/16)\? (3.18)
O T s p=Tsinky/16)7

4.4. The above-barrier soliton reflection

In general, the quantum theory affirms a non-zero probability of some processes that are for-
bidden classically. This paragraph displays a method of the amplitudes calculation for the processes
that can not occur to the classical solitons.

The corresponding amplitudes are evidently exponentially small in y. At the first sight the per-
turbative attempts seem hopeless, but sometimes one may succeed in playing the trick that is
known in the quantum mechanics and is based on the use of the solutions of the classical equations
in the complex time plane [90-93]. Consider the following example in the sin ¢, model. The
classical scattering of the soliton

4tan”'exp {(x — g,)cosh, — tsinhe,} (4.1)
on the antisoliton
—4tan"'exp {(x — g_)cosh ¢ — tsinh ¢ _} (4.2)

occurs without any reflection. Indeed, the classical solution representing this scattering (1.1.35)
looks especially simple in the center-of-mass system

sinh [m sinh ¢t]
cosh [m cosh ¢ - x]

ug(tanh ¢, — tanh @) = 4tan~ 1{coth @ (4.3)
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and describes the scattering with the individual momenta conservation which obviously means
the absence of reflection. But in the complex ¢-plane there is a solution that describes the reflection.

This classical solution has the following form. The time variable ¢ in the function (4.3) must move
along the contour (fig. 1).

Jmt
X5
msinh ¢
&
Zmsin b ['4
Re t
g
Fig. 1.

Moreover, there are two solutions of this kind, they are obtained by moving ¢ along the contours
C, and C, (fig. 2). Note that the time variable ¢ in fig. 2 tends to infinity parallel to the real axis.
The crosses denote the turning points.

X3 i
mSinh P mSinh ¥
i (Z
|' Zmsinh ¥ ZmSink ¢

7 " ¥
Fig. 2.

The following two remarks will show that these complex solutions can be exploited in the usual
procedure as the stationary phase points of the functional integral which represents the reflection
amplitude.

We write down first the reflection coefficient definition in the following form

. G, q%,q9"|t, g, q-)
¢ ? "— S v, ’vl“ = llm ” ” ’ ” ’ ’ ’ ’ ;
WSl -0 = i GG, 410,006t 47 10, 016G, O], 4)G(0, O], 4.

(4.4)

g =tanhe’ t" +q%, ¢, =tanhe, -t + 4%,
q. = tanh¢@” -t" + q%, q- = tanho_ -t + q%;
¢, >0, o_ <0, QL <0, o~ > 0.

1. The general definition makes possible to tend ¢” to infinity not only along the real axis but
also as

" - oo + ia. 4.5)
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2. The nominator of (4.4) is expressed by the functional integral

G(t", q%,9"|t, q+,q-) = ~[‘exp{ f.?(u) dt} [—! du(x, t). (4.6)

Indeed it is proved in [94] that the right-hand side of (4.6) does not depend on the form of the com-
plex plane contour of the variable ¢t which is the integration variable u(x, t) index.

These facts authorize the calculation of the reduced S-matrix by the technique of paragraph 4.2.
Our case has two points of distinction from paragraph 4.2. The first is the existence of two classical
trajectories, the second is the presence of a turning point on both trajectories. Taking this into
account we obtain the propagator G in the semiclassical approximation

G(t". 4%, 4|t q+,q) = —1exp{ ff(“c,)dt} + 1exp{ Jf(ucz) dt} 4.7

Here —iand i are the turning points contributions. The calculations similar to those in paragraph
4.2 lead us to the following reflection coefficient value [95]:

1 ) . 8n? 8n
o, v S|, v = 372 0% — 9 )l ~ <P+)<-2 SmT)eXP{—-y—]fh - (D—I}

(4.8)
8 2 i@ 1 ) ,
xexp{I%UJde %+—_,o } £ =exp {0 — o_}

which is indeed exponentially small in y. Note that at y = 8z/N the reflection vanishes.

The soliton—-antisoliton S-matrix (2.18), (4.8) in the nonrelativistic region makes possible the
approximate reconstruction of these particles interaction potential. The appropriate Schroedinger
equation is [95]:

.6!/1_[ 1 d2 1 42 = M :IQP 87

M dRZ ™ M dr* ~ 4 cosh®Gn- Mr/N)

15 = N == (4.9)

4.5. The ground state of the double soliton in sin ¢, model
Consider the mass formula for the double soliton in the sin ¢, model (1.10):
16m . (ny
M,=— 5.1
. sin ( I 6) (5.1)

(We will prove in section 5 that y -9 = y/(1 — y/87n)[9] in the one-loop approximation.) Note
that in the limit of small y the double soliton ground state mass is identical to the usual particle
mass:

Ml -5 m. (5-2)

These particles were conjectured in [9] to be the same particle. We shall support this hypothesis
by the following arguments.
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Consider the S-matrix of the two lowest periodic soliton’s states (2.26). Retaining only the first
order term of expansion, we get

im%y

Sl + —————
2 2./s(s — 4m?)

(5.3)

what is identical to the first order term in the expansion of the S-matrix of the fundamental particles
[96]. The S-matrix for the scattering of a fundamental particle on a lowest-state periodic soliton
turns to (5.3) also.

Compare the matrix of the fundamental particle-soliton scattering (3.14) and the scattering
that for the lowest-state periodic soliton on a simple soliton (2.24). Substituting the value 8, = y/16
and expanding the exponent in powers of y we obtain

or [ T A

identical to (3.14).

At last we shall mention that the nth “excited” soliton state was found to be identical to a bound
state of n usual particles [9]. An analogous degeneracy that identifies the usual particle with the
lowest periodic soliton state was also found in the “nonlinear Schroedinger” quantum field theory

[97].

5. The quantum corrections

In this section we shall evaluate the quantum corrections to the semiclassical results derived in
section 4. For the propagator of several solitons

t
G(t", {q;}|t, {ai}) = jexp {i j Lu,, + ﬁ(p) dt} [1de 0.1)
we shall use the following approximation
G, {4}t {q}}) = det™*HHG ' exp {i f Lluy) dt}; 0.2)
H =01+ v(x, 1), H, = [0 + m?, t, m* = v"(0), (0.3)

v(x, 1) = v"(uy,)-

This expression accounts the next perturbative term compared to the expression (4.0.2). We see
that the one-loop corrections calculations require to evaluate a determinant of a Klein—-Gordon
operator with a potential.

The determinant det H must be expressible through the scattering matrix of a plane wave on
the potential in the equation

Hy, = 0. (0.4)
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Indeed, the one-loop corrections arise due to the usual particles exchange, and the usual particle-
soliton scattering is described by the solutions of (0.4). This idea was found to be realizable. The
authors had worked out a method for the calculation of these determinants [25, 98]. The formulae
written below express the derivatives of the In det H through the asymptotics of the solutions of
the equation (0.4) at |t| —» co.

In the following the family of Jost solutions ¢, and ¥, will be useful; they are uniquely defined
by the requirements:

Y5 (x,t) —=—=> exp { —im(t cosh B — x sinh B)}; v .=, €xp {im(t cosh § — x sinh B)};

t—w

% e 0.5)
Yp (X, 1) === exp {im(t cosh f — x sinh f)}; ¥; ——= exp { —im(t cosh f—x sinh p)}.
x—+ xX——w

The expression of det HH, ! will contain the quantities a,, defined by

Y5 (x, 1) === X a.B) exp {im(t cosh B, — x sinh B,)}. (0.6)
The second important component of the det HH; ! will be obtained from the asymptotics of
Yp(x,t)at t > —oo:

Y5 (x,1) == exp{ —im(t cosh f — x sinh f)} + ch exp {im(t coshy — xsinhy)} dy. (0.7)
In the determinants evaluation we shall use the conventional definitions m? - m? — i0. The
ultraviolet divergence of det Y2 HH ;! can be eliminated by the counter-term (3.5.5)

dk

k2 + m?

AL = Sy? D(0) J d2xv"(u) — m%,  D(0) = f (0.8)
In paragraph 5.1 the general formula for det HH,! is derived, in paragraph 5.2 the one-loop
correction for the structureless soliton mass is evaluated, paragraph 5.3 contains the calculation
of the periodic soliton mass correction. In paragraph 5.4 we calculate the one-loop correction to
the S-matrix of two structureless solitons. All the general formulae will be illustrated by the sin ¢,
model. In paragraph 5.5 one can find the final results for the sin ¢, model.

5.1. The one-loop corrections

We have to evaluate the determinant of the operator H presented above in (0.3). Note, that the
potential v”(uy,) does not decrease along the classical solitons world lines.
It is more suitable to examine the differential of In det H than the determinant itself. We have

dTrinHHy! = fR(x, t,|x, 1) do(x, t) dx dt, (1.1)

where R(x,, t;|x,, t,) is the kernel of the resolvent of the operator H; we can express it as a bilinear
combination of the functions ¥/ and y; (A.5.3)

U)W L), t, > 1y,

o)WY WI(@1,), t <t (1.2)

R(tZItl) = {
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Here i/ .. (t), § _(t) are the positive and negative-frequency solutions of the homogeneous equation.
We use short matrix notations for them, considering the spatial coordinate x and the wave number
B as the matrix indices.

The Wronskian

d
W= (wz a'”—) (13)

is described in Appendix 5 for the three cases to be considered below. (See also the end of this
paragraph.) Substituting (1.2) into (1.1) we get

t” ]
dindet H = Trt/y _ W~ 1T dv; Tri'A = fdt deA(x, t|x, ). (1.9
t’ -
In order to transform this expression we take the derivative of equation (0.4)
dYTH +yTdp=0 (1.5)
and substitute into (1.4). We get
dindetH = — Tr'\y_W~1dyTH. (1.6)

Integrating this expression by parts, recalling equation (0.4), we obtain

-

dindet HHy! = tr W“(d&ﬂ% lp_>

Here tr means an integration over x but not over ¢ and Y, means the free equation Hoyo = 0
solutions. Another expression for this quantity can be obtained by interchanging ¥, and ¥ _:

"

ofazr 94
—tr Wo 1<d‘//g+a‘/’o—)' . (1.7)

t

t

t

"

dindet HHy! = —tr W‘l(lﬁT+ (%dn/ﬁ) (1.8)

'
t

' _ d
, + tr Wo 1('/;(T)+ cgd!/’o—)

¢

These formulae express the differential d In det HH, ! through the asymptotical characteristics
of the homogeneous equation solutions ¥/, and  _, hence they provide all the one-loop corrections
calculations. Other authors [10,99-101] evaluate the Indet HH ' as a sum of the Floque indexes
of a system enclosed in a box but we luckily can avoid these complications.

Note that Indet HH, ! is translation-invariant, hence

_fd \d d d . -
tr W 1(<E;Wi>alﬁ—)=0=tr[ Ea?a‘ﬁ—jlw . (19)

As an example let us calculate det HHy ! when u(x, t) in (0.3) decreases in all directions. In this
case we have at t & + o0

Yj (x,t) = exp { —im(t cosh § — x sinh B)} (1.10)

and at t - — o0

Y5 (x,t) = exp { —im(t cosh § — x sinh §)} + J‘dyc,,y exp { —im(t cosh y — x sinh y)},
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where the operator (1 + ¢) is unitary because the following Wronskian does not depend on time:

f&i (X, t)%wi,(x, t)dx = *+4nid(f — y). (1.11)
The Wronskian Wis then

j%* (%://; dx = 4ni(1 + ¢),;.
It is clear that the formula (1.8) becomes

dindet HH;'! = %jdxdﬁdw/zj(l + é)@‘%déﬁ‘,n/?;. (1.12)

Using (1.11) and taking the integral over x we find at last

Indet HHy ! = Indet (1 + &). (1.13)
This expression is a Lorentz scalar

det (OJ + m? + v(x cosh ¢ — tsinh ¢, t cosh ¢ — x sinh @))Hg !; (1.14)

it does not depend on ¢.

Now at the end of the paragraph we present the Wronskians for the three most important cases,
see Appendix 3.

For the structureless soliton (A.4.8):

exp { —imt cosh y} f(x) (%exp {imt cosh B}g4(x) dx = 4mia(y)é(y — B). (1.15)
o/
For the two structureless solitons scattering (A.5.24):
i d .
dx¢’+ﬂ(x, t)d_t‘lll_?(x, t) = _47'51(1 + C)),pal(ﬂ - (pl)az(ﬂ - (pz). (1-16)

v

For the periodic soliton we write the complete set of solutions in such a way. We define the
vector u = {u,}

u(t) = exp { —i(v +T2’"'>t}, (1.17)

and the matrix solutions (A.4.18)

tikx Fikx . .
2 e + e R4 (v); X — —00;
L(x) — " 1.18
fi( ) {e:tlkfoi(v); X = +0; ( )
+ikx .
; € D, (v); X = —o00;
Y (x)— I St
g:t( ) {einkx + e;nkagi(v); X — +00;

and write the Wronskian of the homogeneous equation solutions (A.4.15)

(0§ (x)", (w,(0)2(x)). (1.19)
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The Wronskian is (A.5. 14)

de(‘“ (x)ae,, (8)) 5 (uvz(t)f?(x)) = —4miTh(v,)D;+(v)3(v; — v,). (1.20)

5.2. The one-loop mass correction for the structureless soliton

We shall calculate a one-loop correction to the mass of the structureless soliton (4.1.1) with
the propagator

Gt",q"|t', q') = det" V2 HHg ' exp { —iM- /1 — v*- (" — 1)},
d2 d2 (21)
g2~ g2 TUw(),  v=tanho,

considered in paragraph 3.1. Here u(r) is the classical structureless soliton dependent on the
variables

H =

r = xcosh ¢ — tsinh ¢, 7 = tcosh ¢ — xsinh .

We represent the det™ 2 HH !
det™'2HH3! = exp { —iAM /T — 0 - (t" — 1)} (2.2)

with AM the one-loop mass correction. For calculation of det HH, !

We take the functions y; and ¢ from Appendix 4:
Yy (x,t) = exp { —imcosh f- 7} fy(r), Yp (x,t) = exp {imcosh - t}gyr). (2.3)

we have the formula (1.7).

For the discrete spectrum we have the solutions

@. =exp{—iym’ — Et}o,n, @ =exp{iym’ — E,t}e,n), (2.4)
and

Tu(r), uy(r).

Here g, and f; are the same as in (A.4.8). We take the derivative of In det H with respect to ¢ and
write it in the form

(% _ _(Ti N ,i>, (2.5)

and so far have

ad L
~vad 3, ws,,] )
. (2.6)

- R d +
—(—i—ln det HH;! = —1— j dde[—l//Lat——:/ll’A:12
do 4mi ap)

Zm¢n d,.

We present the expression in the square brackets as a sum of two terms:
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s d o dY,, ot _.dyt
v a‘(’d +'E>'/’ = " Gshe’ Y ar
27)
1yt [ d a N ¢
{cos_h(pl/l i -y 6,[rat//. —tanh(pra;t// .

The curled bracket does not depend on t and is cancelled in (2.6) so it becomes

d N W50, dy; /dr d!//ﬂ/dr _ed
do Indet HH, " = =" @ {4n1_[ ~ Vosli g Vos
2.8
2 m ALl
Demonstrating the derivative in details
d . ) d
a—rwﬂ = exp {imz cosh B} agﬂ(r) = cosh & ——— exp {imz cosh f} —g,,(r)
(2.9)
— 3 . . +
= imcosh f-tanh ¢ - Y5 + cosh o dx |/1,, ,

we see the second term of it to give no contribution into (2.8) according to (1.9). So (2.8) turns to

imt” — 1) Vi 0.y

d . -1 1 T
HTr,, In HH, _——m h(p{4 [dﬁcoshﬁdx[ 26) woﬂa,wop]

1 (2.10)
+ 1S ordor

We can use the formulae (A.6.2), (A.6.14) to evaluate the integral over x and obtain

d oo (W -1) [ P 1

— T mHH;! = — nh .

v Tr! In HH, 22—~ oo ——sin qo{g fd/i sinh § In + = Z\/ . (2.11)
0

a*(—p)

This can be easily integrated over ¢

1. . - (=t 2 1
— 5 T In HHG ' = —i ){;mfdﬁ inh 8 In 2((533) 5;‘/ } 2.12)

cosh ¢

and the mass correction AM is equal to

——fdﬂs nh B In 2:(B2)+ Z\/

® " (2.13)
_ima®  im a¥p) 1
=—— — g, | 4Bco shﬂdﬂ s 22\/ E,,
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o

In a() - sTna'ﬁ? _lm- j dx(v"(u,(x)) — m?).

The right side of this equality diverges in the ultraviolet region. Taking the counter-term (3.5.5)
into account we arrive at the following correction to the classical soliton mass [9, 14, 16, 17, 25]

Z~/ j dﬂcoshﬂ[ " 2(2(/3}3)+ 4a” | 2.14)
[¢]

The convergence of the right-hand side is provided by the a® definition (2.13).
Within the sin ¢, model all these general formulae become

2m?
= 2 _ .
H=0O+m coshEmr (2.15)
Y; = exp { —im(t cosh f — rsinh B)} sinh ﬁ. +l 1ita-r11} (mr)>,
so that
sinhf§ + i 2i o _
a(p) = Smhpf -1 In a(f) 5=z~ sinh ' a” =21, (2.16)

see [13]. The expression (2.14) has only one non-zero term, the second one, and the mass correc-
tion is

AM = —m/=n, M = 8m/y — m/xn. 2.17)
So the sin ¢, model soliton mass in the one-loop approximation is found to be

M = 8m/y’, 8nfy = 8nfy — 1, (2.18)
cf. [9].

5.3. The one-loop correction to the periodic soliton mass

In this paragraph we are going to calculate the correction for the classical value of the periodic
soliton mass, by means of

S = lim —iln nG(nT,0, n|0,0,0)

n—+c n

= 8§ + AS(T); 3.1

T

SKT) = szx[l(a w)? — v(w)],

discussed in (4.1.7). We shall express the corrections AM, and AT, through AS(T) by solving the
system (2.2.9)
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d cl —
57 (5" + A5 + TM) =0,

S + AS + TM = 2nk (32)
by a perturbative method. It leads to
AM, = —AS(TY/T;;

N dAM(T)\/dMT)\~*
AT"_—T"< dT >< dT >

and now AS(T) is left to be found. One may differentiate Tr In HH, ! with respect to ¢ once again
and make clear the Lorentz invariance of the perturbation theory. But we shall use some more
convenient method. Let us differentiate the TrIn HH, ! with respect to ¢’ keeping the (¢” — t')/T
fixed and assuming ¢ = 0. This means to keep fixed the initial and the final internal coordinate
values and to vary the time of transition from the initial state into the final state. It is easy to show
the mass correction to be
id 1
AMk = —2_ (W(ln det HHO )I(t”—t’)/T=const' (34)

(3.3)

’
T=Ts

For the evaluation of In det HH; ! we have to describe all solutions of the equation
Hy = 0. (3.5)

This is done in Appendix 4. These solutions are expressed through the solutions of the Schroedinger
matrix equation (4.3.17)

d? -
[—w—k3+ﬁ]f=0,

T .
1 .2nt . t 2.
Uy = Tjdt exp {IT(n - I)} v (w(x, T T)) — 0,,m*;
v + 2nn\? 5.
kln = T —m=;

mT —v >mT—v
2n " 2n

(3.6)

1>

The spectral parameter v belongs to the interval mT < v < 2n + mT. Consider the matrix solu-
tions of this equation. The Schroedinger operator acts on the first index of the matrix solution,
the second index is a vector solution number. The scattering solutions are

. eﬁ:ikx + exif:foi, x > — o0,
JE2 9 tit i 3.7
€ Dfﬂ:’ X — +OO,
G — e Dyy, X = — o0,
T T ) et 4 e ™R, ., X — 0.
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The correction In det HH ! can be expressed through the S-matrix of a plane wave on the potential
of eq. (3.6). In Appendix 6 we show that (A.6.23)

mT+2n

. 1d 1 w i 1 = 3
—1AM = ——2d,,Tr, In HH,! —ﬁD 372 e J dvSp . Jk* + m
mT
(3.8)
_, d o d . d 1d 2' D°°
- D®
(D{r)zn (D), = (D +)ln=(Df—)ln=6ln+§Ik_‘; [ =00, n>
in

8

T
1 t
== J dt J‘ dx[v”(w(x, (e T)) - mz].
0 )
The trace of the curled bracket converges due to the counter term (0.8) account. The corrections
of the mass, period and action are to be calculated by the formulae (3.3).

Within the sin ¢, model the classical solution is (1.1.28). The S-matrix is reduced to a perfectly
diagonal form, the potential is reflectionless and the transmission coefficient is (see (A.4.24))

F =R; =0, (D)) = (D9, = (D%)y, = (DL),, = Spa(v + 27n), v+2an=mT coshp.

(3.9)
The general formula for the correction of the action becomes
1
—AS(T) = 5 ar (ln det HHg Dl —pyr (3.10)
imT _ imT R a’(B) )
= a _Ei—jdﬂCOShﬁ[ a5 P o - ﬂ) coshﬂ]’

a® = llr;l Sinh ﬁ ln a(ﬂ),

(sinh B + isin 8\
\sinh g — isinf) "

a(p) =

The integral is easy to evaluate and we find
AS = —[—2n + 46 — tan )] (3.11)

We shall drop the 27 because AS is always to be placed into exponents. So the one-loop correction
for the action is found to be reduced to the replacement (4.1.9), (4.1.10)

y—7y,  8ujy =8nfy — L (3.12)
Finally the periodic soliton spectrum is [9]
M, = (16m/y") sin (y'n/16). (3.14)
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Note that the second equation of (3.2) leads to the following Bohr—-Sommerfeld rule:
0, = (y'/16)n. (3.15)

The classical Bohr-Sommerfeld rule was 8, = (y/16)n. It is clear that passing from the semiclassical
to the one-loop description of the nth periodic soliton state we must replace

9-0+00, o0=_"0 (3.16)
8n

This will help us to choose the right sort of variables for the S-matrix corrections evaluation.

5.4. The one-loop correction to the structureless solitons S-matrix

To calculate this correction we shall exploit the definitions (3.2.7) and the approximation (0.2)
for the propagator. So we get for the one loop correction to the S-matrix
_ det H(u,)H, * —I‘ 172
 [det H{u)H, * - det H{uz)Ho |

Hw) = O + v"(u); S(@y — @2) = S_1(@1 — @2)So(@1 — @),

recollecting also (4.2.1), (4.2.2), (4.2.3), (4.2.5).
We have to describe all the solutions of the equation

H(“ss)'//ﬁ =0 (42)

for calculation of the (4.1) by the expression (1.7). But previously we shall write in a more appropriate
way the solutions of the homogeneous equation when only one of the two solitons is present.
To make the formulae more readable we consider here the simplest case when both the soliton
potentials are reflectionless,

, 4.1)

So(@1 — @3)

Y1.25(x,t) = exp { —im(t cosh § — x sinh ﬂ)}al,Z(rl,b B — ¢:.2);

W (%, 8) = exp {im(t cosh § — xsinh f)}a; (B — @1.2)2 2(ry25 @12 — B “3)

These expressions define the functions a; ,{(r; ,, f) uniquely. They have the following asymptotics:
al,2("1,23ﬂ) T w 1, a; »(ry,2,P) oo al,Z(B)’ (4.4)
a1,2(B) = aro(=P) = ay 3(B)-

We write all the formulae in the coordinate system with its origin at the soliton center of mass.
The quantities a, ,(r, ,, f) are non-constant only in their soliton’s vicinity. Now look at the
functions ¥ (x,t) for both solitons present. At t = ¢’ - —oo the first soliton was situated very
far on the left side of the x-axis, and the second very far on the right, at the points ¢’ tanh ¢, and
t'tanh ¢,. At t = " — oo the picture will be the same but the solitons will have changed their
places and their coordinates will be

t"tanh @, + Alp, — ¢2)

M, cosh ¢,
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and
1

m&‘l’x — ®2); ¢, >0,0, <0

t"tanh ¢, —
When the solitons are far apart the plane wave y, scatters on them independently, and the
S-matrix is, roughly speaking, factorised. But when they are close to oné another, the scattering
on the potentials overlap region makes the plane wave become at t —» — oo the sum of the plane
wave and of the wave packet

Yy +5—= exp{ —im(t cosh f — xsinh )} + jcﬁv exp { —im(t coshy — xsinhy)} dy. (4.5)

X— @
Now we have all necessary notations to present the final result of this paragraph before starting
its actual derivation. We shall find the two-soliton elastic scattering matrix in the one-loop approxi-

mation to be
Q1 P2

. 1 .. d
S, — @) = ZCXP{—I J A(B)dB + an J‘ dﬁa_ﬂln a;(B — @) Inay(B — ¢,)
T® 4.6)
— iA(@; — @)o(@, — @) — 3 J df[in (1 + &)y — Cw]}, P> Py
Here the In (1 + ¢),; is the kernel of the operator In (1 + ¢) and
Cw ES lim Cﬂﬂ' (4'7)

All the terms in the exponent are convergent. The very last term is the transformed counter-term
(0.8). The constant factor Z should be found from some supplementary requirements, e.g. from the
crossing symmetry. The function w(¢, — ¢,) is arbitrary, because the correction is dependent on
the type of variables it is calculated in.

As a matter of fact, the relation between the variables that describe the two-body process is
changed by the passing from the semiclassics to the one-loop approximation due to the masses
renormalization M — M + AM. Our correction is calculated with the fixed solitons’ velocities,
i.e. as a function of ¢, — ¢,. A quantity another than ¢, — ¢, being kept fixed would have com-
pelled us to replace ¢, — ¢, = ¢y — @, + W@, — @,) in the one-loop approximation. The
function w(¢e, — ¢,) must compensate the fixed quantity change caused by the mass renormaliza-
tion. For example, if one wants to fix the Mandelstam variable

_ 2
s = <2Msinh———(p1 5 (p2> ,

then he ought to assume

AM —@
(e, — @,) = =2 e tanh Lat 5 _2

All this depicts the ununiqueness of the expansion in powers of 7, but the exact quantum S-matrix
is unique.
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Let us learn at last how the expression (4.6) is derived. We rewrite in details the asymptotics of
the equation (4.2) solution which is of a plane-wave type at t - — co. The negative-frequency
solutions become:

V5 (x, 1) = exp { ~im(t cosh f — xsinh f)}a,(ry, B — @1)ax(rs, B — @2). (4.8)

The coefficients a, ,(r, ,) are not constant here only in the vicinity of their soliton, and the positive-
frequency solutions are

Yg (x,1) = exp {im(t cosh § — xsinh B)}a,(B — @,)a;(r1, ¢; — Ba(B — @2)ax(rs, ¢, — /(”9)
' 4.

We represent (4.1) as a product of the two factors:

exp { —3Tr! In H(u(x, t|q9, ¢3, tanh ¢, tanh ¢,))}

S1o=
. Alp;, — 95) . Alp, — @,)
1Tt 0 1 2), 1T o__ 1 2J,
exp{ 3T, lnH(u,s<q1 +“_M1 cosh (pl,(pl 3Tre In H{ u, | q5 “Mz coih (pz,(pz

1 4.10)
X z = >
exp { *%Tr:o In H("ls(‘]?; @) — 3Trlo In H(“zs(qg§ ®,))}
" A -~
exp{ —3Tr In H(tlls(q? +~A%;¢l)> ~ 3Tr® In H(u,(q3; %))}
S20= /7 7 ] Al - )
1T B NPT ¥7) At ?2‘)_6991"‘?1'\\1
expi 2Trt ln H(uls(ql (t” _ t:) M1 COSh o, s P1 + M1 (t" _ t:)}}j
4.11)

" Alp, —
exp {—%Trio In H(u25<q‘2’ - %cos%;%)) — 3Tr{ In H(u,4(43, (02))}
% 2 2

" r A — @,) A — ¢,) cosh
exp{—%Tri' In H(uZS(qg+(t,, =M oSO, (@1 — 9 'fpz—_M_((pl b2 '(t” _f;))}
2 2 2

uy(x, t|tanh @, q) = u(q, ¢);
So(@1 — @©2) = S10(@;1 — 92)820(0; — @2).

4.12)

Figure 3 pictures “the trajectories of the solitons at the nominator and in the denominator” of
the first factor.
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The wavy lines and the broken lines on fig. 3 represent the “solitons’ trajectories” in the nominator
and in the denominator of (4.10) correspondingly. Figure 4 represents the same for the second

factor (4.11) of S,, the wavy lines depict the nominator’s “trajectories” and the broken lines the
denominator’s, as above.

To evaluate S, (4.11) we need just the single-particle propagators in the one-loop approximation.
A trivial calculation leads to

. M
S20(@1 — @2) = exp {—1A(‘P1 ®2) MCI tanh ¢, ‘Maz tanh q’z)}- (4.13)
1 2
To calculate S;, we can use (1.8):
" 5 d - t
4 T HHG = ‘% f dxdp dv[ AT A ST do wm]

do, a,(f — ¢1)ax(B — @,)

(4.14)
Let us assume for a while the discrete spectrum to be absent. For the single-soliton determinants
in the denominator of (4.10) we can employ an analogue of (4.14) and get

l—'//+ﬁ (d/de Y4

ulkP - (PU

(4.15)

d . _ % d :
d—(plTr:0 In Hu, )H, ! = ZEJ ¢’+0patd—q; 'I/O-ﬂ:l .

Let us express (d/d¢,) In S, with help of (4. 14) and (4.15). First of all we ought to take into account
the contribution at t,. It is “single-particle reducible”, i.c. it looks like the formulae of paragraph 5.2.
The contribution to the term (d/dg,) In S, at the moment ¢, is equal to

11 dxdf | - Az d  _ A
s atp e Yl = s il ) - v gy v |
(4.16)

We have written out only the term which is localized in the region of the first soliton. The functions
Y1, are the single-soliton plane waves (4.3). The derivative (d/d¢,)y; (t,r — A/M,) can be re-
written as

d _ AA _ 0 _ A A d A
E(;I‘//w(ﬂr"jw—l)— a(plwlp(%" Ml) M dr —Yy 3( Ml) (4.17)

and (4.16) we rewrite as
11 dx dg N ANe 0  _ A
- §mja1(ﬂ — 0, )[‘/’xp<f, r— E)at%; ‘//w(‘fs r— M1> ‘//1/3('5, r)a lplﬂ(‘f "):|

, (4.18)
N1 [ dxd . A\e d A
t M, Smf al(ﬁ—wo"’”’<”' M1>a'5‘””’(f’*’ M1>'

Its first term can be calculated similarly to (2.6) and appears to be

d —i AM At
do, cosh @,

lAMl A, — ¢2)
At=A/M;sinhg, M, COSh2¢1

(4.19)
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The second term is calculable like (2.8), it is

M
“tanh @, - A'(@; — @,). (4.20)

1

The analogous calculations of the terms localized in the region of the second soliton allow to
express the compléte contribution of ¢t = ¢, terms to the derivative (d/d¢,)In S, as follows

d

AM,
d—[ Mcl rtanh ¢, - Mg, — @,) — 712 tanh ¢, - A(p, — (Pz):'- 4.21)

Comparing (4.13) and (4.21) we see that they cancel one another, and we can forget them. All the
correction to the S-matrix turns out to be the lower limit contribution ¢ = ¢’ at (4.14). The upper
limit contribution into (4.14) is zero. This is not too difficult to understand noting that (d/d¢,)
X Yy (x,t) is non-zero only in the region of the first soliton and at the right-hand side of it. But
at the right-hand side of the first soliton the factor at the (d/d¢,)y; (x, t) becomes a plane wave
Yo Hence the contribution of (d/d¢, )y (x, t) on the upper limit is cancelled by the denominator
of (4.10) contribution.

So far we have found the upper limit ¢ = ¢” contribution to the (d/d¢’)In S,, to be zero. Now
we have to examine the lower limit ¢t = ¢’ contribution, which is the sum of two terms. The first
term originates from the dé:

dx d dy(y 4 4(1 + ¢)5,'3(d/de,)é, a0 o)

—_— 422
= G = 006 — 9) “22
Remembering that (A.5.23)
d ~ :
fdx ¢+pat"/’—a = —4nid(B — d)a(B — ¢1)ax(B — @,), (4.23)
we can find analogously to (1.13) the contribution to (d/d¢,)In S,, to be
d 1
—[—%Indet(1 + d)]. 4.24

Another term from the lower limit ¢ into the (4.14) arises from (d/d¢,)a,(r,; B — ¢,) and after all
cancellations turns out to be

dlna,(f — ¢,) '//2/36 '//2;3 + 3 - :I
— |4 . :
f P —7 [az(/f 7 Vordbos (42

The functions ¥ 3, are the same as in (4.3). The integral x can be evaluated as it is shown in
Appendix 6 (see (A.6.2))

‘//;pétl/’z_ﬂ _ d
fdx[az(ﬂ — %) ‘/’Oﬂa ‘po;i:l dﬁ —In a,(f — ¢,), (4.26)

so that (4.25) becomes

d 1
(—1(/)_1[ in lfdﬁ Ina,(B — ¢,) Bln a,(B — (Pz):,~ 427)
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Collecting all the terms for Sy(@, — ¢,) we get the final expression

Sol@1 — @2) = ZGXP{—%IH det(l + ¢) + ‘%jdﬂ(%ln a;(B — @) Inay(p - (02)}, (4.28)

which was presented above in (4.6). It will not be altered by an account of the discrete spectrum.

It is clear from the examples discussed above that we can calculate a one-loop correction to
any process that can occur to solitons by means of the formulae (1.7) and (1.8), thus needing neither
finite boxes nor Floquet indexes in the scattering problems and obtaining the results in the manifest
Lorentz-invariant form.

Consider now the sin ¢, model. Dashen et al. had noted in [9] the following. The periodic soliton
scattering on the system of two structureless solitons describes in the limit 8 — O the scattering of
a plane wave on the same system, whereas the periodic soliton scattering is known explicitly [35],
and we can easily see that C = 0.

The transmission coefficients a(f) appear as (2.16)

sinh § +1i

= = — (4.29
a,(B) = ax(p) B )
The S-matrix correction is obtained from (4.6)
o 1 (p + - (p - 8 _ d
So = ICXp{—[; + (— - ;w(fm xp-)) o, = (p_)} (4.30)

’ e e e 4|
«Joon(Gri)

Let us discuss now what variables are the most natural in the quantum sin ¢, model. Note
first of all that two classical solutions, the periodic soliton (1.1.28) and the soliton-antisoliton
solution (1.1.35) are related by the analytic continuation

Hor —0)— IG - 0)- (4.31)

It seems natural to preserve this relation in the quantum domain as well. Passing from the semi-
classics to the one-loop approximation we ought to change 8 in order to retain the same quantum
number of the periodic soliton n in spite of the renormalization y — y' (3.16). Hence it is natural
to suggest

©=g-(0. —9-) (4.32)

This will cancel the last term in (4.30). So we obtain the soliton—soliton S-matrix in the one-loop
approximation

. 8n2 8 [ exp{o, —o_ —i0} + 1 )}
S —@.)= —iexpii—+ = d91n< - ; (4.33)
0. 0= -iem i yj xp {9, — ¢ + exp {=i0)

8n/y = 8n/y — 1.
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The soliton—soliton S-matrix in the one-loop approximation is calculable just in the same
manner as the soliton—antisoliton S-matrix. The one-loop correction is reduced to the replacement
y — 7" in the semiclassical result (4.2.20).

5.5. The survey of known results for the sin ¢, model

It has been conjectured in [9] that all the one-loop corrections in the sin ¢, model are reduced
to the replacement y — y', 8n/y" = 8n/y — 1. This was proved by direct calculations. The mass
corrections for the structureless and periodic solitons were calculated in [9, 14]. The one-loop
correction of the two structureless solitons’ S-matrix was derived in [98,99, 100]. The same for
the periodic solitons was done in [100], and the N-soliton case was considered in [101]. The one-
loop correction for the above-barrier soliton reflection was calculated in [102].

In the paper [9] it was also conjectured that the one-loop mass spectrum of the sin ¢, model is
exact

M,/M, = sin (1); )/sm (1); l) (5.1)

This was demonstrated in [103] to be true. Later it was found out that this form of the mass
spectrum is a consequence of the infinite number of conservation laws (1.1.44) of the model.
In ref. [74] it was demonstrated for the first time that these classical conservation laws lay down
some principal restrictions on the S-matrix, e.g. they prohibit the multiple production. Next it
was shown in [104] that in the exact quantum theory all the physical consequences of the con-
servation laws are the same. It is also clear from [105] that these conservation laws make the
N-particle S-matrix factorizable into the two-body ones. The paper [106] proves that in the sin ¢,
model the form of the mass spectrum is a consequence of the S-matrix factorization.

Consider now the two-soliton S-matrix. The one-loop expression of the S-matrix (4.33) makes
possible the following hypothesis about the form of the S-matrix at = 8x/N where N is some
integer number. It was conjectured in [ 13, 14] that for such y’

" " ’ ’ —_— " — ' e*p+¢—¢+e*p+mhw%—'-_l
<U+,U_|S|U+,U_> - 5((P+ (P+)6((P (P )kl;ll exp {(P+ —0_ }+ CXp{-lTEk/N}

o >0, (52)
for the soliton—antisoliton scattering. We just replace the integral in (4.33) by its integral sum:

( —i N-1 _ s
EJ‘del (exp{(p+ @-}exp{—if} + 1 - ln(exP {0, —@_}exp{ lnk/.N} + l)
n exp {(P+ - - k=1 + — — —_

(5.3)

The above-barrier reflection factor expression (4.4.8) and the explicit form of the S-matrix at
y" = 8xn/N, i.e. at the values of y’ which nullify the reflection lead us to the idea that the solitons
scattering in this model is a relativistic generalization of the plane wave scattering on the potential
uo/cosh?x. The values y = 8n/N are the analogues of the values u, = N(N + 1) which also turn
the reflection into zero. This observation and the conjecture about the meromorphic dependence
of the S-matrix on the rapidity propose the hypothesis of the two-soliton S-matrix exact form at
any value of the coupling constant [107]:
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W, 0[S0, 0> = 8@ — 94)8(0" — ¢ )D(@s — @")

+8(0% — 91)3le" — @RS — ¢7ID(@ — 9L); G4
i (8% \ (8 .86 8n 86\ = ®O)d(in — 0)
D(0=—_—Slnh —,—Br'—,‘rl-i-l—,rl—‘“,——l-—; —l——,—,
= i (o (e + 2 -5 ) 1 e
with notations
_ . sin(8n?fy)
RO = =1 ok @moyy)
o) T(16lnfy + i86/y)T(1 + 16ln/y + i86)y) (5.5)
4

- (21 + 1)8n/y" + i86/y)[(1 + (21 — 1)8rn/y’ + 186/y")

The soliton—soliton scattering matrix can be obtained by the analytical continuation into the
cross-channel. This hypothetical S-matrix is unitary and analytic, its expansion reproduces all
the known results obtained by the perturbations theory. The most compact form for this S-matrix
was given in [108],
D) = exp {i j dx sin [x(i — 0/m)] sinh [x(y'/16m — H]| (5.6)
x —sinh{yx/6n)costr(x/2)

The N-soliton S-matrix factorization enables to construct it of the two-soliton ones, this was
performed in [109]. So the scattering matrix for the processes with periodic solitons appears to
be derivable trivially by tending the Mandelstam variable of two structureless solitons in the
N-soliton matrix to the pole which represents the nth state of periodic soliton, because a periodic
soliton is a bound state of two structureless ones.

This procedure was carried out in [109] and the matrix of the structureless-periodic solitons
scattering was found to be

_sinh @ + icos (ny'/16) "= sin®(n — 20)y'/32 — /4 + i6/2)

"0 = = : . . 5.7
S0 sinh 8 — icos(ny’/16) IUI sin®((n — 21)y'/32 — n/4 — 16/2) (57
The periodic—periodic soliton S-matrix similarly is
Smm(g) = sinh 0 + isin((n + m)y’/16) sinh 6 + isin{((m — n)y'/16)
 simhf—Tsin (n £ m)yA6) sinh § — isin (m — n)y’/16)
(5.8)

y notsin?((n — m — 21)y'/32 +10/2) cos*((n + m — 20)y'/32 + i6/2).
=1 sin¥(n — m — 20y'/32 — i0/2) cos*(n + m — 2lyy'/32 — i6/2)
see also [110]. .
Note the lowest states n = m = 1 periodic solitons S-matrix to be identical to the S-matrix of the
usual particles [96]. So we arrive at the complete S-matrix, form in the sin ¢, model, keeping in
mind that the usual particles states are the excited states of a periodic soliton (paragraph 4.5).
The same statement is true in the Thirring model, because the Thirring model with the Lagrange
function

7 - j Qx{iFdY — wil — Sg@ra)) (59)

was demonstrated [111-113] to be equivalent to the sin ¢, with the coupling constants being
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related by
1 + 2g/n = 8n/y'. (5.10)

Conclusions

We hope to have convinced the reader that the quantum theory of solitons has some attractive
properties.

1. The Lagrange function of the theory contains few fields but produces a rich particle spectrum.
In the weak coupling approximation the solitons interact strongly.

2. The solitons possess a new quantum number of a topological origin which can be regarded
as the charge.

3. In the weak coupling approximation there exists a well developed perturbation theory.
The quantum corrections are small at the small coupling and all the non-analytic contribution
to the observables is derived from the semiclassical approximation.

Appendix 1

We give here a more general derivation of the quantum mechanical S-matrix. Consider the
scattering of several particles in the laboratory system. Let G(t”, {¢"}|¢, {q'}) be their propagator.
It does not change after the simultaneous shifts of coordinates

G, {a" It {q'}) = 6" — t0,{a" — 4o}t — to, {4’ — 4o} (A1)
The wave packet
Yix,t) = \/1—2_“] cf(k) exp {ikx} exp { —i(k*/2m)t} dk (A.1.2)

describes the free motion of the particle number j with the momentum distribution cjk). By
definition the S-matrix element between in and out wave packets is given by

HII f c(ki)S({K"}, {k Deulki) dk” dK = Jim f VEg)G(", {q"}]t, {q’})w.-l(q;,)dq"(gql'.”

t“’ Cx)

We evaluate the integral (A.1.2) by the stationary phase method

A N1/2
f c(k) ei*a g~ 1®%12mx g ;( 2;“’") exp {imq?/2t} c(mg/t). (A.14)

The expression (A.1.3) can then be rewritten as

q'(,)i" t" 1/2 m " 2
dpj.d i B 4 gl
f l_[ p"c ( t” )[(1"1) € p lzt” m + qOI
X G(t” _ to, {pl " I/ — qo} q
m
i)'/ P : dor 4 = 45 9 — dor
x [ — € —i— =t - Ap. 2L pl = '““', b LI L
(m> xp{ 12t( + th l(l +m t ) Di m t" pl =m -7
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At the first step we assume qq;; = qg;» = 0. Taking into account that

m 1/2 ) (q// . qI)Z
G 1 " tl 7 —_— ———e b
¢.a'lt, @) (———m(t,, - t,)) exp {lm TN (A16)

and differentiating (A.1.5) with respect to ¢ we come to the expression of the S-matrix

A G(e", {(p" )"} |1, {('/m)t'})
S , = 1 ,
G0 0D = B T 3mGie" (fm) o, a0) [Te </ 2760, 2], @)

On

(A.1.7)

Next we consider the case of ¢}” # 0, g7’ # 0. We expand the expressions of type o(p] + mqqg;/t")
into the series of the mqg;/t” powers

(P + qu> i, 1( 35)” <“Ap"). (A-18)

n!

The existence of the finite limit of the operator kernel (A.1.7) makes sure that all the terms of
this series except of the zero term shall not contribute to the (A.1.5). This leads us to

’ 6(", {a"}|t'’ {4'})
S = l
(P ) sme T ,\/ZnG(t” ¢ |tor 40)Gltos ol 41) /2%

"

(A.1.9)

” p ” ”
= —t + ; — t + y
q qo:; q qO

§"B

which is a result we have referred to in the main text.

Appendix 2

Consider a number of particles with both translational {g;} and internal {a;} degrees of freedom
(2.1.19). Let their interaction potential depend on g and «. We shall write down the matrix
element of the scattering of N incoming particles with momenta {p;} and quantum numbers {k;}
forming N” outgoing particles with momenta {p}} and quantum numbers {k}}

) L

Apik RSP (ki3> = EIII:I .[dq’,-’dqgjdoc;fdoc;

- o0

(A.2.1)
N AR ARG <R AR AR CARCA) (AN EANT)
{pi} {47} {pi}, {ki}
We represent the propagator on the circle (2.1.20) as a sum of the propagators on an axis (2.1.23)
in a periodic potential and exploit the periodic properties of  with respect to «. Then (A.2.1) can
be written as

dqjdg; | daf dagli({a)}, (b 0GU" {a)) Lo} 10, (i), (W), (o)1), (A22)

{pi} (ki) {pi}, {ki}

o
g —
gt —s

Q.

)
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The operator kernel G is defined by the contribution of only one stationary phase path in the
functional integral, it 4s the propagator of the corresponding Schroedinger equation with all the
variables on an axis. So we have reduced our problem to the scattering problem with all the
variables defined on the real axis. There is an appropriate definition for the S-matrices of this kind
in the Appendix 1. We shall use corresponding quantum-mechanical formula. Consider the
Schroedinger equation for a number of particles in a periodic potential V() interacting with each
other by some short-range potentials dependent only on the difference of the particles’ coordinates.
The corresponding S-matrix will be

i G A ) [0
L2 [13/276(, 2], 0) [T /22 G(e°, 0], @)

«) = LT, o = L/T,

SUHNICI M

(A.2.3)
It can be derived in direct analogy with (A.1.8).

The denominator contains the product of the single-particle propagators. At the moments
t",t' their coordinates a are the same as the interacting particles’ coordinates in the nominator.

Appendix 3

For the diagram technique with the propagator (3.1.1) we are going to demonstrate the possi-
bility of the replacement of the Green function (3.3.8) by the Green function (3.3.26) on the struc-
tureless soliton example. Consider for simplicity a motionless v = 0 soliton’s propagator (3.0.6)

G(t",0|t,0) = Jexp {i f Plulx) + \/)_)(p) dt} [Tde

(A3.1)

o
= exp { —IM(t" — ')} Jexp {— %j d’xpHep — i Za ;1—'}'"/2' ! fv‘"’(us(x))(p" dzx} [1de
J

o é
— 2% R — 0 g, d?
O0A(x,,ty) (xl,tllxz’tZ) 5A(x2,t2)d X1 xz}

X exp { - yi f dzx[v(us + /74) — vu) — \/yAv(u) — % sz"(us):l}

The R is here the same as (3.3.8).

We start by proving the diagrams sum to be kept unchanged by the replacement R — R
+ aul(x,)uyx,). We shall use the translation invariance for this. The propagator (A.3.1) does not
depend on q,

exp { —iM°Y(¢" — ¢')} det™Y?H exp {— %J

(A.3.2)

A=0

G(t", — 4°|t, — ¢°) = fexp {iJ..?(us(x + 4% + ﬁ(p)} = G(t",0|¢, 0). (A.3.3)
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We can expand the u(x + ¢°) in powers of ¢°,
o0
1
w(x + 07 = ) + 3, —qhux) + 4oi(x). (A34)

If this expression contained only the last term we would have reached our aim immediately, but
the sum Y2 ,qpu(x)/n! hampers. Though we can make use of the zero mode orthogonality to
the meson modes. Changing the variable ¢ in (A.3.3) we can transform the second term of (A.3.4)
into

u(x) -

® 1
dyufy) Y. — qoui™(y) (A.3.5)
i ol

and obtain for (A.3.3) the expression
G(t", 0|t’, 0) = j exp {i J Llux) + f(go)uilx) + ﬁ(p) dt} H de (A.3.6)

]2 r@) = j dx)[ux + 4) — (0]

Let us pass on to the new independent variable y, assuming y = f (q°)/\/_ , and rewrite
t t”
G(t",0|¢,0) = jn de exp{ jﬁf(u )dt -5 f(pH(p d*x — - J[v(u + \[(yu + ¢))
t’ t’

— o) = /oo, + @) ') — 3 (v + <p)v"(us)] dzx} = exp { —IMHC" — 1)}

- , 0 1 0 0
x det 12g €Xp {y J d2xus(x)m—t) - 5, Jvm R(Xl, t1|x2, t2) 'mx—z—t—)dledzxz}
H 12 41 s> 2

X exp {— % J dzx[v(us(x) + ﬁA) — v(u) — \/§Av’(us) - % sz”(us)]}

We have got a supplementary factor in (A.3.7) compared to (A.3.2):

exp {y j d?xul(x) 5A(6 )} (A.3.8)

The left-hand side of (A.3.7) does not depend on it. Let us multiply both sides of (A.3.7) by
exp { —iy?*/o} and integrate over y; this will produce an expression for G different from (A.3.2)
just by the term

atig(x 1 Jug(X,). (A.3.9)

Passing from (A.3.3) to (A.3.6) we have used the following observations. At t”,t" we have ¢ =0
(3.0.7). So we can separate the variables in two parts: those proportional to the zero mode and a

A=0
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linear combination of the meson modes wﬂi (A.4.5). The meson modes depend on time as
exp { £ im cosh Bt} fy(x). (A.3.10)

At t - £(t") the frequency of the integration variables proportional to the meson modes become
positive (negative). Being exponentially decreasing at t (remember that m — m — i0), they are
equivalent to zero boundary conditions. This enables us to shift the integration variable passing
from (A.3.3) to (A.3.6). Note that the term f(g,)u.(x) can not be removed by the shift of the integra-
tion variable. The integration variable proportional to the zero mode is

Xo(Dug(x), Xo(t") = xo(t) =0, (A3.11)

and f(q,) does not depend on time.

These considerations are correct in general. For a moving soliton we can replace t —» 7, x = r
and repeat these reasons word by word. In the case of two interacting solitons the operator H
will have two zero modes u,, and ug, and to prove the possibility of adding au, - u, + pu,u,, +
yu . to the inverse operator R we have to exploit the translational invariance in space and time.
The functional integral calculated in the region of u.(x — g, t — t,) does not depend on g, t,. We
expand this solution in powers of t°, q° and shift the meson part of the integration variable in order
to make all the Taylor series proportional to f,(q°, t%)i, + f>(¢°, t®)ul,. This means that the terms

. é , )
exp {)ﬁ fuss(xlatl)mdle + yzjuss(xz,tz)mdzxz} (A.3.12)
s 2s°%2

emerge in a formula analogous to (A.3.7). Having integrated this formula with an appropriate
quadratic form we shall obtain the desired supplement to the Green function.

Now we shall prove that adding plug(x, )u,(x,t,) + uj(x,t;)ui(x,)] (3.3.23) to the Green function
(3.3.8) will not alter the sum of the Feynman graphs. Here ul(x, t) = — tuy(x). We write G(t”, 0]t 0)
in the form

G(t",0]t',0) = exp { —iM' - (¢" — t)} det™ /2 H

. 5
x exp{ - f QP d2x; s (RA) + BLu(16(2) + uf,,(nu;(z)])}

x exp{ ;— f dzx,:v(us(x) + \/;A) - ﬁAv’(us) - 22 v"(us(x))Az]}. (A.3.13)

This expression does not depend on . One can make it clear by expanding it in powers of f and
comparing this expansion to the expansion (A.3.7) in powers of y.

Appendix 4

In this appendix we shall discuss the plane wave scattering on potential within the Klein-
Gordon equation

[0 + vlx, )]slx, 1) = O. | (A4.1)
We shall assume the potential to satisfy the condition
(X, 1) = M (A4.2)
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Note, that the Wronskian of two solutions does not depend on time
J dxi4(x, t) np L, t) = const. (A.4.3)

Let us examine a number of particular types of potentials. At first we consider a time-independent
potential

[O + o) Wglx, £) =0, v(x) = v"(u(x)). (A44)
In this case the variables can be separated and the solutions can be found in the form
Wi (x,t) = exp { + im cosh Bt} fy(x). (A.4.5)

The function f satisfies the equation
d2 .
[— o2 o - mz]fﬂ(x) = m? sinh?Bfy(x). (A.4.6)

All the Schroedinger equation solutions can be easily classified. We denote the discrete spectrum
eigenfunctions by

[— ad;E + v(x) — mz:l(p,,(x) = —E,p,(x); j(pf dx =1, 0< E, <m? (A.4.7)

The last inequality is the stability condition. The continuous spectrum eigenfunctions can always
be represented in the form
exp {imx sinh £}, X = — o0,
fp(x) - . . . .
a(f) exp {imx sinh B} + b(B) exp { —imx sinh B}, X = o0,
(A.4.8)
a(p) exp { —imx sinh B} — b(p) exp {imx sinh g}, X = — o0,
gp(x) — . .
exp { —imx sinh f}, X — + 00,

a(B) = a(=B),  bB) =b(—p), |aB)* - [b(B)|* =1

These solutions fy(x) and gy(x) are called the Jost functions. Another family of solutions is more
appropriate for the description of particles scattering on the potential; these solutions have
another asymptotical form:

x exp {im sinh fx} + r(B)exp { —imsinh fx}, X = — o0,
Jo¥) = s(B) exp {im sinh Bx}, x = + 00,
. s(B) exp { —im sinh Bx}, x— —o0 (A4.9)
Gox) = exp { —im sinh Bx} + r,(B) exp {im sinh Bx}, X = + oo,
__ BB _b=h)
- Oy P

Here s(B) is the transmission coefficient and r(f) is the reflection coefficient.
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The S-matrix of the plane wave scattering on the potential

s(B) r(ﬁ))
—{s(B)/s(=B)}r(—B)  (B)

(i.e. the usual particle on a soliton) is unitary, $*S = SS* = I. Finally, the full list of solutions of
the equation (A.4.4) can be written as

exp { titim* — E,)"?}@,(x); tu(x),  ux),
Y5 ) = exp { —imcosh Bt} fy(x);  Y§" = exp {im cosh Bt }gy(x). (A4.11)

The potential which appears in the calculations of the quantum corrections for the moving
soliton depends not on x but onr = x cosh ¢ — ¢ sinh ¢ and the equation (A.4.1) with this potential
has the same solutions as (A.4.8) but with x and ¢t replaced by r = x cosh ¢ — ¢t sinh ¢ and 7 =
t cosh @ — x sinh ¢ respectively.

Consider now another type of potential, the periodic one:

S(B) = ( (A.4.10)

[O + vx, )]y, = 0; v(x, t) = v"(W(x, 1)); vx,t + T) = v(x, t). (A.4.12)
We choose the Floquet solutions of the equation (A.4.12):
Yux,t + T) =exp { —iv}y,(x,0). (A4.13)

The Floquet indexes may form a discrete and a continuous spectrum. The discrete solutions and
their indexes we denote by y,(x, t) and v, respectively,

0 <v, <mT; j]tp,,(x, 1) dx < oo. (A.4.14)
To describe the continuous spectrum Floquet solutions we write /, in the form:

T EED) exp{—

Substituting this into the equation (A.4.12), we obtain an equation for the vector f(x) = { f(x)}

dz .
(—ai—k€+5>f=0;

T
U(x) = ! Jdt exp {1 —(n - l)} u(x, t) — 8,,;m>; (A.4.16)
0

1/2
() )

We can suppose that mT < v < mT + 2=z.

Let us combine the complete set of the vector solutions into one matrix solution f. The second
index of this matrix is just a sequential number of a vector solution f. The solutions of the equation
(A.4.12) can be expressed through this matrix solution. We define the vector u(t) with the com-
ponents

Tz‘“ t} funl). (A.4.15)
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u(t) = exp {—1 +T2”" t}. (A4.17)

The solution (A.4.15) can be rewritten in these notations as uf. Note that the spectral parameter v
enters the equation (A.4.16) in a non-trivial manner.
The complete set of solutions which describes the scattering for this equation looks as follows

() - {exp {+ikx} + exp { Fikx} - R, . (v), X - — o0,

exp { +ikx}D,.(v), X = + 00,
i (X) - exp {i-ii%x}Dgi(v)a X — — 00, (A418)
o eXp{-i_—ifcx} + exp{'T'ii‘x}Rgi(V), X -+ 0.

It was required in section 4 (4.3.17) that in the scattering of a positive-frequency wave on a periodic
soliton only positive frequency waves can outcome. This means that the matrix elements R,,, D,,
are non-zero only when [ > (mT — v)/2n and n > (mT — v)/2n. We shall call the matrix

. (D R
§—(Pr+ a—) (A.4.19)
(R,+ D,_

the scattering matrix of a plane wave on a periodic potential. The negative-frequency scattering
waves deserve no special attention; they are obtained simply by complex conjugation of the
positive-frequency solutions.

The equation (A.4.16) can be supplied with its Wronskian which is independent of x:

') d%fz(v) = const. (A.4.20)

Here the matrices f; and f, are the solutions of the equation (A.4.16) with the same index v. Sub-
stituting (A.4.18) into (A.4.20) we can see the restrictions on the S-matrix elements

DfikDH + R} AR, = k
atkD,: + R!,JcRg+ =
Rf+k =kR;;; Rk = kRgi,
kD,. = D}.k; D,+kR + + RjkD,z = 0;
!

{ D,.D;. +R,_R;, =1,

(A.4.21)

Dg—Df' + Rf+Rf— = I

To describe the homogeneous equation (A.4.1) solutions for a moving periodic soliton, i.e.
when the potential

v(x, t) = v"(W(r, 1)), r = xcosh ¢ — tsinh ¢; (A.4.22)
T = tcosh ¢ — xsinh ¢;

is pertodic with respect to 7 and tends rapidly to a constant at r — co, we have to replace x — r
and t — t in the solutions written above.
In the sin ¢, model all the solutions for the plane wave-periodic soliton scattering are known
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due to the comment in [9]
1 exp { —im(t cosh B — x sinh )}
cosh?(mx sin 8) + tan?0 - sin?(mt cos )

. o
6% exp {mx sin 0}] — itan2@- sin (mt cos 6) (A4.23)

eﬂ i0 + 1 ﬂ+19
[(W) -exp {imt cos 8} — HIH‘IG 1 )‘ exp { —imt cos B}jl}

This makes clear that the plane wave-periodic soliton S-matrix is dlagonal,

R =0, [Df+(v)]ln = [Bf—(v)]ln = 01,a(B)n;

mTcosh B, =v + 2nn > mT (A4.29)
(sinh B + isin 62

\sinhﬁ — isin 0} )

In the end of this appendix we write down the solutions of the homogeneous equation (A.4.1)
in the sin ¢, case of soliton-antisoliton scattering, whit rapidity ¢, — ¢_ = 20,

Wy(x,t) = 3 exp { —im(t cosh B — x sinh B)}
p o= cosh?(mx cosh @) + sinh?(mt sinh ¢)/tanh2¢

[exp {—mcosh px} + égﬁsmh @ : 9) t 1\"/smh (Bi :(Z;) = )exp {m cosh (px}]

Yy = {cosh (xm sin ) - [exp { —mx sin 6}

a(p) =

cosh (m cosh ¢x)

+ % sinh (mt sinh (p)[(sizg Eg i z; + )exp {mt sinh ¢}
[sinh (8 — @) + i) J} .
exp { —mt sinh A4.25
\smh B — o) — ) p{— ®} ( )
Appendix 5
In this appendix we construct an operator inverse to
H=010+ v(x,1); v(x, t) 12T m2. (A.5.1)

The resolvent R(t,, x,|t;, x,), i.e. the kernel of the operator R, inverse to H will be supposed to be
hermitian, R(1,2) = R*(2, 1). It is uniquely defined by the boundary conditions.

We are interested in two types of such boundary conditions:

1. the zero boundary conditions for finite times .

R(ty, x3|t1, x1)|i=r 0w = 0.

2. the Feynman boundary conditions which we interprete as the decrease at the infinity with
time taking into account the prescription m> - m* — i0; the resolvent R at t, — oo (— 00) ought
to contain only negative (positive) frequencies.
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We shall express the resolvent through the two sets of solutions of the homogeneous equation
Hy§" = 0; Hy§ =0. (A.5.2)

These complete sets of solutions y; and y; are either positive (negative) frequency solutions that
satisfy the boundary conditions of the second type at large positive (negative) time or they are
the functions that turn into zero at t”, t’ for the first type of the boundary conditions.

We shall call each of these sets the matrix solution. The first index of a matrix is the spatial
coordinate x, the second is the wave number of the solution f which may vary continuously or
“discretely” (with the corresponding solution square integrable in x). In terms of two matrix
solutions the resolvent can be expressed as follows

5 () Wt T(ey), t, > ty,
R(t,|t;)) =< % Aol pL AS53
Gl = et gty 2o (433

It satisfies the equation

HR = §(t, — t;) 1, I=6(x, — x,) (A.5.4)
We have used the Wronskian of the solutions * and /-

d -
= T =y~
w [ L ] (A.5.5)

It does not depend on time due to the equations (A.5.2).

The formula (A.5.3) is well known in the mathematical physics, it can be elucidated in such a
way: at t, # t, the function R satisfies the equation (A.5.2), and the boundary conditions are satis-
fied. The calculation of the first derivative jump at ¢, = t,
t2=t;1+0

= 8(x; — Xx,) (A.5.6)

ta=t; -0

alzﬁ(tz |t1)

makes out an unite operator, i.e. R does really satisfy the equation
HR =1 (A.5.7)

with the correct boundary conditions. To find the resolvent explicitly it is sufficient to calculate
the Wronskian. We shall do this for three important cases. First of all we take the structureless
soliton. The corresponding complete set of the homogeneous equation solutions one can find in
the Appendix 4.

Let us construct the resolvent which is zero at t” and t'. The solutions which are asymptotically
zero at t'’ are

Y~ (t) = {exp {imcosh t}f;(x), exp { —it./m? — E,} @,(x), (t — t")uy(x)}, (A.5.8)
and the solutions which are zero at t' are
§*(t) = {exp {im cosh B-1}-gy(x), exp {it/m? — E, } (), (¢ — £)uifx)}. (A.59)

We have accounted for the fact that m?* — m? — i0 and hence we can regard the oscillating solutions
to be exponentially decreasing. The Wronskian of these two sets can be easily calculated, and the
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non-zero elements are:

dx(exp {imt cosh y} §,(x))d(exp { —imt cosh B} f(x) = —4nis(B)5(y — B);

dx(exp {—1\/m — E, t} . (x)0, (exp {i/m? — E, -t} ¢,(x)) = 2i,/m?® — E,; (A.5.10)

dx(t — Y x)3(t — thux) = — (" — t)]||u]]>

Y

Finally the resolvent expression is:

ul(x,)ul(x,) (t,t x?
R(xz,tzlxl,h)—LM{“zA_l__‘(tz+t1)+ A —A+|t2_t1|}

i dp
s(B)

-

Pgexp{iym’ — Bt = til} (o o ix0). (AS5.11)
n \/m —En

Here we denote A = (t” — '), T = (¢ + ¢).

In the case when the potential in (A.5.1) arises from the calculations of corrections for the moving
soliton and depends on r = x cosh ¢ — ¢ sinh ¢, the resolvent ought to be calculated from this
by the replacement x —» r, t — 7.

We turn now to another particular potential type, the periodic potential, which is to be con-
sidered in the calculation of corrections for the periodic soliton. We shall write down the resolvent
for the motionless soliton; the resolvent for the moving soliton can be obtained by a Lorentz
transformation.

Let us calculate the Wronskian of the positive- and negative-frequency sets of solutions. Note
that only a determinant of those solutions may be different from zero which have the opposite
Floquet indexes values. The positive-frequency solutions are; see Appendix 4 (A.4.18)

- exp {—imcosh ,b’|r2 - tll} {7ﬁ(x2)gﬂ(xl) + g,,(xz)f,,(x,)}

N

@G+ X)), @) g-(x)" (A.5.12)
and the negative-frequency solutions are given by
(0 S ) (w(0) S (%), (A.5.13)

The Wronskian of the continuous spectrum solution is equal to
J‘dx(g‘;vl : uw)gt("vzf;:\{z) = —47ZiTié(Vl)Dfi(V1)5(V1 - v2)' (A514)

To derive this result we write first of all:

(@,®) = exp { —i(/EZ + mD)ut}. (A5.15)
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We can replace in the integral (A.5.14)

@0 = =ik + m? + fk3 + m?),. (A.5.16)
We use here the fact that (A.5.14) does not depend on time (A.4.3). To evaluate the integral
—ijdxé;vl(ﬁf +m?+ JkE+m)f,,, (A.5.17)

we subtract the two equalities

& .
éf[ ‘__k§+ﬁ:|f2=0;

T dx?
e ) (A.5.18)
dxgi (Vk? + m? + JkE + mH) f, = T (9" . (A.5.19)
1 1 2 2 vy — vy) U dx /2 .
Tending x — oo, we make use of the equality
. 1 ) .
lim ————exp {ix(v; — v,)} = ind(v;, — v,) (A.5.20)

o (v~ V)
and of the identities (A.4.21). We arrive at the right-hand side of (A.5.14). Recollecting the zero
modes and the discrete spectrum we can write the final expression for the resolvent:

mT+2n
i . .,
R(t;, X, |ty, %) = AnT dva,(t,) f1 c)D 7 WK™ WGT (x uf (t4)
mT
. mT+2=n
i . s
T j dva(t5) f- J(x2)D 7 (k™ (V)G x Juy (24) (A5.21)
mT
+ 3 ¢;(t2,4x2y:(t1, X1) | WX, t)W(xyt,) _:Wl(thZ)W(p(xltl)
T Wada] T ———wim,]
WXy, )WMXy, t) . WXy, t)wrlxy, ty) f> ¢
2[wowq] ’ 2 1
The square brackets mean
[fd4] = fdxfag. (A.5.22)

The function w is the classical periodic soliton, its derivatives w' = dw/dx, w = dw/dt are the
zero modes and the growing zero modes are w, = dw/de, wy = dw/dT.

Consider now the third case of the potential v"”(u,) in the H operator. Here ug is the two soliton
scattering solution.

The continuous spectrum solutions have been examined in Appendix 4. The discrete spectrum
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in an asymptotical state can be localized only in the neighbourhood of each soliton. The Wrons-
kian of two discrete spectrum solutions which are localized near different solitons is equal to zero;
if the solutions are concentrated near the same soliton, the Wronskian is the same as in the single-
particle case.

The non-zero Wronskians of all solutions are (5.05)

deW+ﬁ % '/;—y = —4nid(f — y)a, (B — @1)a(f — ¢2), (A.5.23)

dem,,(x,r)(% Vy-(e 1) = —dni(l + c),pa,(B — 9)ax(B — @2). (A5.24)

We consider here the simplest case when both the soliton potentials are reflectionless b; = b, = 0.
The solutions which are square integrable over x are localized in the region of each soliton and
do not overlap,

‘llln(x? t) t—v—zco exp { _i\/ m2 - Entl} (pln(rl)’

Vanlx, 1), =, exp { ~i/m® — E, 15} @,,(r), (A.5.25)
T,, =tcoshe, , — xsinh ¢, ,, T,, =xcoshe, , — tsinh g, ,.

The final expression of the resolvent with an account of zero modes and the notations ¢,, ¢,
being the solitons, rapidities, is (4.2.3)

i dgdy - _
R tN, 7] [/, N o— n, t” 1 1,7, + Itl
N P e S LG IR
N _12 exp{—i/m?* — E, (=] — 1’1)}(p on ()
2 n \/n'l2 —_ Eln it 17t
, (A.5.26)
+ izexp {=i/m? — E, (t7 — %)} )ou(ry)
24 \/mz _ &, P2n\12)P 2472
+ [coshe u(x",t")+sinh ¢, u;S(x’l’t”)]u;sz(x’, ) uga(x”, t")
Htwsfsmirte —o3) 2{|u||? sinh (@; — @3)

cosh@, u(x",t")+sinh ¢, u,(x",t")
X U (X, 1) + ug (x",t") [cosh (pzuss‘(x’, t') + sinh @, u(x’, )]
2||uy.]]? sinh (@, ~ @2)

x [cosh@ uy(x',t')+sinh g u,(x',t)] —

, >,

lia]J? = f [0 dx,  [[uaa]f? = f [, 00] dx,

u = du/dt, u = du/dx, u,, = du/de,, u,, = du/de,.
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Appendix 6

Let us calculate the spectral density for the structureless soliton case:

o() = J dx[""’ oy u/;,,é}waﬂ] (A6.1)
] ®
We shall find it to be [114]
p(B) = —2d In a(B)/dB. (A.6.2)

We start from

[e ¢}

S99 1] (A.6.3)

p(B) = —2imcosh f de[ a6)

bl )

The functions fy(x) and g4(x) satisfy the Schroedinger equation of Appendix 4, (A.4.6), (A.4.8)

d2
o (A.6.4)
[_a;f + v(x) — '"2] 9p =Ags; A =m’sinh’B.

We differentiate the first equation with respect to 4 and multiply the result by g, from the left-hand
side and subtract from it the second equation multiplied by fﬂ dfs/dA from the right-hand side:

So(x)gp) = (f,; i g,;) (A6.5)

After integration of this equality and subtraction from it of the analogous combination constructed
of the free equation solutions (i.e. with v(x) = m?), we get

[* )

Si0gs)
J dx<.w 1) (ﬁ)(f,,m gﬂ(x))

[eo]

— o0

8

ix g © (A.6.6)
- (m exp {im sinh fix} I &P { —im sinh Bx}) »
Next we substitute the asymptotics of f; and gz (A.4.8) and get
Ja(x)gs(x) i dlnap)
= — i A.6.7
j dx ( alf) -1 mcosh f df ( )

The substitution of this expression into (A.6.3) leads to the result (A.6.2).
The spectral density is needed for evaluation of the traces of the functions of the Schroedinger
operator, ie. of the integrals of type
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>}

J F(B)p(BydB;  F(B) = F(—p). (A.6.8)
This i_r:egral is equal to

f dBFB) [p(B) + p(—B)]. (A.6.8)
Sinceoﬁ and — correspond to the same spectral point 4, the full spectral density is

pB) + p(—B) = —2 45 9 (“(ﬂ;ﬂ —2dd—ﬁ1 det S, (A.6.10)

Here S, is the scattering matrix (A.4.10).
But this expression for the spectral density is to be used with care. For example, calculating
the structureless soliton mass corrections we have to evaluate the expressions of type

- f dBF(B) f dxl Yid by _ wg,,é,.//gﬁ]. (A6.11)

The first term here is the sum over the homogeneous equation solutions Hy = 0 and the second is
the sum over the solutions of the free (i.e. with »(x) = m?) homogeneous equation Hyy = O (the
vacuum oscillations).

To evaluate (A.6.11) we have to sum over the same number of solutions of the free equation and
of the equation with the potential. In order to perform this accurately and in details we shall
use a cut-off in the integration over . Then the expression (A.6.11) will be rewritten so:

tr F, = j dﬂF(ﬂ)[ 2731 ?(ﬂi?)]' (A.6.12)

However it is obvious that if we shall tend now A — oo we shall sum over the different numbers
of solutions of the free equation and the equation with a potential. To find the difference of these
solutions numbers we assume F = 1 and derive this difference to be

a(A)
_2lna(—A)' (A6.13)
This makes clear that the formula (A.6.12) must be improved as follows
A
d — op) _a(A) dF(g)  _alB)
F =-2]|d — . 6.
trF j 'BF(B)d[f a(— ﬂ)+2F(A)l (—A) j p— T ( 5 (A.6.149)

The last term makes a finite contribution only for F(f);55¢® and this is just the case to be con-
sidered at (5.2.10). As a matter of fact, at # — oo the quantity In «(f) tends to

e}

In a(B) —» %ﬂ—, a® = 21Lm f dx(v”(u(x)) — m?). (A.6.15)



84 L.D. Faddeev and V .E. Korepin, Quantum theory of solitons
For the periodic soliton in its center of mass system we calculate (5.1.8), (5.3.4)

1d ¥ t
aEvr ,,[Tr In H<w<x, T T>>]

mT+2n

= J J , Splg; 7t (©OFu() i) /&2 + m? Dty k)

=t

T (A.6.16)

Let us differentiate u(t) in detail. It is clear that
u) O, = —2i(/k* + m?), . (A.6.17)

We use here the fact that (d/dr) [g] (x)u* d,uf;] = 0 (A4.3), (A.5.12), (A.5.13).
The formula analogous to (A.6.16) for the free operator H, is

mT +2n

——%E%I:Trfﬁ' lnHo:l——l—T— J j Sp[exp{—lkx jluté

. A.6.
x exp {ikx-j}) k2 + m*- k™ 1]. (A.6.18)

So, we have to evaluate the integral
de[z);; kTG SR A mEfy — kU R+ mP] = B (A.6.19)
We consider the equality (A.5.19). Previously we have extracted an infinite term from the right-

hand side of this equality, but it also contains a finite term that we need now. We expand the
matrices D, in the right-hand side of (A.5.19) into the series of (v, — v,) powers:

jdxg+(v1) V& +m? + Jk3 +m?) [y, = [(exp{+1k1x}

+ R} .(vy) exp{J_rlklx})—<exp{ilkzx}DH(v1 :va - .(vl —v2)>>
dx 2 2

Vy +v vy —V .z d .a g
—‘Di ( 1 2 +< 1 ; 2>) x exp{+1k1y}>a(exp{ilk2y}+exp{+1k2y}Rfi(v2)):|,

X — 00, y > — 0. (A.6.20)
At last we obtain the following expression of (A.6.19):
R _iT d . . d .
Substituting it into the (A.6.16) we arrive at 142,
1d .. _ 1 ., d
L Tr" . = — — =D
>3 Tr, InH-H, ‘(t”_”/T - j dv Sp[{D,i 3, D7+

T (A.6.22)

d . d s, d 3
D:_;d—D+ d —D,_ — D;_ld—vD;_}\/k2+m2:].
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These formulae should be accompanied by the same deliberations as above on the structureless
soliton case about the summing over the equal number of solutions of the free and the interacting

equations
T 0
_L1d T InH -Hy! dr | dx|v” waT — m? —LZV
2de” " o P 4m T T ¥
[4] —
mT+2n (A623)
1 -1 d F1 d D+ D d D D¢1 d D+ ]"<2 4 2
8 dvSp Dii 5 Pr+ + Dy o Dy d r- = Pe- Y- ¢V m-|,
mT

(D5 ) = (DB, = (DL)y, = (D% )y, = Oy, + d?x(v"(w) — m?). (A.6.24)

[ Ande o}
n—>o;l=n

Here we have taken into account also the discrete spectrum Floque indices (A.4.14). The expression
in the curved brackets may be replaced by S~ ! -dS/dv, where S is the scattering matrix. This is
quite general fact. The spectral density is always equal to S~ dS/dv.
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