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Review Articles

1. Quantum Machine Learning

Jacob Biamonte and others

Nature 549, 195-202 (2017)

2. Tensor Networks in a Nutshell

Jacob Biamonte and Ville Bergholm

in review (2019) arXiv:1708.00006

3. Complex Networks from Classical to Quantum

Jacob Biamonte, Mauro Faccin and Manlio De Dominico

Communications Physics 2, 53 (2019)

4. Pushing Tensor Networks to the Limit

Anastasiia A. Pervishko and Jacob Biamonte

Physics 12, 59 (2019)

5. Charged String Tensor Networks

Jacob Biamonte

Proceedings of the National Academy of Sciences 114, 2447 (2017)
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Why ‘simulators’?

1. Concept: Time-scales of physical processes can be much shorter

than time to simulate those processes with conventional computer

algorithms

2. Past: Wind tunnels simulate fluid dynamics—now nearly replaced

with supercomputers

3. Future: Quantum systems are difficult to simulate with

supercomputers

→ replace computer algorithms with actual physics
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Experiments towards new computers

1. Idea: build a physical system and measure it → ‘simulator’

2. Goal: increased control → programmable simulator → universal

computer...

3. Manufacturing technologies now enable precise control at the small

scale

4. The world is racing to utilize natural physical processes to compute

5. Example: replace simulated annealing with physical annealing!
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Today’s talk

Part I. Breaking Things: when do simulators fail?

1. When do stochastic annealers fail?

2. When do variational quantum approximate optimization algorithms

fail (QAOA)?

Part II. Optimistic Predictions: how far can simulators be pushed?

3. Merging quantum simulation with machine learning?

4. Does variational quantum computation admit a universal model of

quantum computation?
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Part I. When do simulators fail?

1. When do stochastic annealers fail?

Computational Phase Transition Signature in Gibbs Sampling

H. Philathong, V. Akshay, I. Zacharov, J. Biamonte

in review (2019) arXiv:1906.10705

H. Philathong V. Akshay I. Zacharov
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Satisfiability Instances

1. The k-satisfiability (k-SAT) problem is a decision problem

determining satisfiability of Boolean formula.

2. We let a k-SAT instance consist of M clauses over N Boolean

variables.

3. The clause density of a random instance is defined by the simple

faction α = M/N.
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Satisfiability Phase Transition Signature arXiv:1906.10705
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Figure 1: Percent of satisfiabity and run-time versus clause density. For every

clause density α, we generated 1, 000 2-SAT instances (left) and 3-SAT

instances (right). αc = 1 and αc = 4.27 for 2-SAT and 3-SAT respectively;

Simple resolution SAT for α < αc and UNSAT for α > αc ; Hard resolution for

α ∼ αc .
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Ground State Occupancy of Thermal States

1. We encode 2 (3)-SAT instances into Hamiltonians → ground state

minimizes instance.

2. 2-SAT maps directly to two-body Hamiltonians; requires

long-range → all-to-all connectivity

3. Thermal equilibrium ideally described by Gibbs state,

ρβ =
e−βH

Z
, Z = tr{e−βH}, (1)

H is the 2 (3)-SAT Hamiltonian, β is inverse temperature.

4. Occupancy in the (possibly degenerate d) lowest-energy, λmin,

subspace becomes

p (λmin, β) =
1

Z

d∑
i=1

〈i | e−βH |i〉 =
d

Z
e−βλmin . (2)

5. The quantity p (λmin, β) accesses the difficulty of sampling the

solution.
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Ground State Occupancy of Thermal States arXiv:1906.10705
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Figure 2: Occupancy of the thermal ground state corresponding to

Hamiltonians embedding 2-SAT instances (left) and 3-SAT instances (right)

across the algorithmic phase transition. (26 spins; β = 1, 2, 3; vertical bars,

standard deviation).

Empirical. For fixed β, there exists problem instances requiring

significant sampling time to recover the ground-state.
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Ground State Occupancy of Thermal States arXiv:1906.10705

What average inverse temperature is required to ensure that the

occupancy of the ground thermal state, p (λmin, β), is greater than 0.9?
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Figure 3: Minimum β for 2-SAT (left) and 3-SAT (right) such that the ground

state occupancy, p (λmin, β), is greater than 0.9 across the algorithmic phase

transition (26 spins).
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Towards variational quantum circuits as machine learning mod-

els

1. A hybrid quantum-classical algorithm to minimize the energy of a

spin Hamiltonian [Nat. Comm. 5, 4213 (2014)]

2. Frarhi and others arXiv:1411.4028, 2014

3. A quantum algorithm to train neural networks using low-depth

circuits

Guillaume Verdon, Michael Broughton, Jacob Biamonte

in review (2019) arXiv:1712.05304

4. Machine Learning Phase Transitions with a Quantum

Processor

Alexey Uvarov, Andrey Kardashin, Jacob Biamonte

in review (2019) arXiv:1906.10155
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1. Select a parametrized quantum circuit (an ansatz)

|ψ(θ)〉 = Uk(θk) . . .U1(θ1) |0〉

2. Minimize some objective function

3. (Example.) 〈ψ(θ)|H |ψ(θ)〉 over θ by estimating each term

〈ψ(θ)|Hα |ψ(θ)〉 separately
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Definition (Variational Statespace)

The variational statespace of a l-parameterized n-qubit state preparation

process is the complex linear extension of |ψ(θ)〉 over all possible

assignments of real numbers θ.

Span{|ψ(θ)〉 |θ ⊂ R×l} ⊆ C⊗n2 (3)

arXiv:1903.04500
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Definition (Bounded Objective Function)

We call a family of objective functions efficiently computable when

uniformly generated by calculating the expected value of an operator with

bounded linear extension over

Ω ⊂ {1,X ,Y ,Z}⊗n. (4)
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Variational Statespace Examples

Examples include preparing |ψ(θ)〉 by either

1. a quantum circuit with θ ∈ (0, 2π]×l tunable parameters as

|ψ(θ)〉 = ΠlUl |0〉⊗n (5)

where Ul is adjusted by θl

2. by tuning accessible time-dependent and appropriately bounded

parameters (θk(t) corresponding to Hermitian A(k)) as

|ψ〉 = T {e−ı
∑
θk (t)A

(k)

} |0〉⊗n (6)

where T time orders the sequence and superscript k indexes the kth

operator A(k)

An interesting connection between variational algorithms and quantum

control is only now being explored.
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Poly-Computable Objective Function arXiv:1903.04500

Definition (Poly-Computable Objective Function)

An objective function

f : |φ〉×O(poly(n)) → R+ (7)

is called poly-computable provided poly(n) independent physical copies of

|φ〉 can be efficiently prepared to evaluate poly(n) expected values taken

from a subset of the Pauli algebra on n qubits.

We say an objective function accepts |φ〉 iff

f (|φ〉×O(poly(n))) = f (|φ〉 , |φ〉 , . . . , |φ〉) < ∆ (8)

evaluates strictly less than a chosen parameter ∆.
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Objective Function Examples

Efficiently computable objective function examples include:

1. Hamiltonian’s in the Pauli basis known to be non-vanishing for at

most some poly(n) terms.

2. Calculating the expected value

〈φ|H |φ〉 =
∑
J ab...c
αβ...γ 〈φ|σa

ασ
b
β · · ·σc

γ |φ〉 (9)

In variational quantum computing, (9) is evaluated term-wise (i.e. each

〈φ|σa
ασ

b
β · · ·σc

γ |φ〉 is evaluated on the quantum processor, scaled and

then the entire sum is evaluated classically). The goal is to vary over |φ〉
and minimize (9).
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Boolean Satisfiability

1. SAT-instances are embedded into Hamiltonians,

HSAT =
∑
l

P(l), (10)

where l indexes each clause in the instance.

2. Unsatisfiable assignments are penalized with at-least 1 unit of energy

3. QAOA with Hx =
∑

i σ
(i)
x and V = HSAT calculates the energy

approximation,

EQAOA
g = min

α,β
〈ψ(α,β)|HSAT |ψ(α,β)〉 . (11)
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Self-driving eigensolver

1. We can consider expected values of the RIG

{H, ·,+,R}O(ln n) (12)

2. The divergence E2 = 〈H2〉 − 〈H〉2 vanishes if and only if the

prepared state is an eigenstate of the Hamiltonian.

3. Here 〈H〉2 is calculated by first calculating 〈H〉 and 〈H2〉 is

calculated by expanding
(∑
J ab...c
αβ...γ σ

a
ασ

b
β · · ·σc

γ

)2
and evaluating

not more than ∼ poly(n)2 expected values.
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2. When do variational quantum approximate optimization algorithms

fail?

Reachability Deficits in Quantum Approximate Optimization

V. Akshay, H. Philathong, M.E.S. Morales, J. Biamonte

in review (2019) arXiv:1906.11259

V. Akshay H. Philathong M.E.S. Morales
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Quantum Approximate Optimization

1. Create ansatz states selecting 2p-tunable parameters,

|ψ(α,β)〉 =

p∏
i=1

U(αi , βi ) |+〉⊗n , (13)

with

U(αk , βk) = exp{−iβkHx}. exp{−iαkV}. (14)

.

2. Measurement returns a bit sting → evaluated by classical objective

function (to be minimized)

3. Classical optimization assigns 2p-parameters; process is repeated

For QAOA, the objective function to be minimized is the optimization

problem. (encoded in the Hamiltonian V)

FV : {0, 1}n → R+ (15)
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QAOA Reachability Deficits arXiv:1906.11259
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Energy versus clause density for 3-SAT (Left) and 2-SAT (Right). Dots,

averaged energies obtained from QAOA; stars, exact values averaged on

50 randomly generated SAT instances for n = 6. Observed convergence

to exact values for increasing depth.
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Definition (Reachability Deficits)

Let |ψ〉, be the ansatz states generated from a p–depth QAOA circuit as

shown in (13). Then

∆ = min
ψ(H

〈ψ| V |ψ〉 − min
φ∈H
〈φ| V |φ〉 , (16)

characterises the performance of QAOA.

∆ = f (p, α,N) and for p ∈ N and fixed problem size, ∃ density, α > αc

such that ∆ 6= 0.
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Reachability Deficits in Quantum Approximate Optimization

Conclusion. The performance of QAOA exhibits strong dependence on

the density of the problem instance.

Implication. Provides the first known heuristic and the first general

limiting feature of the algorithm.

Reachability Deficits in Quantum Approximate Optimization

V. Akshay, H. Philathong, M.E.S. Morales, J. Biamonte

in review (2019) arXiv:1906.11259
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3. NISQ application: quantum enhanced machine learning plus

quantum simulation

Machine Learning Phase Transitions with a Quantum Processor

A. Uvarov, A. Kardashin, J. Biamonte

in review (2019) arXiv:1906.10155

A. Uvarov A. Kardashin
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Quantum Machine Learning Phase Transitions

1. Entanglement Scaling in Quantum Supremacy Benchmarks

Mauro E. S. Morales, Dax Enshan Koh, Jacob D. Biamonte

in review (2019) arXiv:1808.00460
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Tensor network states

A quantum circuit can be treated with tensor network theory:

Max possible sustainable ebits generated between two regions connected

by a quantum circuit is limited by the number of gates needed to cut to

isolate a contiguous region, and the minimum qubits among two regions:

min{n1, n2,w}.

n1 n2w
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Quantum classifier

A parametrized circuit can work as a classifier. Prepare the input state,

then feed it in the classifier circuit, then measure all qubits (in any basis):

|0〉
Uprep(θ) Uclass(ξ)

M1

... Uprep(θ) ... Uclass(ξ) ... ...

|0〉 Mn

Treat the average output as an assigned label and minimize

log loss to fit the labels of the data. Quantum data feed to

quantum classifier.
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VQE approximation quality

Energy error of VQE solutions for the transverse field Ising model. Hollow

squares: rank-1 ansatz, hollow circles: tree tensor network, filled circles:

checkerboard states (darkest: 1 layer, brightest: 4 layers).

More layers of checkerboard → better approximation. Saturates

entanglement scaling upperbound.
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Classification results

Figure 4: Output classification labels. Left: transverse field Ising model.

Right: XXZ model

99% accuracy for transverse field Ising model (4 layers of checkerboard)

94% accuracy for Heisenberg XXZ model (6 layers of checkerboard)
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Part II. How far can simulators be pushed?

4. Universality of variaitonal quantum computation?

Universal Variational Quantum Computation

Jacob Biamonte

in review (2019) arXiv:1903.04500
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Proof Strategy arXiv:1903.04500

1. Stability theorem (relates expected energy with state-overlap)

2. Telescopes (the backbone construction)

2.a Clifford invariance of penalty functions

2.b Existence of an accepting sequence (telescopes)

3. Modified Feynman-Kitaev construction

3.a Set input with a telescope

3.b Prove gap

3.c Prove log qubit clock

3.d Prove boosting lemma → show existence of an accepting sequence

Hence or otherwise, prove that variational quantum computation is

universal.
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Simulating Circuits (part I) arXiv:1903.04500

Lemma (Telescoping Lemma)

Let ΠlUl |0〉⊗n be an l-gate quantum circuit preparing state |ψ〉 on

n-qubits and containing not more than O(poly(ln n)) non-Clifford gates.

Then there exists a non-degenerate Hamiltonian H ≥ 0 on n-qubits with

poly(l , n) terms, gap ∆ and ground eigenvector |ψ〉 ∝ ΠlUl |0〉⊗n. In

particular, if

0 ≤ 〈φ|H |φ〉 < ∆ (17)

then stability follows as

1− 〈φ|H |φ〉
∆

≤ |〈φ|ψ〉|2 ≤ 1− 〈φ|H |φ〉
Tr{H}

. (18)
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Clocking Gates in Variational Quantum Computation

Theorem

Given a quantum circuit of L gates on n-qubits producing state

ΠlUl |0〉⊗n, there exists an objective function (Hamiltonian, H) with

O(L2) terms, non-degenerate ground state and spectral gap ∆ ≥ O(L−2)

acting on n + O(ln2(L)) qubits such that arg min{H} with some O(L−1)

trials produces ΠlUl |0〉⊗n.
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A new model of quantum computation arXiv:1903.04500

1. Variational quantum computation admits a universal model

2. Scalars in the Hamiltonian implemented in classical evaluation of

objective function

3. Unlike adiabatic quantum computation, k-body Hamiltonian terms

are implemented as a simplistic measurement: support of penalty

functions in the Pauli basis invariant under Clifford operations

4. Iterative process. Consider some q < L gates. Preform q gates,

causing the penalty to accept. Variational reduce sequence length to

implement q gates. Increase q + 1
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Papers we didn’t have time to discuss

1. Experimental neural network enhanced quantum tomography

Adriano Macarone Palmieri, Egor Kovlakov, Federico Bianchi,

Dmitry Yudin, Stanislav Straupe, Jacob Biamonte, Sergei Kulik

in review (2019) arXiv:1904.05902

2. Learning Tensor Network States on a Quantum Computer

Jacob Biamonte

in review (2019) arXiv:1804.02398

3. Deep Learning Super-Diffusion in Multiplex Networks

Vito M. Leli, Saeed Osat, Timur Tlyachev, Jacob D. Biamonte

in review (2019) arXiv:1811.04104
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Further Discussion
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Thank you for your attention!
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