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• To explain quantum computing, I will offer some 
parallels between philosophical concepts, 
specifically from Catholicism on the one hand, 
and fundamental issues in math and physics on 
the other. 
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Why in the world would I do that? 

•  I gave the first draft of this talk at the Physics 
Department of Notre Dame. 

 

 

 

 

• There was a strange disconnect. 
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The audience was completely secular. 

• They couldn’t figure out why some guy named 
Freedman was talking to them about 
Catholicism.  

 

 

 

• The comedic potential was palpable. 
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I Want To Try Again 

With a rethought talk and broader audience 
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• Mathematics and Physics have been in their 
modern rebirth for 600 years, and in a sense 
both sprang from the Church (e.g. Roger Bacon) 

 

• So let’s compare these two long term 
enterprises: 

    - Methods 

    - Scope of Ideas 
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Common Points: Catholicism and Math/Physics 

• Care about difficult ideas 

• Agonize over systems and foundations 

• Think on long time scales 

• Safeguard, revisit, recycle fruitful ideas and 
methods 
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Dali Lully Tolkien Descartes Dante Aquinas 

Some of my favorites 

 

• Lully may have been the first person to try to build a computer. 
 

• He sought an automated way to distinguish truth from falsehood,  
      doctrine from heresy 
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• Philosophy and religion deal with large questions. 
 

• In Math/Physics we also have great overarching 
questions which might be considered the social 
equals of: Omniscience, Free Will, Original Sin, and 
Redemption. 

 



 
• P/NP ↔ Omniscience 

• Quantum Mechanics ↔ Redemption 

• Universality ↔ Original Sin 

• Unicity ↔ Free Will 
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(1) P/NP (Omniscience) 

• The limits of knowledge 

• The limits of computation 

• The scaling of effort required to: 

▫ solve problems (factor numbers) 

▫ discover proofs 

Kurt Gödel 
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Quantum Mechanics (Redemption) 

• Does it provide a complete framework for all 
physics? Does it redeem our understanding and 
give us a theanthropic perspective of the world? 

• What about gravity? 
• What about the classical world? 

▫ the measurement problem 
▫ where do unrealized probabilities go? 

Schrodinger 
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Universality (Original Sin) 

• Physical systems (when viewed from a distance) 
can be grouped into a small number of classes 
with identical scaling laws. 

• “Curse of Universality.”  By looking at the 
emergent structure, one may never know what 
microscopics caused it. 

Ken Wilson 
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Unicity (Free Will) 

• Did our universe have to be roughly as it is? 

▫ 3+1 large dimensions 

▫ stable matter 

▫ weakly chaotic dynamics 

• Did our universe have to be exactly as it is?  Is it 
preordained? 

Descartes 
“The best of all possible worlds.” – 
Gottfried Leibniz 
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 The topic today is: 

QC 

Math Physics 

Computer 
Science 
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And also: 

QC 

Math Physics 

Computer 
Science 

Everything Else 
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• Along the way we’ll encounter our dancers: 

 

 

 

 

 

 

 

 

 

       

Gödel 

P/NP Quantum Mechanics Universality 

Ken Wilson   Scott Aaronson 

   Unicity 

17 



• What we can hope to compute is limited by the 
scaling of effort inherent in each type of 
problem. 

• Obviously it is a lot more work to factor a large 
number than a small one. 

• But exactly how fast does the work load grow? 
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P 
NP 

Q 

PSPACE 

factoring 

The class Q depends on a different way, a quantum mechanical 
way, of storing numbers. 
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Quantum computation 
is a new paradigm in 
which computational 
work obeys different 
scaling laws than those 
that are known to hold 
in present day 
“classical” computers. 
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Modern Church-Turing (MCT) Thesis: 

• There are only two physically realistic models of 
computation: 

▫ One based on Classical Physics 

▫ One based on Quantum Physics 

Alonzo Church Alan Turing 
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Corollary of MCT 

• All we will ever know (or at least compute) will 
lie in Q. 
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Unicity (Free Will): Could the universe 

have been different? 
• Is there a world where NP-complete 

 problems can be solved efficiently? 

• Many (Aaronson) think not – that just like 
perpetual motion, such worlds cannot be 
consistent. 

Free 
Will! Indeed. 
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So perhaps there is only one possible 

theory governing our universe: 
 

Quantum Mechanics 
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Q:   What new power is conveyed by 
computing quantum mechanically? 

 

A:   Superposition 
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• Superposition means that a general state ψ may be 
written as a linear combination of eigen-states ψi, 
which typically are classical configurations 

 

 

 

• The coefficients αi, called amplitudes, are “square 
roots” of probabilities: 

∑ |αi|
2 = 1 

ψ = ∑ αi
 ψi
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• Square roots of probabilities are not intuitive.  

• Nothing in our large scale clumsy world, nothing 
in our evolutionary experience, prepares our 
mind for superposition.   

• Superposition was born amid mystery and 
seeming paradox in the period 1900-1927. 

Born Bohr Heisenberg Schrodinger Plank 

Radiation, Diffraction, Scattering, Atomic Spectra 
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• The double slit experiment shows amplitudes at 
work. 
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Source 

Blind Screen 

Observed pattern “Classical expectation” 

|α + β|2  =  |α|2 + |β|2 

+ All closed - 1 open + 2 open 

0 

-|α|2 

-|β|2 

+|α + β|2 
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How do amplitudes, opposed to probabilities, 

enhance computational power? 

In a cleverly designed algorithm 

factoring 

useless computational paths can often be arranged to cancel out – like 
the dark spots (“nodes”) in the double slit experiment – and not 
consume computational resources. 

This is possible because amplitudes, unlike probabilities, can be 
negative (or even imaginary). 

With quantum effects, “factoring” goes from exponential to polynomial 
time. 

Peter Shor 
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What did Shor do? 

• Classical part: Order finding:  factoring 

▫ Suppose f(x) = ax mod N has period r (even). 

▫ Then (usually): 

(ar/2 + 1)(ar/2 - 1) = ar – 1 = kN 

 will “separate” factors of N. 
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• Quantum Part:  Study f(x) = ax mod N 

▫ In Fourier space: f(k) = Mk,x f(x),  Mk,x = e2𝜋kxi/M,     

M is approximately N2 

▫ Observing  f  returns  information on the periodicity of  f  

▫ The nodes or “dark spots” are the places where f(k) is 
small. 

^ 

^  

^ 
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What might a quantum computer do in the 

real world? 

• (1) Wreak havoc: Break all classical codes 

Panic on Wall Street 

33 



• (2) Allow physicists to explore exotic states of 
matter 

▫ Strongly correlated electron systems 

 High Tc superconductors 

 2-dimensional electron gasses (2-DEGS) 

 Exotic magnets 

 

• ? Compute string theories ? 

     (good research problem!) 
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• (3) Sample from the solution space of 
exponentially large linear systems. 

 Many engineering applications: 

 Electrical engineering and communication 

 Optimization 

 Fluid flow?  
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• (4) Allow chemists / pharmacologists to design 
drugs? 
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• (5) Artificial intelligence? 

 

 

 

 

 

 

▫ In 1950, Alan Turing predicted : 

 Computing power would grow fast (it grew faster) 

 By 2000 we would have a hard time saying that 
machines were not thinking. (did not happen) 

 Quantum computing may give AI a second chance 
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Topology 

 

• There is a topological 
approach to quantum 
computation that avoids 
local degrees of freedom: 
nuclear spin, electron spin, 
photon polarization, etc. 

• We need a two dimensional 

electron gas (2DEG)– with a 

special property 

• Majorana fermions localized 
in “vortices” 
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There are two prime candidates for Majoranas: 
 
 
• Fractional Quantum Hall Effect (FQHE) at ν = 5/2 

 

• px + ipy  superconductors 
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• We can execute 
operations (“gates”) on 
system state by braiding 
Majoranas. 

 

• Or “quasi particle 
interferometry.” 
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Fractional Quantum Hall Effect 

• 2DEG 

• large B field (~ 10T) 

• low temp (< 1K) 

• gapped (incompressible) 

• quantized filling fractions 

2
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A topological state of matter: the quantum Hall state 

h

e
nxy
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• Topological origin of the 
quantized Hall conductance:  
• Bulk gap (Landau level gap) 
• The first Chern number  

(Laughlin PRB 1981, Thouless, Kohmoto, 

Nightingale, den Nijs (TKNN), PRL 1982) 

QH 

• Chiral edge states on the 
boundary 

E 

x 
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5/2  Hall  Fluid 
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• FQHE physics is topological, meaning that distance plays no role (or 
at least an inferior role). 

 

• Topology is “rubber sheet geometry” and FQHE is “rubber sheet 
physics.” 

 

• Controlled by the Chern-Simons lagranian which does not mention 
distance! 

 

 

 

 

 

• It is topologically invariant 
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Topological-invariance is clearly not a symmetry of the 
underlying Hamiltonian.  
 

  
How can Chern-Simons theory possibly describe 
the low energy physics of the above Hamiltonian? 
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The answer goes back to: 

 

1970:  Wilson, Renormalization: How does the Langrangian evolve when  

 re-expressed using longer length scales, lower frequencies, colder 

temperatures? 

 

The terms with the fewest derivatives dominate: This is because in 

momentum space, differentiation becomes multiplication by k and: 

 

    

 

 
k>>k2 
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• Chern-Simons Action: A d A +     (A  A  A) has one  

derivative, 
  
• while kinetic energy p2/2m is written with two derivatives. 

(pi = 1/2 m d/dxi ) 
  
• Thus, in condensed matter at low enough temperatures, we 

may expect to see systems in which topological effects 
dominate and geometric detail becomes irrelevant. 

 
• FQHE is such a system. 
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A new proposal:  
 
Majoranas in a px + ipy superconductor within a “conventional” semi-conductor device 
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• In the topological approach, interferometers will 
play a key role: 
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FQH interferometer 

Willett et al. `08 
for =5/2 
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A lot of theory [Bonderson, et al] has been 
devoted to using interferometers to: 
 
 

• Measure topological charge 
 
• Manipulate quantum information 

 
• Simulate quasi particle braiding 
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FQH fluid (blue) 
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ie 

'ie 

= 

• Interferometry creates 
probabilistic combinations 
of quasi-particle world lines. 
 
•Let me take you through 
some cartoons: 
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• Braiding, and hence calculation, can be simulated by 
measurement. 
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Measurement Simulated Braiding! 
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• Bob Willett of Bell Labs has presented evidence of 
Majoranas in ν=5/2 FQHE systems 
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Robert Willett 



24 hrs/run 

Bob Willett 
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Conclusions: 

• In building a topological quantum computer, 
universality is our friend. 

▫ It allows us to model and study exotic states of 
matter such as the fractional quantum Hall effect. 
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▫ However, even if quantum computers are enormously 
successful and can compute LHC energy scale physics 
from string theory,  
 
 
 
 

  
 
 
  
 
  
the same universality may cloak the true microscopics:   
Many competing theories may all work. 
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• Building a quantum computer will test quantum 
mechanics (QM) in new regimes. 

▫ We may find QM breaks down with complexity and 
cannot “redeem” the entire physical world. 

▫ If QM is fundamentally correct, it is now only a matter 
of technology to build a quantum computer.  The 
mathematical theory is completely convincing. 

▫ Is the technology ready? 

Charles Babbage 
1792-1871 

John von Neumann 
1903-1957 

Gordon E. Moore 
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• Moving from P to Q 
 

▫ The universe speaks to itself in the language of QM. 

▫ We are on the verge of fluency in this internal 
language of QM. 

▫ The quantum computer will give wings to our 
thoughts.  

Athena 
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• But a doubt arises! 

▫ Why did biology not exploit this language first? 

 

▫ After all, we think biology and also neurobiology 
only processes information classically. 

= 
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• Probably the universe is everywhere too warm 
for quantum mechanical thought. 

▫ The microwave background is approximately 
3.8K. 
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• But now on Earth within 
dilution refrigerators it is 
colder than anywhere else 
(we know of) in space. 

 

• The deep cold of  a 
dilution refrigerator will 
be the home of our 
quantum computers. From 
this extreme stillness we 
will lift the ultimate tool 
out of our tool box. 
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72 



• May we use it well! 
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