**1**- L. Onsager,Crystal statistics I. A two dimensional model with an order-disorder transition, Phys. Rev. 65, 177 (1944)
**2**- C.N. Yang, The spontaneous magnetization of the two-dimensional Ising model, Phys. Rev, 85, 808 (1952)
**3**- B.M, McCoy and T.T. Wu, Theory of Toeplitz determinants and the spin correlation functions of the two-dimensional Ising model IV, Phys. Rev. 162, 436 (1967)
**4**- S.Ghoshal and A.B. Zamolodchikov, Boundary S matrix and boundary state in two-dimensional integrable quantum field theory, Int. J. Mod. Phys. A9,3841 (1994).
**5**- B.M. McCoy and T.T. Wu, Theory of Toeplitz determinants and the spin correlation functions of the two-dimensional Ising model V, Phys. Rev. 174, 546 (1968).
**6**- M.E. Fisher, Walks, Walls, Wetting and Melting, J. Stat. Phys. 34, 763 (1984)
**7**- B.M. McCoy and T.T. Wu, Theory of a two-dimensional Ising model with random impurities, Phys. Rev. 176, 631, (1968)
**8**- H. Furstenberg, Trans. Am. Math. Soc. 108, 377 (1963).
**9**- B.M. McCoy, Theory of a two-dimensional Ising model with random impurities III. Boundary effects, Phys. Rev. 188, 1014 (1969)
**10**- B.M. McCoy, Incompleteness of the critical exponent description for ferromagnetic systems containing random impurities, Phys. Rev. Lett. 23, 383 (1969)
**11**- R.B. Griffiths, Nonanalytic behavior above the critical point in a random Ising ferromagnet, Phys. Rev. Letts, 23, 17 (1969).
**12**- R. Shankar and G. Murthy, Nearest-neighbor frustrated
random bond model in
*d*=2: Some exact results, Phys. Rev. B36, 536 (1987). **13**- D. Fisher, Critical behavior of random transverse field Ising spin chains, Phys. Rev. B51, 6411 (1995)
**14**- T.T. Wu, B.M. McCoy, C.A. Tracy and E. Barouch, The spin-spin correlation function of the 2-dimensional Ising model: exact results in the scaling region, Phys. Rev. B13, 316 (1976).
**15**- P. Painlevé, Acta Math. 25 1 (1902).
**16**- B.M. McCoy, J.H.H. Perk and T.T. Wu, Ising field theory: quadratic difference equations for the n-point Green's functions on the lattice, Phys. Rev. Letts. 46, 757 (1981)
**17**- M. Sato, T. Miwa and M. Jimbo, Holonomic quantum fields, Publ. RIMS Kyoto Univ. 14, 223 (1978); 15, 201 (1979); 15, 577 (1979); 15, 577 (1979); 15, 871 (1979); and 16, 531 (1980).
**18**- M. Jimbo, T. Miwa, Y. Mori and M. Sato, Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent, Physica D1, 80 (1980).
**19**- C.A. Tracy and H. Widom, Level-spacing distributions and the Airy kernel, Comm. Math. Phys. 159, 151 (1994); Fredholm determinants, differential equations and matrix models, Commun. Math. Phys. 163, 33 (1994).
**20**- K. Iwasaki, H. Kimura, S. Shimomura and M. Yoshida, From Gauss to Painlev' e: a modern theory of special functions, (Vieweg 1991, Braunschweig).
**21**- B.M. McCoy and T.T. Wu, Two-dimensional Ising field theory in a magnetic field: breakup of the cut in the two point function, Phys. Rev. D18, 1259 (1978).
**22**- A.B. Zamolodchikov, Integrable field theory from conformal field theory, Advanced Studies in Pure Mathematics, 19 ,641 (1989)
**23**- G.H. Wannier, The statistical problems in cooperative phenomena, Rev. Mod. Phys. 17, 50 (1945)
**24**- C.N. Yang, S matrix for the one-dimensional N-body problem with repulsive or attractive function interaction, Phys. Rev. 168, 1970 (1968).
**25**- R.J. Baxter, Eight vertex model in lattice statistics, Phys. Rev. Lett. 26, 832 (1971).
**26**- A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry of critical fluctuations in two dimensions, J. Stat. Phys. 34, 763 (1984)
**27**- H. Au-Yang, B.M. McCoy, J.H.H. Perk, S. Tang and Y.M. Lin, Commuting transfer matrices in the chiral Potts models: Solution to the star triangle equations with genus >1, Phys. Letts. A123, 219 (1987).
**28**- S.Howes, L.P. Kadanoff, and M. den Nijs, Quantum model for commensurate-incommensurate transitions, Nucl. Phys. B215[FS7] 169 (1983).
**29**- R. Baxter, H. Au-Yang and J.H.H. Perk, New solutions of the star-triangle relations for the chiral Potts model, Phys. Lett. A, 128, 138 (1988)
**30**- R.J. Baxter, Chiral Potts model; Eigenvalues of the transfer matrix, Phys. Letts. A146, 110 (1990)
**31**- B.M. McCoy and S.S. Roan, Excitation spectrum and phase structure of the chiral Potts model, Phys. Letts. A150, 347 (1990)
**32**- G. Albertini, B.M. McCoy and J.H.H. Perk, Excitation
spectrum and order parameter for the integrable
*N*-state chiral Potts model, Nucl. Phys. B314, 714 (1989) **33**- L. Onsager, discussion, Nuovo Cimento 6, Suppl., 261 (1949).
**34**- R.J. Baxter,Corner transfer matrices of the chiral Potts model, J. Stat. Phys. 63, 433 (1991).
**35**- R.J. Baxter, Functional relations for the order parameter of the chiral Potts model, J. Stat. Phys. 91, 499 (1998)
**36**- F.D.M. Haldane, ``Fractional statistics'' in arbitrary dimensions: a generalization of the Pauli principle, Phys. Rev. Letts. 67 (1991) 937.
**37**- B.L. Feigen and D.B. Fuchs, Verma modules over the Virasoro algbras, Funct. Anal. Appl. 17, 241 (1983).
**38**- R. Kedem, T.R. Klassen, B.M.McCoy and E. Melzer, Fermionic quasi-particle representations for characters of , Phys. Letts. B304, 263 (1993); Fermionic representations for conformal field theory characters, Phys. Letts. B307, 68 (1993).
**39**- A. Berkovich, B.M. McCoy and A. Schilling,
Rogers-Schur-Ramanujan type identities for the
*M*(*p*,*p*') minimal models of conformal field theory, Comm..Math. Phys. 191, 325 (1998). **40**- A. Berkovich, B.M. McCoy and P.A. Pearce, The
perturbations and of minimal models
*M*(*p*,*p*') and the trinomial analogue of Bailey's lemma, Nucl. Phys. B519[FS],597 (1998). **41**- B. Nickel, J. Phys. A (in press)
**42**- A. Guttmann and I.G. Enting, Solvability of some statistical mechanical systems, Phys. Rev. Letts. 76, 344 (1996).
**43**- B.M. McCoy and W. P. Orrick, Analyticity and integrability in the chiral Potts model, J. Stat. Phys. 83, 839 (1996)
**44**- R.J. Baxter, Exactly solved models, in
*Fundamental problems in statistical mechanics V, Proceedings of the 1980 Enschede summer school*Ed. E.G.D Cohen, (North Holland 1980),109.