## QGP, Hydrodynamics and the AdS/CFT correspondence

Adrián Soto

Stony Brook University

October 25th 2010

Adrián Soto (Stony Brook University) QGP, Hydrodynamics and AdS/CFT

#### Motivation

- 2 Brief review of QCD
- 3 Hydrodynamics
- 4 The AdS/CFT correspondence
- 5 SUSY  $\mathcal{N} = 4$  model
- Summary

#### References

< A D > < D >

#### Motivation

- 2 Brief review of QCD
  - 3 Hydrodynamics
  - The AdS/CFT correspondence
  - 5 SUSY  $\mathcal{N} = 4$  model
  - Summary

#### References

< 4 → <

#### Motivation

- 2 Brief review of QCD
- O Hydrodynamics
  - 4 The AdS/CFT correspondence
  - 5 SUSY  $\mathcal{N} = 4$  model
  - Summary
- References

< 4 → <

#### Motivation

- 2 Brief review of QCD
- O Hydrodynamics
- The AdS/CFT correspondence
  - **5** SUSY  $\mathcal{N} = 4$  model
  - Summary



< 4 → <

#### Motivation

- 2 Brief review of QCD
- O Hydrodynamics
- The AdS/CFT correspondence
- **5** SUSY  $\mathcal{N} = 4$  model
  - 6 Summary



< 🗗 🕨 🔸

#### Motivation

- 2 Brief review of QCD
- O Hydrodynamics
- The AdS/CFT correspondence
- **5** SUSY  $\mathcal{N} = 4$  model





< 🗗 🕨 🔸

#### Motivation

- 2 Brief review of QCD
- O Hydrodynamics
- The AdS/CFT correspondence
- **5** SUSY  $\mathcal{N} = 4$  model
- 6 Summary



< 🗗 🕨

- QGP temperature in Au-Au collisions at RHIC reach temperatures of about 4  $10^{12}K$ , 2.5  $10^5$  times hotter than the Sun's core
- This is a many-particle system, so its dynamics are extremely complex
- It is strongly believed that the universe was composed of QGP (among other particles) at its very early stages
- QGP occurs in the non-perturbative region of QCD because the coupling is very strong
- Theoretical tools such as Lattice QCD or String Theory are required to perform predictions

- QCD is the theory that describes strong interactions. It is a gauge theory and its symmetry group is *SU*(3)
- Its charges are called colors
- The gauge bosons are called *gluons* and there are 8 different kinds
- It has 2 peculiar physical properties:
  - Asymptotic freedom: quarks interactions become very weak at short distances (or high energies)
  - Onfinement: The force between quarks does not decrease with the distance; there are no free quarks

- What do fluids have to do with nuclei collisions?
- If the mean free path is large compared to the size of the interaction region, then the produced particles do not respond to the inital geometry
- If the mean free path is small compared to the transverse size of the nucleus, hydrodynamics is an appropriate framework to evaluate the response of the medium to the geometry
- Calculations using ideal hydrodynamics reproduce the flow reasonably well

### Experimental results

• Elliptic flow: 
$$v_2 := \frac{\langle p_x^2 - p_y^2 \rangle}{\langle p_x^2 + p_y^2 \rangle}$$
  
Eccentricity:  $\epsilon := \frac{\langle x^2 - y^2 \rangle}{\langle x^2 + y^2 \rangle}$ 

- Experiments show that the elliptic flow seems to be bound
- The ideal gas models overpredict the elliptic flow; no bound
- Therefore, this fluid must be viscous



Figure: (see [1], p. 9)

Adrián Soto (Stony Brook University) QGP, Hydrodynamics and AdS/CFT

- The shear viscosity describes the reaction of a fluid to shear stress.
- Suppose we have a plane symmetric fluid moving in the x direction but whose velocity may depend on the y direction. Then the velocity field is v = v<sub>x</sub> (y) x.
- Then we define the shear viscosity η to be the proportionality coefficient that relates the pressure due to friction forces with the gradient along the y direction:

$$P\equiv \eta \partial_y v_x.$$

• There is a natural generalization of this coefficient to more complex geometrical distributions.

### Properties and interesting quantities

- Hydrodynamic interpretation requires mean free paths and relaxation times to be small compared to the nuclear sizes and expansion rates
- In a fluid, it seems difficult to transport energy faster than a quantum time set by the temperature :  $\tau_{quant} \sim \frac{\hbar}{k_{\rm P}T}$
- If we use  $\tau_R$  to denote the particle relaxation time, one can use thermodynamics, hydrodynamics and assume that diffusion occurs due to the viscosity in order estimate that

$$rac{\eta}{s}\sim rac{\hbar}{k_B}rac{ au_R}{ au_{quant}}$$

• Therefore  $\eta/s$  can be understood as the ratio between the medium relaxation time and the quantum time scale

# Theoretical predictions

• The shear viscosity to entropy ratio has been calculated using several different approaches. All of them present great uncertainty near the phase transition region,  $T_c \simeq 175 MeV$ .



Figure: Calculations for  $\eta/s$  (see [1], p. 16)

• It is very useful to have a strongly coupled theory where  $\eta/s$  can be computed exactly.

# The AdS/CFT correspondence

• Anti de Sitter spacetime has constant negative curvature. It satisfies the Einstein's equations with negative cosmological constant. In 5 dimensions the infinitesimal distance looks like

$$ds^2 = rac{r^2}{R^2} \left( dt^2 - dec{x}^2 
ight) - rac{R^2}{r^2} dr^2.$$

For any slice with r = const we are left with a 4D Minkowski space.

- Conformal Field Theories are QFTs that satisfy conformal symmetry. Essentially, conformal transformations are coordinate transformations that preserve the angle between vectors.
- It is strongly believed that String Theories constructed in a manifold which is cartesian product of an AdS space and a closed space (such as an sphere) are equivalent to CFTs at the boundary of that AdS space.

- Eventually, we will be interested in describing particles in a 4 dimensional spacetime. Therefore our AdS space must be 5 dimensional.
- We will assume supersymmetry (SUSY) is a good symmetry of nature, despite our understanding of strong interactions is based in QCD, which is not a supersymmetric theory.

# SUSY $\mathcal{N} = 4$ model (2)

#### AdS side

• Target space is AdS  $_5 \times S^5$ :

$$ds^{2} = \frac{R^{2}}{z^{2}} \left( dt^{2} - d\vec{x}^{2} - dz^{2} \right) - R^{2} d\Omega_{5}^{2}$$

where  $z = R^2/r$ .

- Type IIB ST with a finite # of massless fields and an infinite # of massive fields.
- 3 parameters: R,  $I_s$  and  $g_s$ .
- When fields' wavelenghts  $\gg I_s$ , massive modes decouple and one is left with type IIB SUGRA in N = 10.

#### CFT side

- Gauge theory with 1 gauge field, four Weyl fermions and six scalars.
- $\mathcal{N} = 4$  supersymmetries.
- 2 parameters: N<sub>c</sub> and g.

• Connection: the ST and the CFT parameters map to each other

9 
$$g^2 = 4\pi g_s$$
  
9  $g^2 N_c = R^4 / l_s^4$  (=:  $\lambda$ , called t'Hooft coupling)

Those relations imply

 $I ST weakly interacting \implies small gauge coupling$ 

- **2** Large coupling in CFT  $\implies$   $R \gg I_s \implies$  ST  $\approx$  SUGRA
- Furthermore, if  $g_s \ll 1$  and  $R \gg l_s \Longrightarrow$  ST  $\rightarrow$  classical SUGRA

# SUSY $\mathcal{N} = 4 \mod (4)$



#### WE CAN PERFORM CALCULATIONS IN CLASSICAL SUPERGRAVITY TO LEARN ABOUT THE QUANTUM FIELD THEORY!!!

Adrián Soto (Stony Brook University)

# SUSY $\mathcal{N} = 4 \text{ model } (5)$

- Hydrodynamical calculations using this model predict that, up to first order,  $\frac{\eta}{s} = \frac{\hbar}{4\pi k_B}$
- The second order in perturbation theory is positive and proportional to  $\lambda^{-3/2}$ . For small t'Hooft coupling the ratio diverges
- Therefore we can argue that

$$\boxed{\frac{\eta}{s} \geq \frac{\hbar}{4\pi k_B}}$$

in all systems that can be obtained from a QFT by turning on temperatures and chemical potentials

• The plasma cannot be a perfect fluid

- Difficulties arise when trying to perform quantum field theoretical calculations
- Hydrodynamics are the correct framework to describe QGP
- The practical utility of the AdS/CFT correspondence comes from its ability to deal with strong coupling limit in gauge theory
- AdS/CFT sets a bound for the viscosity to entropy ratio, which implies that the plasma cannot be a perfect fluid
- So far, no fluid has been observed to break that bound

- D. Teaney, *Viscous Hydrodynamics and the Quark Gluon Plasma*, arXiv:0905.2433v1
- D. Son & A. Starinets, *Viscosity, Black Holes and Quantum Field Theory*, Annu. Rev. Nucl. Part. Sci. 2007. 57:95–118s
- T. Schäfer & D. Teaney, From Cold Atomic Gases to Hot Quark Gluon Plasmas, 2009 Rep. Prog. Phys. 72 126001
- Zwiebach, *A first course in String Theory* (2nd Ed.), Cambridge University Press
- Misner, Thorne & Wheeler, *Gravitation* , W.H. Freeman and Company
- Srednicki, *Quantum Field Theory*, Cambridge University Press

# SUSY $\mathcal{N} = 4$ model (4bis)

• In AdS/CFT an operator O of a CFT coupled to a source J is put into correspondence with a "bulk field"  $\phi$  in ST. In the SUGRA approximation this mathematical statement

$$Z_{4D}[J] = e^{iS[\phi_{cl}]},$$

where Z is the *partition function* of the field theory and  $S[\phi_{cl}]$  is the classical action of a field  $\phi_{cl}$  that satisfies

$$\lim_{z\to 0}\frac{\phi_{cl}(x,z)}{z^{\Delta}}=J(x).$$

 $\Delta$  depends on the nature of the operator O (spin and dimension)

 In the simplest case, Δ = 0, we can compute the two-point function of O:

$$G(x - y) = -i \langle 0 | T[O(x) O(y)] | 0 \rangle = -\left(\frac{\delta^2 S[\phi_{cl}]}{\delta J(x) \delta J(y)}\right)_{\phi(z=0)=J}$$