Perfect Fluid Created at RHIC

Kazue Matsuyama PHY 599 Oct 4 2010

Outline

The motivation

create and study the new state of matter,

QGP under high temperature

The expectation

QGP...weakly interacting gas

The discovery

QGP...strongly interacting fluid

Conclusion

Relativistic Collisions of Heavy Nuclei

Au-Au, p-p, d-Au collisions $T > 10^{12} \text{ K}$

last seen \sim 1 microsecond after the Big Bang.

High temperature nuclear (QCD) matter

- Hot: critical temperature
 ~ 170MeV ~ 10^12 K
- Dense
- Asymptotic Freedom

Prediction

Fig. 1. Lattice QCD results [11] for the energy density/ T^4 as a function of the temperature scaled by the critical temperature T_C . Note the arrows on the right side indicating the values for the Stefan–Boltzmann limit.

Quark Gluon Plasma

Plasma ionized gas charge neutral electromagnetic interactions QGP $m_{u,d} = 0; m_s = \infty$ Tricritical Point Hadronic Hadronic Hadronic 2SC

Fig. 2. Theoretical phase diagram of nuclear matter for two massless quarks as a function of temperature T and baryon chemical potential μ [12].

Nuclear Matter

Experiment at RHICQGP is liquid

 T > 10¹² K
 Thermalization time 10⁻²⁴ sec

Fluid: the laws of fluid dynamics

Shear viscosity: η

 $\frac{F}{A} = \eta \, \nabla_{\!\! y} v_x.$

Rate of momentum transport

To measure it, use viscometer Example: water conserved quantities mass energy momentum.

No viscometer....

measure...

The distribution of charged particles produced in the collisions as a function of azimuthal angle ϕ

Pt transverse momentum

y rapidity

Hydrodynamic calculation

QGP is fluid Flow Viscosity

Elliptic flow: Fourier analysis

Elliptic flow pattern... V2

$$\frac{dN}{d\phi} = \frac{v_0}{2\pi} + \frac{v_2}{\pi} \cos(2\phi) + \frac{v_4}{\pi} \cos(4\phi) + \cdots$$

Harmonics, each vi is a function of

the impact parameter rapidity transverse momentum particle type

Experimental result

Jet quenching (hard probes)

Jet quenching (hard probes)

Viscosity

Viscosity was extracted from experimental data

relativistic fluiddynamics

$$\frac{\eta}{s} \ge \frac{\hbar}{4\pi k_{\rm B}},$$

S(entropy) very small value! -----> Perfect Fluid

Conclusion

QGP

Strongly interacting fluid

Questions

Minimum value of viscosity Screening length Mechanism of rapid equilibriun achievement

Reference

- Ludlam and McLerran, "What have we learnd from the relativistic heavy ion collider ?", Physics today; October 2003
- Jacek and Steinberg, "Creating the perfect liquid in heavy-ion collisions", physics today; May 2010
- Shuryak E, "What RHIC experiment and theory tell us about the properties of quark-gluon plasma?", Nuclear Physics A 750 (2005) 64–83
- T Schafer and Teaney, "Nealy perfect fluidity: from cold atomic gases to hot quark gluon plasmas"; Rep. Prog. Phys. 72(2009)
- Jacek, "The Hottest Science Experiment on the Planet: Exploring the Strong Interaction at RHIC", URL:http://insti.physics.sunysb.edu/itp/conf/simonswork8/
- Experiment:
 - RHIC, "<u>Nuclear Physics A Volume 757, Issues 1-2, 8 August 2005,</u> <u>Pages 184-283" URL</u>:

http://www.phenix.bnl.gov/WWW/info/comment/