
Mostly supersymmetry

These are supplemental notes for PHY 621, Advanced Quantum Field Theory,

Spring 2010. The plan is to cover supersymmetry from the beginning to advanced

topics such as extended superspace (and maybe more if time allows), emphasizing

quantum aspects. The approach requires us to start with a general treatment of

coset spaces and conformal symmetry.

Citations of (sub)sections refer to Fields , hep-th/9912205 (see also my errata

page), unless indicated to Superspace, hep-th/0108200.

Cosets & projective spaces

In this section we introduce useful methods to derive nonlinear representations of

symmetry transformations on various spaces. We begin with the well-known bosonic

example of the conformal group (and its subgroups) on Minkowski space, both off

and on shell. Then we give a general construction that will be applied later to

supersymmetry on superspace.
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Nonlinear σ-models & cosets (nonlinear realizations of groups): See IVA2-3.

Projective lightcone (more, from embedding in flat space)

• Conformal; RP(1) & CP(1): See IA6 (incl. exercise IA6.5), last page of XIB7.

• (Anti-)de Sitter & Poincaré: See IXC2.

Spinors

• Covering groups: See IB1,4-5, IC5.

• Spinor notation: See IA4, IIA5.

• Lightcone: See IIB1,3.

• Twistors & HP(1): See IIB6-7.

http://arXiv.org/abs/hep-th/9912205
http://insti.physics.sunysb.edu/~siegel/errata.html
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Symmetry generators

A Lie group is a space, so we generally want to introduce some coordinates. Since

it’s a curved space, the choice of coordinates generally varies according to application.

A simple choice is the exponential one,

g = eiα
IGI

but it’s usually not the most convenient one. For coset spaces, we often use

g = eiα
iTieiα

ιHι

since under the gauge group g′ = gh, so h will transform only the αι, not the αi. For

various other purposes (see below), we may want to further factorize g. Group multi-

plication of such exponentials can be performed using the Baker-Campbell-Hausdorff

theorem.

Generally, it’s convenient to eliminate exponentials as much as possible, since it

may be difficult to evaluate them explicitly in closed form. For example, we might

use

g = eiα
+G+eiα

0G0eiα
−G−

where the generators have been divided up into “raising operators” G+, “lowering

operators” G−, and those of the “Cartan subalgebra” (a maximal Abelian subalgebra)

G0. (We here take +, 0,− as multivalued indices.) Since G0 is Abelian, its exponential

is easily evaluated as phase factors. The expansions of the rest will terminate, leaving

polynomials.

Exercise

Evaluate this group element in these coordinates using the definining repre-

sentation of SU(2) for the generators. What are the reality properties of the

coordinates?

Another possibility for classical groups is to work in the defining representation,

and then solve the constraints on the group matrices in terms of some rational expres-

sion. We have already seen (incomplete) examples of this above for cosets represented

as projective spaces.

Once a coordinate representation has been chosen, we also want such a repre-

sentation for the action of the symmetry group on this space, i.e., a translation into



Group coordinates 3

coordinate language of g′ = g0g. For many purposes it will be sufficient to evaluate

the infinitesimal transformation (using, e.g., the BCH theorem)

δg ≡ iεIGIg = (eiε
IGI − I)g(α) = iεIĜIg

where ĜI is a differential operator. Since it generates an infinitesimal coordinate

transformation, we can write

iĜI = LI
M(α)∂M , δαM = εILI

M

where ∂M ≡ ∂/∂αM . We thus have

GIGJg = GIĜJg = ĜJGIg = ĜJĜIg

[GI , GJ ] = −ifIJKGK ⇒ [ĜI , ĜJ ] = +ifIJ
KĜK

so technically it’s −ĜI that’s a coordinate representation of GI . (Cf. subsection IC1,

where we saw coordinate representations of the generators on spaces other than the

group space.)

Equivalently, we can solve the “dual” equation, in terms of differential forms

instead of derivatives,

(dg)g−1 ≡ [g(α + dα)− g(α)]g−1(α) = i dαMLM
IGI

where LM
I is the matrix inverse of LI

M . (As usual, when expressing transformations

in terms of coordinates it’s often convenient to eliminate all i’s in the above equations

by absorbing them into the G’s and working with antihermitian operators.)

Covariant derivatives

If symmetry (known by mathematicians as “isometry”) generators are defined

by the left action of group generators on a group element, then generators of the

gauge (known by mathematicians as “isotropy”) group are defined by right action.

The latter are known as “covariant derivatives” because they commute with the sym-

metry generators. (Commutativity of left and right multiplication is equivalent to

associativity of multiplication.) From the same arguments as above, we have

gGI = DIg, iDI = RI
M(α)∂M

g−1dg = i dαMRM
IGI

[ĜI , DJ ] = 0
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We now have

gGIGJ = DIgGJ = DIDJg ⇒ [DI , DJ ] = −ifIJKDK

There is a very simple relation between the symmetry generators and covariant

derivatives. Consider the coordinate transformation that switches each group element

with its inverse; then

g′ = g0gh ⇒ (g−1)′ = h−1g−1g−1
0

g ↔ g−1 ⇒ g0 ↔ h−1 ⇒ GI ↔ −DI

(For the sake of this argument we need not distinguish between global and local

groups, and h can be taken as in the full group.) This relation can also be seen from

the explicit expressions for L and R as (dg)g−1 ↔ −g−1dg. Thus, in the exponential

coordinate system, we have simply L(α) = R(−α) (with the extra “−” canceling the

sign change of ∂/∂α).

We can “integrate” the (symmetry) invariant differentials dαMRM
I to get finite

differences. But the result can be guessed directly:

g(α12) ≡ g−1(α2)g(α1) = g−1(α21)

Thus the group element g(α12), and hence α12 itself, is symmetry invariant. α12

reduces to the above differential in the infinitesimal case. In coordinates where

g−1(α) = g(−α) (for example, parametrization with a single exponential), we have

also α21 = −α12. The action of the covariant derivatives on the symmetry invariants

is given by (using d(g−1) = −g−1(dg)g−1)

DI(α1)g(α12) = g(α12)GI , DI(α2)g(α12) = −GIg(α12)

The invariant differentials can also be used to define a group-invariant (“Haar”)

measure: The wedge product of all the differentials dαMRM
i (i ranges over the coset)

is not only invariant under the symmetry group, but also under the gauge group,

since the determinant of the gauge group element is 1 for the coset representation

(even for GL(1), if we use the exponential parametrization).

Exercise

Evaluate all the above (L,R, α12) for the coset U(1)/I.
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Wave functions and spin

To define a Hilbert space for wave functions, we begin with a vacuum state defined

to be invariant under the gauge group:

Hι|0〉 = 〈0|Hι = 0

(For some purposes, we can think of the gauge generators as “lowering operators”. In

general, we don’t need a Hilbert space for this construction, but only a vector space;

the bras then form the dual space to the kets, as described in subsection IB1.) A

coordinate basis for the coset can then be defined as

|α〉 = g(α)|0〉, 〈α| = 〈0|g−1(α)

(where g(0) = I) and thus invariant under a gauge transformation

g′|0〉 ≡ gh|0〉 = g|0〉

The wave function is then defined with respect to this basis as

ψ(α) ≡ 〈α|ψ〉 = 〈0|g−1(α)|ψ〉

from which it follows that its covariant derivative with respect to the gauge group

vanishes:

−Dιψ(α) = 〈0|Hιg
−1(α)|ψ〉 = 0

On the other (right) hand, the symmetry generators act in the expected way:

−ĜIψ(α) = 〈0|g−1(α)GI |ψ〉 = (GIψ)(α)

So far we have analyzed only coordinate representations. But usually in quantum

mechanics we want to consider more general representations by adding “spin” to

such “orbital” generators. This is accomplished by first introducing spin degrees of

freedom, and then tying them to the group by modifying the gauge-group constraints.

So we first introduce a basis |A〉 (and its dual 〈A|) for a matrix representation H̃ι for

the gauge group,

〈A|Hι = H̃ιA
B〈B|, Hι|A〉 = |B〉H̃ιB

A

then define a basis for the Hilbert space by using this gauge group basis as our new

(degenerate) vacuum,

|A, α〉 ≡ g(α)|A〉
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to get the generalizations of the previous

ψA(α) ≡ 〈A, α|ψ〉 ⇒ −DιψA(α) = H̃ιA
BψB(α), −ĜIψA(α) = (GIψ)A(α)

The wavefunction now depends on the gauge-group coordinates, but this dependence

is fixed independent of the state: For example, in the 2-exponential coordinate system

ψA(α) = 〈A|e−iα
ιHιe−iα

iTi |ψ〉 = (e−iα
ιH̃ι)A

M〈M |e−iα
iTi |ψ〉 ≡ eA

M(αι)ψM(αi)

where eA
M is a “vielbein” depending on only the gauge coordinates, and can be

gauged to the identity, while ψM depends on only the coset coordinates. Since we

know D in terms of derivatives, Dι = −H̃ι can be solved to replace partial derivatives

with respect to gauge-group coordinates with matrices, in both DI and ĜI . We’ll see

applications of this to the conformal group (and thus also the Poincaré group) later.

The commutation relations of the surviving covariant derivatives

[Di, Dj} = fij
kDk + fij

κDκ

then identify fij
k as the “torsion”, while fij

κ is the “curvature”.
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Supersymmetry
We begin this section with a discussion of a few general properties of supersym-

metry and superspace. We then focus on a particular treatment of superspace in

D=4, based on the superconformal group, that has proven most useful in extending

the success of superspace for N=1 supersymmetry to the case of N=2 (and shows

some promise for N=4), at both the classical and quantum level.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Super-symmetry, -space, -groups, and -twistors: See IIC.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Superspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Full

Cosets are easier with classical groups. The Poincaré group is a contraction of a

classical group, so the conformal group is easier; it’s also more useful, since noncon-

formal theories can be treated as broken conformal ones. In D=4 the superconformal

group is (P)SU(N|2,2); to postpone considerations of reality properties, we’ll Wick

rotate to (P)SL(N|4) (corresponding to 2 space and 2 time dimensions). Furthermore

we can treat not only “P” but also “S” as gauge invaiances rather than constraints;

then an element of the group (or algebra) GL(N|4) is just an arbitrary real matrix

(with appropriate grading). Thus, no consideration of exponentiation or constraints

on the coordinates is necessary. The symmetry generators and covariant derivatives

are then very simple:

GM
N = gM

A∂A
N , DA

B = (∂A
M)gM

B

(now dropping the ̂ on G) where ∂A
M = ∂/∂gM

A, and we ordered the derivatives

to the left in D to keep grading signs trivial. (The derivatives are meant to act only

to the right of the g. It’s a kind of “normal ordering”.)

The choice of gauge group is simply the choice of which constraints can be ex-

pressed linearly in covariant derivatives, instead of quadratically. In principle all

constraints can be expressed quadratically, but this tends to be awkward in general.

We saw this for the ordinary conformal group, with equations of motion quadratic

in symmetry generators, which we implicitly translated into the same for covariant

derivatives, i.e., momentum, spin, and conformal weight. They simplified because

the covariant derivative for conformal boosts has already been set to vanish. Also,
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the Lorentz and scale coordinates had implicitly been replaced with spin and scale

weight; i.e., they took fixed “values”.

We now look at this construction in more detail, and generalize to supersymmetry.

Because of the use of GL(N|4) for D=4, this construction is simpler than using (the

defining representation of) SO(D,2) for arbitrary D (for N=0), or the superconformal

groups OSp(N|4) for D=3 or OSp*(8|2N) for D=6, since the latter require a quadratic

constraint on the matrices. The fact that the relevant cosets are projective spaces is

a significant further simplification.

For a preliminary analysis, we divide up the graded matrices into their bosonic

and fermionic parts:

gM
A =

( ā a

m gm
ā gm

a

m gm
ā gm

a

)
where barred indices are bosonic internal GL(N) indices and underlined are fermionic

spacetime GL(4) spinor indices, and then further divide the latter into 2 Lorentz

GL(2) Weyl spinor indices, but reordered as determined by dimensional analysis (as

is apparent when the individual coordinates/generators are identified):

gM
A =


α ā

.
α

µ gµ
α gµ

ā gµ
.
α

m gm
α gm

ā gm
.
α

.
µ g.

µ
α g.

µ
ā g.

µ

.
α



=

 Lorentz + scale supersymmetry translation

S-supersymmetry internal supersymmetry

conformal boost S-supersymmetry Lorentz − scale


Thus the scale weights (engineering dimensions) increase from lower-left to upper-

right. The usual full superspace is then obtained by gauging away the diagonal blocks,

as well as the lower-left triangle (“lowering operators”), leaving only the coordinates

for translations and supersymmetry:

gM
A →

 I θµ
ā xµ

.
α

0 I θ̄m
.
α

0 0 I


More choices can be obtained by also subdividing the N-valued internal indices,
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perhaps not equally, into n and N−n:

gM
A =


α a a′

.
α

µ gµ
α gµ

a gµ
a′ gµ

.
α

m gm
α gm

a gm
a′ gm

.
α

m′ gm′
α gm′

a gm′
a′ gm′

.
α

.
µ g.

µ
α g.

µ
a g.

µ
a′ g.

µ

.
α


Again gauging away diagonal blocks and the lower-left triangle, we are left with an

additional n(N−n) internal coordinates:

gM
A →


I θµ

a θµ
a′ xµ

.
α

0 I ym
a′ θ̄m

.
α

0 0 I θ̄m′
.
α

0 0 0 I


For N=1 (“simple” superspace) this is identical to the previous case, but for N>1 it

allows for generalizations that have proven necessary for most practical applications.

However, so far only N=2 superspace (“hyperspace”) has been developed to a point

approaching the usefulness of N=1.

Projective as cosets

Projective spaces are obtained by gauging away parts of GL groups in the same

manner as above (diagonal blocks + lower triangle), but dividing up the indices into

only 2 parts. So we reassemble the previous 4 parts, but differently than the 2 original

blocks (bosonic + fermionic) as indicated by our reordering. We then do a second

reordering, as the standard bosonic + fermionic within each block:

gM
A =

( A A′

M gM
A gM

A′

M ′ gM ′
A gM ′

A′

)
→
(
I wM

A′

0 I

)
=


a α a′

.
α

m I 0 ym
a′ θ̄m

.
α

µ 0 I θµ
a′ xµ

.
α

m′ 0 0 I 0
.
µ 0 0 0 I


This case has the same bosonic coordinates but half the anticommuting coordinates

of the previous. This is the smallest number of fermions we can get, since the gauge

algebra must close, and we can’t kill both a supersymmetry and its complex conjugate

without killing translations. This is useful for constructing actions, since
∫
dθ = ∂/∂θ

has positive mass dimension, so more θ’s would require a Lagrangian lower in dimen-

sion. For N=1, this is either chiral superspace (n=0, no θ̄’s), in the chiral represen-

tation, or antichiral (n=1, no θ’s), in the antichiral representation. For general N,
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n=0 is again chiral, and n=N antichiral, both with no y’s. We also have a simple

expression for the inverse matrix, in this gauge:

gA
M =

( M M ′

A gA
M gA

M ′

A′ gA′
M gA′

M ′

)
→
(
I −wAM

′

0 I

)
where this matrix w is the same as the previous. (Symmetry and gauge indices lose

their distinction after gauge fixing.)

As we’ll discuss in detail later, only the case n=N/2 (and thus even N) allows real

superfields, since only it makes w a square matrix, with equal range for the A index

and its “charge conjugate” A′. This is especially clear if we note that it’s the only

case where there are equal numbers of θ’s and θ̄’s. (Of course, the full superspaces

also allow real superfields.) Since this makes them the most useful, we’ll often use

the term “projective” to refer to them specifically.

We now derive the form of the symmetry generators and covariant derivatives

before gauge fixing, in a convenient coordinate representation, using matrix methods.

We write in matrix notation

g =

(
I w

0 I

)(
u 0

0 ū−1

)(
I 0

−v I

)
=

(
u− wū−1v wū−1

−ū−1v ū−1

)
which defines the coordinates wM

M ′ , uM
A, ūA′

M ′ , and vA
A′ . Note that in this repre-

sentation we have (using sdet(XY ) = sdet(X)sdet(Y ))

sdet g =
sdet u

sdet ū

Exercise

What is g−1 in terms of w, u, ū, v?

It’s actually easier to derive the generators from the form of finite transformations,

rather than using G = g∂g and D = (∂g)g and then using the above redefinitions of

the elements of g in terms of w, u, ū, v. Using

g0 =

(
a b

c d

)
, g−1

0 =

(
d̃ −b̃
−c̃ ã

)
in g′ = g0g and g′−1 = g−1g−1

0 (whichever is simpler), we find the finite superconformal

transformations

u′ = (wc̃+ d̃)−1u, ū′ = ū(cw + d)−1,

w′ = (aw + b)(cw + d)−1 = (wc̃+ d̃)−1(wã+ b̃),
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v′ = v − ū(cw + d)−1cu = v − ūc̃(wc̃+ d̃)−1u

Exercise

Find the infinitesimal transformations from the finite ones, in terms of both

the above parametrizations of g0 and g−1
0 , and relate the two forms of the

infinitesimal parameters.

Continuing to use matrix notation, we can write the infinitesimal transformations

as

δ = str[(δw)∂w + (δu)∂u + (δū)∂ū + (δv)∂v]

using w, u, ū, v as indices labeling the blocks of the derivatives. This allows cycling

all parameters inside the supertrace to the far left, again using the “normal-ordering”

convention that derivatives are understood to act only to the right of everything in

the generators. (We can do the same for D by right multiplication.) We thus have

G = g∂g =

(
w∂w + u∂u −w∂ww − u∂uw − w∂ūū− u∂vū

∂w −∂ww − ∂ūū

)
≡
(
Gu −Gv

Gw −Gū

)

D = ∂gg =

(
∂uu+ ∂vv −∂v

ū∂wu+ v∂uu+ ū∂ūv + v∂vv −ū∂ū − v∂v

)
≡
(
Du −Dv

Dw −Dū

)
(introducing some convenient signs by convention).

Projective by projection

The interesting properties of these cases follow from the fact that the coset coor-

dinates fit into a rectangle. Furthermore, although the full, “left” index is required

for manifest symmetry, the gauge group necessarily breaks the “right” index into 2

pieces. We can therefore begin with a rectangle that keeps the full left index, but

only the part of the right index that contains the coset:

gM
A → z̄M

A′ =

( A′

M zM
A′

M ′ zM ′
A′

)
And we can do the analogous for the inverse group element:

gA
M → zA

M =
( M M ′

A zA
M zA

M ′
)

Then all that’s left of the relation between the group element and its inverse is the

orthogonality relation

zA
Mz̄M

A′ = 0
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Furthermore, all that’s left of the original gauge invariance is the block diagonal

pieces, one of which acts only on z (GL(n|2) for the superconformal group), and the

other only on z̄ (GL(N−n|2)). Note that neither z nor z̄ contains the coordinates for

conformal boosts.

As for other projective spaces (cf. RP(1) and CP(1), considered previously), the

surviving coordinates w can be defined in a gauge-invariant way, which is a simpler

way to see their symmetry transformations. An easy way to do this is by solving the

orthogonality condition, as

z̄M
A′ = (wM

N ′ , δN
′

M ′)ūN ′
A′ , zA

M = uA
N(δMN ,−wNM

′
)

which reproduces some of the coordinates of the coset formulation. Specifically, we

can identify these if we write in matrix notation

z̄ =

(
w

I

)
ū−1, z = u−1 ( I −w )

Only u and ū transform under their respective gauge transformations. This defines

w as the “ratio” of the 2 blocks of either z or z̄:

wM
M ′ = z̄M

A′(z̄M ′
A′)−1 = −(zA

M)−1zA
M ′

where the inverses are matrix inverses of those blocks.

The symmetry transformation of w then follows as a “fractional linear” (“projec-

tive”) transformation: As for the coset case,

z̄′ = g0z̄, z′ = zg−1
0 ⇒ w′ = (aw + b)(cw + d)−1 = (wc̃+ d̃)−1(wã+ b̃)

A special case is ordinary conformal symmetry (N=0), where all the above are 2×2

matrices: This takes a simpler form than in the usual vector notation, just as for

the case of SO(3,1) on 2D Euclidean space. Here the simplification arises from using

“quaternions” instead of 4D vectors, while in the 2D case it was complex numbers in

place of 2-vectors.

Exercise

Rewrite these finite conformal transformations in vector notation for N=0.

Compare with the results of subsection IA6.

From the same derivation we also have the transformations of the u’s: Again as

from the coset treatment,

ū′ = ū(cw + d)−1, u′ = (wc̃+ d̃)−1u
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Note that in the gauge (or subject to the constraint) sdet g = 1, we have sdet u =

sdet ū; thus

sdet(g0) = 1 ⇒ sdet(cw + d) = sdet(wc̃+ d̃)

We can also construct symmety invariants in a similar way to (and implied by)

the coset construction, as differentials or finite differences:

zA
Mdz̄M

A′ = uA
M(dwM

M ′)ūM ′
A′ , z2A

Mz̄1M
A′ = u2A

M(w1 − w2)M
M ′ū1M ′

A′

The u’s are pure gauge; symmetry- and gauge-invariant quantities depend only on dif-

ferentials or differences of w, according to the translation (“b”) part of the symmetry.

These translations include the usual spacetime ones, some of the internal symmetry,

and half the supersymmetries (as in the special case of chiral superspace).

The form of the symmetry generators in terms of w and u can again easily be

derived from the finite forms of the transformations (taking the infinitesimal limit).

We thus find the basis

Gw = ∂w, Gu = w∂w+u∂u, Gū = ∂ww+∂ūū, Gv = w∂ww+u∂uw+w∂ūū

which are the coset-space generators less the ∂v term in Gv. One can also check that

these operators are permuted by the “inversion” (a particular case of the above finite

transformations)

g0 =

(
0 −I
I 0

)
: w → −w−1, u→ w−1u, ū→ ūw−1

Although the covariant derivatives Du and Dū for the gauge group are obvious

from the way they act on the group indices,

Du = ∂uu, Dū = ū∂ū

the remaining derivatives Dw can’t be found that commute with the symmetry gen-

erators Gv. However, we can define

Dw = ū∂wu

that commute with all but Gv. This is the usual procedure for ordinary conformal

symmetry, where coordinates are not introduced for conformal boosts, so (“covari-

ant”) translational derivatives don’t commute with them.

Exercise

Derive G from z̄∂̄ − ∂z, subject to the constraint zz̄ = 0, in terms of w and

the u’s. Derive Du from −z∂ and Dū from −∂̄z̄.
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Spin

As mentioned above, we can get more general representations of coset spaces by

introducing spin through the covariant derivatives. This is effectively what is done

in the usual analysis of the ordinary conformal group, or just the Poincaré group:

For example, in Wigner’s analysis of 4D Poincaré representations, the spin is defined

essentially as the covariant derivative left over when orbital angular momentum is

subtracted from the full Lorentz generators. The Pauli-Lubański equation (as well as

the Klein-Gordon), expressed in terms of group generators, then directly reduces to

covariant derivatives.

In our approach we keep Dv = 0 unmodified, since it’s automatic in the projective

description, but introduce spin to replace Du and Dū. (Of course, Dw is not in the

gauge group.) Then

Du ≡ ∂uu = su ≡ u−1ŝuu, Dū ≡ ū∂ū = sū ≡ ūŝūū
−1 ⇒

Gw = ∂w, Gu = w∂w + ŝu, Gū = ∂ww + ŝū, Gv = w∂ww + ŝuw + wŝū

where the ŝ’s are defined to act on “curved” indices M,M ′ rather than “flat” indices

A,A′.

Our flat/curved terminology is by analogy to general relativity, where “flat”

indices carry the Lorentz gauge symmetry, and are how spin is introduced, while

“curved” indices, and the coordinates that carry them, are acted on by any global

symmetry of the space under consideration. In fact, in the bosonic case our gauge

group GL(2)⊗GL(2) is just the Lorentz group, scale transformations (for which the

“spin” part is the scale weight), and the purely gauge GL(1) that reduces GL(4) to

the (Wick-rotated) conformal group SL(4).

Exercise

Translate the generators above for the bosonic case to vector notation, in-

cluding spin (and scale weight).

Since our gauge group is GL(n|2)⊗GL(N-n|2), it’s clear how this works: The

gauge generators Du and Dū carry flat indices; their irreducible matrix representations

carry arbitrary mixtures of these defining indices, up and down, with arbitrary graded

(anti)symmetrizations (but with arbitrary values of the Abelian GL(1) charges, and

maybe some supertrace conditions). Thus our original fields
◦
Φ carry these flat indices,

are scalars with respect to the symmetry group, and satisfy the constraints Du−su =



Off-shell superfields 15

Dū − sū = 0. But we can explicitly solve these constraints in terms of fields Φ that

carry only curved indices, by using u and ū as “vielbeins” to convert flat indices

into curved. The fields with curved indices then depend only on w, and are gauge

invariant, but are no longer scalars: The ŝ’s in G act the same way on the curved

indices as the s’s acted on the flat (and themselves carry curved indices).

It’s sufficient to consider an example with one of each type of index, primed and

unprimed (up vs. down indices should be obvious):

sA
C
◦
ΦB′

D = δDA
◦
ΦB′

C + rδCA
◦
ΦB′

D, sA′
C′
◦
ΦB′

D = δC
′

B′

◦
ΦA′

D + r̄δA′
C′
◦
ΦB′

D

(with extra signs from index reordering implicit) where r+r̄ is related to the superscale

weight (see below) and str s − str s̄ (the “−” comes from the definition of Dū and

Gū) is related to the super-(internal-)U(1) charge (or superhelicity; see the following

section). The solution to the constraints is

◦
ΦA′

A(w, u, ū) = (sdet ū)r+r̄ūA′
M ′ΦM ′

M(w)uM
A,

◦
Φ′A′

A(w, u, ū) =
◦
ΦA′

A(w′, u′, ū′)

⇒ Φ′M ′
M(w) = [sdet(cw + d)]−r−r̄(cw + d)−1

M ′
N ′ΦN ′

N(w′)(wc̃+ d̃)−1
N
M

where r and r̄ appear only in the combination r + r̄ because we have used the “S”

constraint on g, sdet u = sdet ū (which implies the analogous on g0, sdet(wc̃ + d̃) =

sdet(cw + d)).

Exercise

Relate r and r̄ for arbitrary numbers of up/down, primed/unprimed indices.

Exercise

Show that in general sdet(cw + d) = sdet(wc̃+ d̃)sdet(g0).

A linear form of transformation on indices can be obtained by using z and z̄ to

convert flat indices into full GL(N|4) curved indices; e.g.,

ΦM
N ∼ z̄M

A′ΦA′
AzA

N

But such fields are constrained,

zA
MΦM

N = ΦM
N z̄N

A′ = 0

Solving the constraints leads back to the above fields and yields their nonlinear trans-

formations.

Note that the fermionic part of the spin is usually assumed to vanish, in agreement

with known physical examples. This implies that their superpartners do also, so in
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those cases s vanishes except for the chiral case, where only su (consisting of just sα
β)

is nonvanishing, or the antichiral case, where only sū is.

Another way to account for the superscale weight is to define a field Φ to be a

density by requiring that dw Φ1/ω transform as a scalar,

dw Φ′1/ω(w) = dw′ Φ1/ω(w′)

where “dw” is the naive integration measure over all the components of w, so Φ is a

density of (superscale) weight “ω”. (We may have switched active vs. passive trans-

formations; see subsection IC2.) The transformation law for dw can be found from dz̄

(or dz), which is invariant because sdet(g) = 1. (The relation of the superdeterminant

to Jacobians, as the generalization of the bosonic case, follows from its definition in

terms of a Gaussian integral.) This is true already for the part of the measure dz̄

coming from any one particular value of A′ in z̄M
A′ . We then separate out dw and

dū in z̄ = (w, I)ū−1:

dz̄M
A′ = (dwM

N ′ , 0)ūN ′
A′ + (wM

N ′ , δN
′

M ′)dūN ′
A′

⇒ dz̄ = dw (sdet ū)−str Iu × d(ū−1), str Iu = n− 2

where the exponent comes from multiplying the contributions from each particular

value of M . The superconformal transformation of d(ū−1) then follows from that of

ū−1 by a similar manipulation:

d(ū−1)′ = d(ū−1)[sdet(cw + d)]str Iū , str Iū = (N − n)− 2

⇒ dw′ = dw [sdet(cw + d)]−str I , str I = N − 4

(This derivation is thus singular for N=4, related to the additional “P” gauge invari-

ance.) The superconformal transformation of Φ is then

Φ′(w) = [sdet(cw + d)]−ω str IΦ(w′), w′ = (aw + b)(cw + d)−1

We can identify ω str I with r + r̄ of the previous derivation. (r + r̄ needn’t vanish

for N=4, where dw is a scalar.)
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Charge conjugation

As explained previously, only the cases N=2n, where w is square, allow the exis-

tence of real superfields. Because of the Wick rotation used to conveniently describe

the superconformal group, fields will satisfy nontrivial reality conditions. We really

don’t need to Wick rotate: If you ignore reality, it doesn’t make a difference; just treat

any variable and its complex conjugate as algebraically independent. (However, there

can be some topologcial complications, which we’ll ignore, at least for now.) Reality

for the superconformal group is expressed as a pseudo-unitarity condition (the “U”

in (P)SU(N|2,2)),

g†Υg = gΥg† = Υ, Υ 2 = I, Υ † = Υ ; Υ
.
MN =


n ν n′

.
ν

.
m I 0 0 0
.
µ 0 0 0 −iC
.
m′ 0 0 I 0

µ 0 iC 0 0


in terms of the SL(2) and U(2) metrics, e.g.,

Cµν =

(
0 i

−i 0

)
, I

.
mn = δnm

It isn’t useful to solve for the reality conditions on the components of g because

of the nonlinearity, and because some of the complex conjugates of components of w

are in v. (So we have chosen a complex gauge by eliminating v.) Instead, we use this

unitarity condition to define “charge conjugates” of elements of g that transform in

the same way under the symmetry group, although differently under the gauge group.

Specifically, we need this only for the coset:

C(w′) = (Cw)′

where C acts on w′ as if it were w, and ′ acts on Cw as if it were w; thus superconformal

transformations and charge conjugation commute. We therefore need to use only the

fact that the symmetry transformation g0 used in g′ = g0g satisfies the same unitarity

condition as g above. This fact can then be applied as well to the transformations

on the projective space, z̄′ = g0z̄ and z′ = zg−1
0 . The goal will be to define a charge

conjugation C of fields that involves their complex (hermitian) conjugation, but still

gives fields that depend on w (and not w†, whatever that is). Thus for flat superfields

(C
◦
Φ)(w, u, ū) ≡ [

◦
Φ(Cw, Cu, Cū)]†
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where “Cw” is some function of w† (so Φ† gives back w) that transforms the same

as w under superconformal transformations. The relation for curved superfields then

follows. For real fields (when they can be defined), CΦ is identified with Φ.

We thus define the action of charge conjugation C on the coordinates by

Cg ≡ gΥ Υ̂ = Υ (g−1)†Υ̂ , Υ̂
.
AB =

(B B′
.
A 0 −I
.
A′ I 0

)

In the former form the symmetry transformation is obvious, while in the latter form

Υ mixes only the symmetry indices, with Υ̂ chosen to mix the gauge indices to relate

the pieces appearing in the projective approach:

(Cz̄MA′)† = −zANΥN .
M, (CzAM)† = Υ

.
MN z̄N

A′

relating z to the complex conjugate of z̄. (The “−” sign, from Υ̂ , preserves sdet g =

1.) The gauge indices don’t match because charge conjugation switches primed and

unprimed indices; but w is gauge invariant. We could match indices by putting back

the identities in Υ̂ ; for the example of the previous subsection, the flat field would

then satisfy

(C
◦
ΦA′

A)(w, u, ū) ≡ Υ̂
A′

.
B

[
◦
Φ(Cw, Cu, Cū)]†

.
B .
B′Υ̂

.
B′A

Independent of coordinate choice, we find as a result

(CG)† = −Υ−1GΥ, (CD)† = −Υ̂ †DΥ̂ †−1

(but we have chosen Υ−1 = Υ , Υ̂−1 = Υ̂ † = −Υ̂ ). More explicitly, and taking

into account (i.e., undoing) that the above hermitian conjugation includes matrix

transposition,

C : Dw → −Dw, Dv → −Dv, Du ↔ −Dū

Exercise

Work out the explicit transformation on G (again undoing the matrix trans-

position in the above equation). Note that the effect of Υ is that fermionic

(i.e., Lorentz) indices tend to make coordinates real, while bosonic (i.e., inter-

nal) indices make them complex. Thus, e.g., Gx is untransformed (except for

a “−”, because Gx = ∂x lacks an “i”), while Gy is switched with its analog in

Gv.
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We then find the conjugation of w, which we can write as

(Cw)†
.
M ′ .

N
=

( .
n

.
ν

.
m′ −y−1

m′
n −iy−1

m′
nθ̄n

.
µC.

µ
.
ν

µ −iCµνθν
n′y−1

n′
n −Cµν(xν

.
µ − θνn

′
y−1

n′
nθ̄n

.
µ)C.

µ
.
ν

)
(For N=0, Cx is just x: The factors of C in its hermitian conjugation are because it’s

xµ
.
µ that’s hermitian. Note that Cµν = −Cµν .) For deriving charge conjugation for

spin, it’s also useful to have

(Cu)† = ūĀ−1(w), (Cū)† = A−1(w)u

A
M

.
N ′ =

( .
n′ ν

m ym
n′ 0

µ θµ
n′ −iCµν

)
, Ā

.
MN ′ =

( n′
.
ν

.
m ym

n′ θ̄m
.
ν

.
µ 0 −iC

.
µ
.
ν

)
⇒ sdetA = sdet Ā = det y

For the same example, we then have

(CΦM ′M)(w) = (det y)−r−r̄Ā−1

M ′
.
N

[Φ(Cw)]†
.
N .
P ′A

−1
.
P ′M

Exercise

Derive C on w, u, ū from the transformation of z and z̄. (The derivation is

similar to that for superconformal transformations, if one thinks of Υ as a

particular superconformal transformation.)

Another way to generalize to nonvanishing superscale weight is by considering

densities, as for superconformal transformations. We then need to relate d(Cw)† to

dw: With the help of the identity

sdet(eX) = estr X ⇒ sdet(X ⊗ Y ) = (sdetX)str IY (sdet Y )str IX

to handle the two indices on −d(y−1) = y−1(dy)y−1, we find

[d(Cw)]† = dw (det y)−str I

Thus, requiring dw Φ1/ω act as a scalar under charge conjugation,

dw [(CΦ)(w)]1/ω ≡ {d(Cw)[Φ(Cw)]1/ω}†

⇒ (CΦ)(w) = (det y)−ω str I [Φ(Cw)]†

This will prove to be useful for the case N=2 when ω = 1
2 (so −ω str I = 1),

since then S =
∫
dw Φ CΦ is both superconformally invariant (Φ CΦ has ω = 1) and

real, following from charge conjugation invariance, and coordinate independence of

S. (From the “S” constraint on r and r̄, since also n=1, we also have r = r̄ = −1
2 .)

Exercise

Show that C2 = (−1)(N/2)(−ω str I). Thus the above N=2 example is complex.
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Field equations

We have already seen that the group-space representation can be conveniently

reduced by the use of constraints linear in the covariant derivatives, which define a

coset space, of lower dimension. Another way to reduce a representation is by field

equations. These are normally quadratic in the covariant derivatives, and thus can’t

be solved algebraically. (However, we’ll find a lightcone/supertwistor solution below.)

As in our similar treatment of the bosonic case in subsection IIB1, these equations

apply only to field strengths.

These constraints, before introduction of the gauge group, carry the full range of

indices, and thus can be written in terms of either the covariant derivatives or the

symmetry generators, by virtue of the relation

GM
N = gM

ADA
BgB

N

We can then consider the possible reduction of DD or the equivalent GG constraints

simply by graded (anti)symmetrization and supertracing of the 4 indices. The possible

choices vary according to the number of spacetime dimensions in the final result: One

choice gives the desired 4D Minkowski space; another gives 5D anti-de Sitter space

(where (P)SU(N|2,2) is the super anti-de Sitter group); yet another (in the case N=4)

gives the 10D space AdS5×S5, relevant for the AdS/CFT correspondence.

Restricting ourselves to the 4D case, the result can be obtained by noting that it

is the tensor equation

G(M
(PGN ]

Q] = 0 mod δ terms

that includes the massless Klein-Gordon equation p2 = 0. The equation is determined

only up to Kronecker δ terms, which don’t contribute to the Klein-Gordon equation,

and has this ambiguity because of the gauge invariance

GM
N → GM

N + δNMA

for arbitrary operator A. (Because it’s Abelian, this is the same gauge symmetry

as in the gauge group generated by D’s; “Abelian” means it can be considered as

either left or right.) The equation of motion also includes the general field equation

we found for all spin in subsection IIB1 (from a similar analysis for just the ordinary

conformal group, but in arbitrary dimensions), the general (massless) supersymmetry

free field equation p/q = 0, the Pauli-Lubański equation, several qq equations often
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seen in supersymmetry (usually as dd), equations involving the internal symmetry

generators, and various redundant equations.

Exercise

List all the equations explicitly in terms of the superconformal generators p

(translations), q (supersymmetry), J (Lorentz), ∆ (scale), T (internal U(N)),

s (S-supersymmetry), and k (conformal boosts), labeling them with SU(N)

defining indices and Weyl spinor indices. (Drop the GL(1) generator of

GL(N|4): Use SL(N|4).)

The number of field equations we wrote above in terms of the symmetry generators

is reduced by the gauge constraints. In terms of these generators, many equations

are redundant; alternatively, we can start with the equations written in terms of the

covariant derivatives, where some drop out automatically. Either way, the net result

is that the equations on projective space reduce to (all mod δ terms for the s’s)

∂(M ′
(P∂N ′]

Q] = sM
(P∂N ′

Q] = s(M ′
P ′∂N ′]

Q = 0

sM
P sN ′

Q′ = s(M
(P sN ]

Q] = s(M ′
(P ′sN ′]

Q′] = 0

The first set of equations is for arbitrary massless representations of supersymmetry,

the second set restricts the index structure for specialization to conformal super-

symmetry. (We made a similar separation in our treatment of the bosonic case in

subsection IIB1.) Specifically, the second set places the restriction that superconfor-

mal representations have only primed or only unprimed indices, and fixes the value

of the superscale weight.

The list of the spin-free part of these reduced equations is:

∂x∂x = ∂x∂θ = ∂θ∂θ = ∂θ∂θ̄ + ∂x∂y = ∂y∂θ = ∂y∂y = 0

(and complex conjugates). Internal indices are symmetrized, while Weyl spinor indices

are contracted (antisymmetrized). The ∂y-free equations should be familiar from

N=1 chiral scalars: They include the Klein-Gordon, Weyl spinor, and auxiliary field

equations, respectively. The equation with all types of derivatives (and thus 2 different

types of terms, each with only 1 of each kind of index, and thus no symmetrization

possible) shows that any y-dependent term shows up without y at higher order in θ

and θ̄ with x-derivatives, and that all terms with both θ and θ̄ are of this form.

Taylor expansion is sufficient for the y’s, since setting both primed indices equal

and both unprimed indices equal in the ∂y∂y equation says the field is linear in

each y. (Of course we can always Taylor expand in the θ’s.) Then the non-∂x
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equations say that all component fields in this Taylor expansion in y’s and θ’s are

totally antisymmetric in unprimed internal indices and separately also in primed.

Exercise

Solve these equations for the case of N=2, n=1 by expanding Φ(w) in com-

ponents over θ, θ̄, y (in terms of fields that are functions of just x).

Exercise

For N=2, n=1 there is just 1 y, so the ∂y∂y equation is simply (∂/∂y)2 = 0.

For N=4, n=2, ym
m′ is an isospinor in each of the 2 internal SU(2)’s, and

thus a 4-vector of SO(4). Show that this equation can be written in vector

notation as

∂i∂j − 1
4
δij∂

k∂k = 0

and solve it explicitly on an arbitrary function of y. (Hint: This is part of

Einstein’s equations for conformally flat spaces, as described in subsection

IXC2.)

We now examine the component expansion for N=4, n=2. The result is straight-

forward:

Φ = (φ+ ym
m′φm′

m + 1
2y

2φ̄) + θµ
m′(λm′

µ + ym′
mλm

µ) + θ̄m
.
µ(λ̄.

µ
m + ym′

mλ̄.
µ
m′)

+(θ2
µνf

µν + θ̄2
.
µ
.
ν f̄.
µ
.
ν)− iθµm

′
θ̄m

.
µ∂.

µ
µ(φm′

m + ym′
mφ̄)

−iθ2
µν θ̄m

.
µ∂.

µ
µλmν − iθ̄2

.
µ
.
νθµ

m′∂.
µ
µλ̄.

νm′ − θ2
µν θ̄

2
.
µ
.
ν∂.

µ
µ∂.

ν
νφ̄

where we have used the internal SL(2)2 metrics to raise, lower, and contract indices.

Each component field, as a function of x, satisfies the Klein-Gordon equation, and

each non-scalar satisifies a Weyl equation (which for f is the combination of the usual

field equation and Bianchi identity for the Yang-Mills field strength). Note that all

component fields appear at y = 0, but some only with x derivatives; as stated above,

this is a general feature, following from the equation ∂θ∂θ̄ + ∂x∂y = 0; the same is not

true off shell.

Supertwistors

We already saw in subsection IIC5 the supertwistor representation as a direct

generalization of the bosonic case. Now we find it as a way to solve the above

equations of motion: Direct substitution of

GM
N = 1

2 [ζ̄M, ζ
N} = ζ̄Mζ

N − 1
2δ
N
M
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{ζ̄M, ζN ] = δNM, {ζ, ζ] = {ζ̄ , ζ̄] = 0

verifies that it is a solution. (Just commute the ζ’s together so the symmetrization

gives commutators. Remember that twistors have statistics opposite to those sug-

gested by the indices. We have used a symmetric ordering as the definition of normal

ordering in this case, as in the analogous case of Dirac γ-matrices, for hermiticity.

However, this is again ambiguous because of the Abelian gauge invariance.) Note

that the supertwistor representation is also a projective space: Besides dividing up

the N-valued ā index as n + (N−n) for arbitrary n, we could have done the same for

4-valued index a. (This would do the same kind of thing for the x coordinates as we

have done for the y’s.) The 0+4 case is trivial (it gives no spacetime coordinates),

the 2+2 case gives normal 4D spacetime as discussed above, while the 1+3 case gives

supertwistors. However, as mentioned above, this would give a complex space, so

we need to include the complex-conjugate twistor to define real fields. Identifying

the complex conjugate with the canonical conjugate (as for creation and annihilation

operators) then prevents doubling the dimension of the space.

The supertrace piece str G ≡ (−1)MGM
M commutes with the superconformal

generators, and should not be considered part of the superconformal group: It’s the

superhelicity. For the off -shell representation of the previous section,

superhelicity ≡ str G = str D = str su − str sū

The superhelicity is part of the “spin”, and becomes nontrivial when thus relaxing the

“S” constraint of the superconformal group, which we treated as a gauge condition.

It’s related to the Abelian gauge invariance δG ∼ I we considered, except in the case

N=4, where str I = 0, and the latter gauge invariance is the definition of the “P” in

“PSU(4|2,2)”. In the twistor representation, it counts the number of ζ̄’s minus ζ’s.

Exercise

Show that this choice of G satisfies exactly

G(M
(PGN ]

Q] = 1
2δ
P
(Mδ

Q
N ]

Show that with a particular choice of Abelian gauge parameter, the projective

superspace representation of the previous section also solves it (without spin).

Show that one can instead obtain either of

G(M
(PGN ]

Q] = ±δ(P
(MGN ]

Q]

for both cases. (Note however that such redefinitions change the relation of

str G to the superhelicity.)
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The super Penrose transform then gives the solution to the equations of motion

in projective superspace by identifying Gw in the two representations: For scalars,

−i∂M ′M = ±ζ̄M ′ζM ⇒ Φ(w) =
∑
±

∫
dζ dζ̄ e±iζwζ̄χ±(ζ, ζ̄)

(restoring the “i” for hermiticity), relating the projective superfield Φ(wM
M ′) with

the twistor superfields χ±(ζM , ζ̄M ′) for positive and negative-energy solutions. The

choice of n determines how the fermionic twistor coordinates are distributed between

ζ and ζ̄. Note that, unlike ζM or ζ̄M, these coordinates are not a representation (but

only a nonlinear realization) of the superconformal group: For example, the conformal

boosts are represented as quadratic in their “momenta”.

The usual component (bosonic-)twistor fields are obtained by evaluating the ex-

pansion of χ over the fermionic ζ’s. The expansion in y gives new component fields,

but the expansion terminates because of the anticommutativity of the corresponding

ζ’s. The expansion in θ (and θ̄) also gives new component fields, but with spinor

indices from bosonic ζ, which then satisfy the usual Weyl equation (as in the non-

supersymmetric twistor formalism), and faster termination because there are fewer

fermionic ζ’s than θ’s, and because y dependence may give extra fermionic ζ’s. Also

note that expansion in both θ and θ̄ will give both ζµ and ζ̄.µ, which is equivalent to

an x derivative. We also see that all fields with y dependence also occur without y,

but with x derivatives, because fermionic ζ’s can come from either θ or y (but y’s give

only equal numbers of ζµ and ζ̄.µ). All of this agrees with our previous evaluation in

terms of the field equations directly.

Exercise

For the case N=4, n=2, expand χ in the fermionic ζ’s, identifying each compo-

nent with one helicity in each field appearing in the expansion in the previous

subsection.

As usual, the twistor superfields can be Fourier transformed to functions of just

ζM (or just ζ̄M, or something in-between): Integrating over just ζ̄M ′ ,

Φ(w) =
∑
±

∫
dζM χ̃±(ζM ,−ζNwNM

′
) =

∑
±

∫
dζM δ(ζM

′
+ ζNwN

M ′) χ̃±(ζM)

In the last form, or the analog from integrating out ζM instead, the argument of the

δ function can be replaced with

ζMz̄M
A′ or zA

Mζ̄M

since the u dependence factors out as a Jacobian sdet.
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Introducing spin, we find that already the spin-dependent equations appearing

in the first set of reduced equations of the previous subsection (i.e., those that also

contain derivatives) restrict the supertwistor space solutions to the analog of those

for the bosonic case:

ΦM ′...N ′
M...N(w) =

∑
±

∫
dζ dζ̄ e±iζwζ̄ ζ̄M ′ · · · ζ̄N ′ζM · · · ζNχ±(ζ, ζ̄)

Since a ζ and ζ̄ are produced by a w derivative, this effectively reduces Φ to have only

unprimed or only primed indices, graded antisymmetric in all of them, as implied by

the second (spin-only) set of superconformal field equations. (However, fields that are

total derivatives on shell need not be so off; but such field strengths are generally not

conformal.) In the purely ζM or ζ̄M form, the full indices can be used, but because

of the constraint enforced by the δ function, the fields will satisfy the analogous

constraints on the indices, as described in the previous section. The superhelicity is

now given by the number of unprimed minus primed indices.
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Simple superspace
Our previous discussion was limited to what space(s) fields were defined on, and

free field equations for field strengths. Interactions are harder, but gauge couplings

allow us to find gauge fields. From there we can find actions and Feynman graphs.

N=1 supersymmetry and its formulation in superspace are thoroughly under-

stood. All its aspects (both classical and quantum) are treated more easily with

superspace than without. All the particulars of N=1 supersymmetry are pretty well

covered in Fields ; maybe we’ll also work through some of the additional examples in

Superspace.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Classical fields: See IVC.

Quantum fields

• Gauges: See VIB4-10.

• Graphs: See VIC1,3,5.

• Loops: See VIIIA5-6.

• More examples: See Superspace, 6.3.b,e, 6.4, 6.5.d, 6.7.
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Hyperspace
The case of N=2 (“hyperspace”) is less well understood than N=1, but actions

have been constructed, as well as some form of Feynman graph rules. The simplest

proof of finiteness of N=4 Yang-Mills uses hyperspace, but was developed before any

but the simplest Feynman graph calculations (including those needed for the proof)

had actually been performed. N=4 Yang-Mills is the 4D theory for which the most

amplitudes have been calculated (because it has the most symmetry, so the fewest

independent things to calcuate), and is also the 4D theory easiest to relate to string

theory, by the AdS/CFT correspondence. If hyperspace were better understood, cal-

culations in N=4 Yang-Mills would be further simplified. (Of course, N=4 superspace

would be even better, but it’s much less understood.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . Scalar hypermultiplet . . . . . . . . . . . . . . . . . . . . . .

Action

Much of projective hyperspace can be understood by analogy to full simple su-

perspace, as a consequence of both having 2 θ’s and 2 θ̄’s. Then the problem is what

to do with the single y coordinate. Since field strengths are Taylor expandable in y

on shell, their charge conjugates must be Laurent expandable on shell: Charge con-

jugation introduces factors of powers of y, and in the field’s arguments y is replaced

with −1/y. So it seems natural to use contour integration:∮
dy

2πi
ym

1

yn
= δm+1,n

This makes the y space effectively compact, as expected for an internal symmetry;

contour integration is always normalizable.

For the scalar hypermultiplet, the requirement of Laurent expandability turns

out to be too weak off shell; we therefore require that it be Taylor expandable. This

will be the analog of the “chirality” of simple supersymmetry: Since all our hyper-

fields are already projective, and there is no suitable hyperspace with fewer θ’s, we

instead restrict y dependence. These “polar” superfields are called “arctic”; their

charge conjugates, being regular instead at infinity (and singular at the origin), are

called “antarctic”. Unlike the N=1 case, we now have an infinite number of auxiliary

component fields, because of the infinite Taylor expansion in y.

A suitable free action is then, in analogy to N=1,

S = −
∫
dw ΥΥ, Υ ≡ CΥ,

∫
dw =

∫
d4x

(2π)2
d2θ d2θ̄

∮
dy

2πi
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As mentioned earlier, for superconformal invariance and reality Υ must have “weight”

−r − r̄ = −ω str I = 1, so

Υ ′(w) = sdet(cw + d)Υ (w′), Υ (w) = y[Υ (Cw)]†

Due to the extra factor of y, Υ has all powers of y less than or equal to 1. Note that

the integral of Υ 2 or Υ
2

would give 0, just as for N=1, but now because of polarity

rather than chirality. Also, since there is no analog to the chiral superpotential terms

of N=1, there are no renormalizable self-interactions for this hypermultiplet; all its

interactions will be through coupling to the vector hypermultiplet.

The contour integration is a little funny, because the SU(2) part of superconfor-

mal transformations could move the singularities of Υ or Υ to cross the contour (or

vice versa, depending on the active vs. passive point of view). One way to avoid

this problem is to Wick rotate the SU(2) to SU(1,1): Then the contour should be

considered as embedded in 2D anti-de Sitter space AdS2 (or de Sitter dS2), and not

the sphere, and can be moved to one of the 2 boundaries (each of which is invariant

under SU(1,1)). The limit is singular, but can be treated with some care. This gives

this use of 1 y coordinate a “holographic” interpretation. In practice we’ll ignore such

subtleties.

Field equations

There isn’t much to say about the off-shell components: Just Taylor expand in

y and the θ’s. So we examine the field equations to see how only a finite number

of components survive on shell. The easiest way to derive the field equations is by

varying Υ , since its only constraint is with respect to y. This gives the field equation

for Υ ; we can always get the one for Υ by charge conjugating back. Since Υ is

constrained to have only nonnegative powers of y, the contour integral picks up only

strictly negative powers of y in Υ , which has powers ≤ 1. Thus the field equation can

be written as

∂2
yΥ = 0

which kills all the negative powers, but not powers 1 and 0. This clearly imposes

at least the superconformal equation ∂2
yΥ = 0, because higher powers of θ/y in Υ

have extra 1/y’s that bring those components sooner into the range of the field equa-

tion ∂2
yΥ = 0. By superconformal invariance, Υ therefore satisfies the rest of the

superconformal equations.
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Exercise

Taylor expand the field equation in y and the θ’s. Check that the physical

degrees of freedom agree with those described in subsection IIC5.

On shell, this multiplet has a hidden extra SU(2) symmetry (unrelated to super-

symmetry), as we saw in the N=1 description in subsection IVC7. This is an analog of

the on-shell U(1) (electric-magnetic) symmetry of free electromagnetism, described in

subsection IIA7. We can manifest this symmetry in the field equations in hyperspace

by introducing a “dual” scalar hypermultiplet (the analog of a “magnetic” potential

in electromagnetism), and combining the 2 into a doublet of this SU(2): This is the

usual trick of making a pseudoreal representation real by using the fact that an SU(2)

isospinor is also pseudoreal, and combining a representation with its complex conju-

gate. (In this case we have C2Υ = −Υ . Note the “i” in the measure for the action to

cancel this effect.) The field equations are then implied by

Υ i = CijΥ j

Since Υ terminates at order y, this implies Υ has only orders 1 and y, and thus the

same for Υ , so we again get the field equation ∂2
yΥ = 0 (and the 2 Υ ’s are determined

from one another by charge conjugation).

Thus the field equations are implied by the combination of Taylor expandability

with this “reality” condition. Similar remarks apply to the field strength Φ for N=4

Yang-Mills considered previously: There −r − r̄ = 1 gives the charge conjugate

a factor of det y = y2 (4-vector square of the 4 y’s), and the combination of Taylor

expandability of Φ together with “ordinary” reality Φ = CΦ implies the field equations.

y nonlocality

A convenient way to write the constraint on Υ ’s y-dependence is using contour

integration:

Υ (y) =

∮
0,y

dy′

2πi

1

y′ − y
Υ (y′)

where the integration is over a contour enclosing both the origin and y. This means

we can Taylor expand 1/(y′ − y) in y/y′ (but not y′/y):

1

y′ − y
=
∞∑
n=0

yn

y′n+1

Then

Υ (y) =
∞∑
n=0

yn
∮

0

dy′

2πi

1

y′n+1
Υ (y′)
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picks up only the nonnegative powers of y′ in Υ (y′) (with consistent coefficients),

giving the same result as integrating about just y and not 0. The contour integral

thus acts as an arctic projector.

As for Feynman diagrams in Minkowski space, it’s often more convenient, when

defining how to integrate around poles (especially when there’s more than one integral

to evaluate), to move the poles rather than the contour. In this interpretation, instead

of having a bunch of integrals over various contours, with the poles for integration

over each variable lying on the contour of another variable, we have all integrals over

the same contour, with all poles in various different positions near that contour. For

our case, the appropriate “ε prescription” is given by writing the arctic projection of

Υ as

Υ (y2) =

∮
dy1

2πi

1

y12

Υ (y1),
1

y12

≡ 1

y1 − y2 + ε(y1 + y2)

at least for the case of any convex contour (e.g., a circular one) about the origin.

(Otherwise, we need to invent a fancier notation.) For y1 near y2, the direction of the

ε contribution to the pole position y2 − ε(y1 + y2) for y1 integration is inward toward

the origin (ε is positive; the second term just scales down the first), so the pole is

inside the contour, as we found previously.

Other coordinates

Because of the nonlocality in y of arctic projection, the action for the vector

hypermultiplet is also nonlocal in y, and as a result simpler in a “full” superspace. As

defined previously, this involves doubling the number of fermionic coordinates (but

not adding bosonic ones). We label the new coordinates “ϑ” (in u) for distinction

from the old “θ” (in w).

Exercise

Derive the superconformal transformation of ϑ: Start with those already

found for u (and ū); then apply the same type of coset/projective analysis,

relating the way ϑ appears in u to the way w appears in g.

This complication suggests the use of a different coordinate system: One way to

understand this is to note that the covariant derivatives Dw with respect to the projec-

tive coordinates w, in the “projective representation” we’ve been using, now depend

on ϑ. We therefore change to a coordinate system where these covariant derivatives

return to being just partial derivatives. A simple way to do this to switch them

with symmetry generators by the coordinate transformation g → g−1, as discussed

previously. To replace this with a transformation that can be obtained continuously
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from the identity, and to avoid a sign change in the commutation relations, we then

change the sign of all coordinates. The combination of these two has the net result

of switching the order of (the matrices containing) w and u (and ū) in our original

definition of these coordinates. In this “reflective” representation, it is dϑ that is no

longer just a partial derivative, and has picked up w dependence:

dϑ = ∂ϑ + y∂θ + θ̄∂x, d̄ϑ = ∂̄ϑ + y∂̄θ + θ∂x

For many manipulations such details are unnecessary, and it’s sufficient to know

the commutation relations, and not the explicit representation. Because of the y

dependence now in dϑ, the commutation relations of dϑ’s at different values of y are

nontrivial. Explicitly, we find

{d1ϑ, d̄2ϑ} = y12∂x ({d1θ, d̄2ϑ} = ∂x and {d1θ, d2θ} = 0 still)

⇒ d2ϑd
4
1ϑ = y21d1θd

4
1ϑ, δ8(θ12)d4

2ϑd
4
1ϑδ

8(θ12) = y4
21δ

8(θ12)

(and similarly for complex conjugates), where y12 ≡ y1 − y2, etc. This one modified,

nonlocal (in y only) commutation relation is all we need; e.g., the latter relations

appear in integration by parts in hypergraphs.

In these coordinates the scalar hypermultiplet field equations can be derived more

directly, because antarctic projection can then be defined without reference to charge

conjugation. Then not only can an arctic superfield be written in terms of an uncon-

strained (in both y and ϑ) superfield,

Υ (2) = d4
2ϑ

∮
dy1

2πi

1

y12

ψ(1)

but its charge conjugate (for this weight) can be expressed similarly as

Υ (2) = d4
2ϑd

2
2y

∮
dy1

2πi

1

y21

ψ̄(1)

The y derivatives appear because: (1) the antarctic projection makes the highest

power 1/y, (2) the y term in each dϑ increases this to y3, and (3) the y derivatives

decrease this to the correct power y (as we know from the analysis above in the

projective representation). Unconstrained variation with respect to ψ̄ (after using

the d4
ϑ to make the d4θ into d8θ) then gives the field equations d2

yΥ = 0. (The arctic

projection is redundant.) On the other hand, variation with respect to ψ gives just

the arctic part of Υ vanishing, which is the same as d2
yΥ = 0 by the same analysis as

in the projective representation. (The asymmetry in Υ and Υ is because dϑ is linear

in y.)
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Coupling

Like the scalar hypermultiplet, we look for a description of the vector hypermul-

tiplet in terms of a prepotential defined on projective hyperspace. Again in analogy

to N=1, this should be a real prepotential, rather than a polar one. Because it lacks

this polarity restriction, and is thus Laurent expandable in y, it’s called “tropical”.

Like the scalar hypermultiplet, it will have only a few powers of y surviving on shell.

But the hyperfield strength lives in chiral superspace, and hence this multiplet has

only a finite number of auxiliary fields. However, this property is less fundamental,

as it depends on the dimension of spacetime: The scalar and vector hypermultiplets

are almost independent of the number of spacetime dimensions for D≤ 6, except that

in D=6 the vector hypermultiplet has a vector component gauge field and no scalars;

the scalars appear upon dimensonal reduction of this vector. (Of course the number

of x’s varies; but the number of θ’s and y’s stays the same. Also, free vector gauge

fields are conformal only in D=4.) Thus the type of hyperfield strength varies in

different dimensions (e.g., in D=6 it’s a spinor, in the rest some scalars), but the type

of prepotential is always the same.

Just as for both N=0 and N=1, gauge symmetry is understood as a generalization

of global symmetry, so we derive its form by coupling to matter. The straightforward

generalization of the N=1 coupling is then given by the action for the scalar hyper-

multiplet coupled to a vector hypermultiplet background:

S = −
∫
dw ΥeV Υ

This coupling fixes the weight of V to be 0 (as for N=1):

V ′(w) = V (w′), V (w) ≡ [V (Cw)]† = V (w)

The gauge transformations are then

Υ ′ = eiΛΥ, Υ
′
= Υe−iΛ̄; eV

′
= eiΛ̄eV e−iΛ

where Λ is arctic like Υ , but has weight 0 like V . Thus, unlike Υ , Λ̄ has only

nonpositive powers of y. Because of the 1/y’s associated with Cθ, and the θθ̄/y

term in Cx, this means Λ = Λ̄ would set Λ to a real constant (also like N=1), i.e.,

the global symmetry. (Thus reality is a stronger constraint on an arctic hyperfield of

weight 0 than one of weight 1.)
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With this gauge invariance we can examine the off-shell component fields of the

vector hypermultiplet. Since Λ contains all nonnegative powers of y, and Λ̄ contains

all nonpositive powers, it might seem that everything can be gauged away, but again

the additional 1/y’s associated with charge conjugation modify things: The 1/y in

Cθ increases the number of non-gauge components of V with increasing θ, while the

θθ̄/y in Cx leads to an x-derivative gauge transformation, again in analogy with the

N=1 case. (We can also look at just what Λ gauges away, and then apply “reality”

to V .) The result is that, unlike the scalar hypermultiplet (but like the N=1 vector

multiplet), this one has a finite number of auxiliary fields: In a Wess-Zumino gauge,

V = y−1[(θθ̄A+θ2φ+ θ̄2φ̄)+ θ̄2θ(λ+y−1λ̃)+θ2θ̄(λ̄+y−1 ˜̄λ)+θ2θ̄2(D+y−1D0 +y−2D)]

where the residual gauge invariance is the usual one for the vector A. We thus find, in

addition to the expected physical 4-vector and complex scalar (or 6-vector in D=6),

and SU(2) doublet of spinors, there is an SU(2) triplet of auxiliary scalars. This same

set of fields is found if the vector hypermultiplet is reduced to N=1 supermultiplets,

one vector supermultiplet plus one scalar supermultiplet.

Action

In the N=1 case, the construction of the vector multiplet action depended on

the fact that a spinor derivative could kill the chiral gauge parameter. In the N=2

case, rather than chiral and antichiral gauge parameters, we have arctic and antarctic

gauge parameters, and the only way to kill them is by antarctic or arctic projection.

This leads to an action of the form

S =
1

g2
tr

∫
dx d8θ

∞∑
n=2

(−1)n

n

dy1

2πi
· · · dyn

2πi

(eV (1) − 1) · · · (eV (n) − 1)

y21 · · · y1n

As we saw when considering the Gervais-Neveu gauge (subsection VIB5), the combi-

nation eV − 1 has the nonsuper-like gauge transformation

δ(eV − 1) = (−iΛ̄+ iΛ) + [−iΛ̄(eV − 1) + (eV − 1)iΛ]

We then look at the inhomogeneous variation of the ith term for any n, and apply

the identity (including ε’s)

1

yi,i−1yi+1,i

=
1

yi+1,i−1

(
1

yi,i−1

+
1

yi+1,i

)
Then integrating over yi, these arctic projectors then have the effect of “propagat-

ing” the Λ in the inhomogeneous term to the left, and the Λ̄ to the right (in terms of
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the labeling of y’s, which we have associated with the ordering in the trace), where

they cancel the corresponding homogeneous terms coming from the “n − 1” term.

(Variation kills the factor of 1/n itself.) This leaves only the inhomogeneous trans-

formation of the n = 2 term, which vanishes after d4ϑ integration, since (after using

the arctic projection) it’s all at 1 value of y. (Alternatively, we could cancel it with

the homogeneous transformation of the “n = 1 term”, which is itself 0 for the same

reason.)

The d4ϑ integration of this action can be explicitly performed, using the identities

of the previous subsection, and gives a significant number of terms for each n. (Pick,

e.g.,
∫
d4ϑ = d4

1ϑ; then d1ϑV (2) = y12d2θV (2), etc.) After this integration, the V ’s

can be taken to be in the projective representation, since the only difference in the 2

representations was in the ϑ dependence.

Exercise

For an analogous N=1 example, consider

S =

∫
dx d4θ f(φ, dαφ, d

2φ)

Do the d2θ̄ integration explicitly, and express the result in terms of ∂x and ∂θ

on φ.

We now make a component analysis of the free action. The quadratic term is

S2 = − 1

g2
tr

∫
dx d8θ

dy1

2πi

dy2

2πi
1
2

1

y2
12

V (1)V (2)

Integration over ϑ (using, e.g., d4
1ϑ) eliminates the y12 poles:

S2 ∼
∫
dx d4θ

dy1

2πi

dy2

2πi
V (1)( + y12d̄θ∂xdθ + y2

12d̄
2
θd

2
θ)V (2)

(All derivatives can now be taken as partial.) The y integration is now trivial: As

expected above from the gauge transformation, the only terms that can contribute

are

V =
1

y

(
V1 +

1

y
V2 +

1

y2
V3

)
⇒ S ∼

∫
dx d4θ (V1 V1 + V1d̄θ∂xdθV2 + V1d̄

2
θd

2
θV3 + V2d̄

2
θd

2
θV2)

Plugging in the Wess-Zumino gauge expression above for V ,

V1 = (θθ̄A+ θ2φ+ θ̄2φ̄) + (θ̄2θλ+ θ2θ̄λ̄) + θ2θ̄2D,

V2 = (θ̄2θλ̃+ θ2θ̄˜̄λ) + θ2θ̄2D0, V3 = θ2θ̄2D
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each term in the action gives

(A · A+ φ̄ φ) + (λ̄∂xλ̃+ ˜̄λ∂xλ+D0∂ · A) +DD +D2
0

This gives the expected terms, after diagonalization of D0.

Superconformal invariance of the action might not be obvious, especially because

of the nonlocality. The first thing to check is that dx d8θ is superconformally invariant.

(This would not be true for dx d4θ or even dx d4θ dy.) Next is to use the results for

the superconformal transformations of dwi and wij, which are very similar, to find

those for y:

dy′i = (wic̃+ d̃)−1
m
n(cwi + d)−1

m′
n′dyi

y′ij = (wic̃+ d̃)−1
m
n(cwj + d)−1

m′
n′yij

where the indices m,n,m′, n′ each take just 1 value in this case, and we have used

the facts that other dw’s get killed by the dx d4θ, and the other wij’s vanish. These

transformation factors then cancel.
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Scalar hypermultiplet

The propagator can be derived somewhat in analogy to the N=1 scalar multiplet:

Introduce a “nondynamical” source term, and plug the solution to the (classical, free)

field equation back into the action. (The source J will become δ/δΥ in the expression

for the generting functional Z.) In this case, for (projective) source terms

−
∫
dw (ΥJ + J̄Υ )

to not introduce dynamics requires that y2J be Tayor expandable; or we can allow J

to be Laurent expandable. We then use the expression for Υ in terms of the general

superfield superfield ψ̄,

Υ (2) = d4
2ϑd

2
2y

∮
dy1

2πi

1

y21

ψ̄(1)

and vary ψ̄ in both the original action and the source term. The d4
ϑ completes the

integral to d8θ, so ψ̄ can be easily varied. Using the fact that ∂2
yΥ is still arctic (but

the same doesn’t hold for J), the field equations can then be written as

∂2
1yΥ (1) = −

∮
dy2

2πi

1

y21

∂2
2yJ(2) = −∂2

1y

∮
dy2

2πi

1

y21

J(2)

where we have used integration by parts to get the last form.

Using the identity

d4
ϑd

2
yd

4
ϑ = d4

ϑ

and ∂2
1y1/y21 = 2/y3

21, the solution to the field equations is

Υ (1) = −d
4
1ϑ

1
2

∮
dy2

2πi

1

y3
21

J(2)

As usual, instead of plugging into both the terms second-order and first-order in the

fields, we can plug into just the first-order (source) terms and multiply by 1/2. In

this case, it’s sufficient to forget Υ and plug in just for the one Υ term, and drop the

1/2.

The exponent −S is thus replaced with

−
∫
dx d8θ

∮
dy1

2πi

dy2

2πi
J̄(1)

1
1
2

1

y3
21

J(2)

This leads to the propagator

〈Υ (w1)Υ (w2)〉 = d4
1ϑd

4
2ϑ

1

y3
21

1

−1
2

δ8(θ12)δ(x12)
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The derivatives can be evaluated explicitly: We again use

d4
1ϑd

4
2ϑ = y2

12( + y12d̄θ∂xdθ + y2
12d̄

2
θd

2
θ)d

4
2ϑ

This gives the simple (but not necessarily useful) expression

〈Υ (w1)Υ (w2)〉 = sdet(w12)

in agreement with superconformal covariance. To compare with components, use

sdet(w) =
y − θx−1θ̄

x2

where the former term gives the scalar propagators, while the latter gives the spinors.

Because of the subtlety of the iε prescription, this form ignores the auxiliary fields,

which have δ4(x) propagators (arising from the term in the above expansion).

These can be seen in the alternate form

sdet(w) =
y

(x− θy−1θ̄)2

where expansion of the denominator gives a term 1/x2 ∼ δ(x).

Vector hypermultiplet

Gauge fixing looks similar to N=1, in the same sense that the scalar mutiplet

action does: The main modifications are that now d4θ is projective, there is also dy,

the ghosts and Nakanishi-Lautrup fields are projective and arctic/antarctic instead

of chiral/antichiral, etc. Thus the ghost action looks similar to that for N=1.

We start with gauge-fixing function(
yC̃ +

1

y
˜̄C

)
V

with extra factors of y whose utility will soon become apparent. Acting on this with

BRST, and adding a “gauge-averaging” term (which can also be written as BRST on

something), we get at quadratic order

B̄
1

y 1
2

B +

[(
yB +

1

y
B̄

)
V +

(
yC̃ +

1

y
˜̄C

)
(C + C̄)

]
(to be integrated dw.) We next redefine the charge conjugates of the ghost (super-

conformal weight 0), antighost (weight 2), and NL field (weight 2) as

C̄ → 1

y
C̄, ˜̄C → y ˜̄C, B̄ → yB̄
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so that they will have the same y dependence as if they had the same weight (1) as Υ

(gauge fixing breaks conformal invariance anyway). Dropping crossterms that vanish

after y integration (totally arctic or totally antarctic), this gives

B̄
1

1
2

B + (yB + B̄)V + (C̃C̄ + ˜̄CC)

The ghost kinetic terms thus have the same form as that for Υ .

On the other hand, integrating out the Nakanishi-Lautrup fields is similar to

deriving the propagator for Υ (replacing J and J̄ with V ), except mainly for the

extra 1/1
2 in the kinetic operator, which cancels the one that would have appeared

in the propagator (again as for N=1). The result is to replace the bosonic terms with∫
dx d8θ

∮
dy1

2πi

dy2

2πi
V (2)

y1

y3
12

V (1)

Note that at most only 1 of the 1/y12’s is really there, due to the identity

d4
1ϑV (2) = y2

12
1
2 V (2) +O(y3

12)

which we’ll use during ϑ integration, so we need apply the ε prescription to only one.

Using symmetry in the V ’s to symmetrize in the y’s, we then replace

y1

y12

→ 1
2

(
y1

y12

+
y2

y21

)
We then combine this action term with (the quadratic part of) the gauge-invariant

term, using the identity

1

y12

+
1

y21

= 2πiδ(y12) ⇒ y1

y12

+
y2

y21

− 1 =
y1 + y2

2
2πiδ(y12)

Note that this yδ(y) combination is an angular δ function δ(φ) for circular contours

y = Reiφ. Performing the ϑ integration, we obtain the gauge-fixed kinetic term∫
dw 1

2V y
1
2 V

Hypergraphs

We can now collect the Feynman rules for both multiplets, in momentum space

for x, and with all 8 θ’s.

scalar multiplet propagator:
d4

1ϑd
4
2ϑ

y3
21

δ8(θ12)

p2
(〈Υ (1)Υ (2)〉)

vector multiplet propagator: d4
ϑ

[
2

y1 + y2

δ(y12)

]
δ8(θ12)

p2
(Fermi-Feynman gauge)

scalar multiplet vertex:

∫
d4θ dy, but use

∫
d4θ d4

ϑ =

∫
d8θ

vector multiplet (only) vertex: (−1)n
∫
d8θ dy1...dyn

1

y21y32...y1n
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(However, for some purposes it might be more useful to stay completely in coordinate

space, and use just the projective coordinates. Then the vector multiplet vertex is

more messy. Here dy and δ(y) include the usual 2πi’s.)

Note that, since there are no scalar self-interactions, all scalar lines are either

closed loops or end on 2 external scalars. In the former case 1 d4
ϑ can be taken

off each scalar propagator to make each
∫
d4θ into a d8θ, while in the latter case a

propagator at one end will have no d4
ϑ. Thus there is an

∫
d8θ at every vertex of

either kind, and almost all propagators, scalar and vector, have 1 d4
ϑ. Then the main

differences in the rules come from the y dependence.

As a simple example of the rules, consider the 1-loop correction to the scalar

propagator. One is left with only a single d4
ϑ in the loop, not enough to cancel the

δ8(θ12), so it vanishes.

Exercise

Use the general result for N=1 (subsection VIIIA5) to confirm this. (The

N=2 vector multiplet consists of N=1 vector and scalar multiplets, while the

N=2 scalar multiplet is just N=1 scalar multiplets.)

Consider next the scalar contribution to the 1-loop vector propagator. The 2

remaining d4
ϑ are just enough to make the loop nontrivial: Using an above identity,

they produce a y4
12. Together with 2 1/y3

12’s from the propagators, they produce a term

that looks like the (gauge-invariant) kinetic term, times a bosonic scalar propagator

correction, as expected.
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N=4
Nothing is really known about off-shell N=4 superspace.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

However, the on-shell properties are enough to write a propagator: Using the

Penrose transform, written as

Φ(w) =

∫
dζM δ(ζMz̄M

A′)χ(ζM)

we can write a propagator as a sum over physical states, Penrose transformed to the

endpoints, as

∆ =

∫
dζM δ(ζMz̄1M

A′)δ(ζMz̄2M
A′)

Using the orthogonality of z and z̄, we can solve either δ function as

ζM = ζAzA
M

for some ζA, giving

∆ =

∫
dζA δ(ζAz1A

Mz̄2M
A′) = sdet(z1A

Mz̄2M
A′)

effectively from the Jacobian of the δ function.

A nontrivial example is the chiral-antichiral propagator for the N=1 scalar mul-

tiplet. Note that in this case we use 2 different projective superspaces: chiral for z1,

antichiral for z̄2. Using the usual (in the gauge u = ū = 1)

z1α
M = (−θ1α, δ

µ
α,−x1α

.
µ), z̄2M

.
α = (θ̄

.
α
2 , x2µ

.
α, δ.µ

.
α)

we have

∆ =
1

(x12 + θ1θ̄2)2

which agrees with the previous result before detaching the d̄2 and d2 at the ends,

∆ = d̄2
1d

2
2δ

4(θ12)
1

x2
12

in the chiral representation for 1 and antichiral for 2.

For (real) projective superspace, the propagator is simply

∆ = sdet(w12)
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This includes N=0, where ∆ = 1/x2
12. The N=2 result, describing the scalar hyer-

multiplet, agrees with that obtained above by other methods. The N=4 case gives

the propagator for the field strength of the vector multiplet. It can also be analyzed

by components: Expanding the explicit expression

sdet(w) =
(y − θx−1θ̄)2

x2

in θ and y (corresponding to expansion of the associated field strengths) shows the

usual propagators for the scalars (1/x2) and spinors (x/(x2)2), and the field strengths

for the vectors (〈ff̄〉 = xx/(x2)3), and derivatives of these fields.

These propagators are a bit of a fudge: They are really “cut” propagators, homo-

geneous solutions to the wave equations obtained by summing over physical (positive

energy), on-shell states. However, the Stückelberg-Feynman propagator can be ob-

tained by taking this propagator for positive energy and using it for positive times

(multiplying by Θ(x0
12)) and adding it to the negative-energy propagator for negative

times. More simply, one can just fix the iε prescription by hand: For example, for N=0

we can write the twistor integral as (in half-Fourier-transformed twistor variables)∫
dζα dζ̄

.
α e±iζ

αζ̄
.
αxα.α =

1

x2

To make this converge, we need

xα .
α → xα .

α ± iεδα .
α

Since the identity part of the matrix xα .
α corresponds to the time component x0, as

in e±i|p
0|x0 , this implies

1

x2
→ 1

x2 ± iεx0

with signs corresponding to those in the integral. By comparison, the Feynman

propagator is 1/(x2 + iε).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The 4-point amplitude has been derived by other means and translated into N=4

projective superspace. For example, we saw that MHV tree amplitudes could be writ-

ten in chiral supertwistor space (subsection VIC3), and thus anti-MHV in antichiral.

In particular, at 4 points each includes all amplitudes, and thus they are equivalent:

A4χ =
δ4(
∑
pα .

α)δ8(
∑
πāα)

〈12〉〈23〉〈34〉〈41〉
, A4χ̄ =

δ4(
∑
pα .

α)δ8(
∑
π̄ā .

α)

[12][23][34][41]
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They follow by supersymmetry from the 4-gluon amplitude we derived. We have

rewritten the δ functions explicitly in terms of bosonic and fermionic momenta (i.e.,

translations and 1/2 the supersymmetries) as the first step of conversion from twistors.

The next step is to transform the chiral supertwistor into projective supertwistor

space by Fourier transforming half the fermionic twistor coordinates. We’ll find that

the ubiquitous twistor denominator of MHV, and its complex conjugate of anti-MHV,

are replaced in projective supertwistor space by their magnitude, which is directly

expressible in terms of momenta.

We use the notation ijkl to label the 4 distinct external lines. Then the only

twistor identity we need is the equality of the MHV and anti-MHV expressions for

the pure-gluon amplitude:

〈ij〉4

〈12〉〈23〉〈34〉〈41〉
=

[kl]4

[12][23][34][41]
This allows us to evaluate the fermionic Fourier transform with respect to any one of

the 4 twistor fermions (with respect to N=4, but all four of the external lines):∫
d4ζ̄i e

iζ̄iζi δ2(λiαζ̄i) =
∑
〈ij〉ζkζl = δ2(λ̄i .αζi)

(
〈12〉〈23〉〈34〉〈41〉
[12][23][34][41]

)1/4

(writing λ for the usual twistors and ζ for their fermionic superpartners), with Einstein

summation understood on identical indices. Thus this Fourier transformation replaces

the conservation δ-function for total πα = λαζ̄ with one for the corresponding π̄ .
α =

λ̄ .
αζ, and throws in a phase factor. In addition to reproducing the correct relation

between the above forms of the amplitude in chiral and antichiral supertwistor space,

it gives the result for projective supertwistor space intermediate between the two:

A4Π =
δ4(
∑
pα .

α)δ4(
∑
παa′)δ

4(
∑
π̄a .α)

1
4
st

Note that this amplitude is missing an explicit δ-function for conservation of R-

momentum (which would actually be a Kronecker δ, because of the compactness

of the R-space): This conservation is implied by the other δ-functions (in twistor

superspace, or on shell).

In this form, the amplitude is already expressed directly in momentum superspace;

we need only attach external line factors, which are just the (linearized) projective

superfield strengths Φ. We can then Fourier transform the projective amplitude back

to coordinate superspace: The x dependence is as usual, the θ dependence is the local

product, and the y dependence evaluates at y = 0:

Â4Π =

∫
d16xi d

8θ Φ(x1, θ, 0)Φ(x2, θ, 0)Φ(x3, θ, 0)Φ(x4, θ, 0)
δ4(x1 − x2 + x3 − x4)

x2
12x

2
23

4-point loop amplitudes differ only by the x-factor.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1-loop 4-point amplitude in components: See VIIIC4.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AdS/CFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Limits

The Anti de Sitter/Conformal Field Theory correspondence proposes to relate

4D N=4 (super)conformal field theory to IIB superstring theory expanded about the

10D (bosonic) manifold of 5D anti de Sitter space × the 5-sphere. This incorporates

the use of “holography”: Instead of the usual procedure of solving the wave equation

for time dependence, we solve it for spatial dependence, on the coordinate whose

endpoint defines the boundary of AdS5.

Here we’ll apply a slightly different procedure: We saw previously that in light-

cone quantization the wave equation is solved for dependence on a lightlike coordi-

nate. Furthermore, for applying twistor techniques to Feynman diagrams we found

it convenient to Wick rotate this idea to “spacecone” quantization, using a null, spa-

tial coordinate. We’ll find it convenient to use a similar procedure here, to find the

correspondence between the superspaces of AdS and CFT.

To see why such a treatment naturally arises, we work in Poincaré coordinates

for AdS5:

ds2 =
dx2 + dx2

0

x2
0

where x0 is a spatial coordinate. (This is a particular choice of coordinates where

the metric is flat times a scale: See subsection IXC2.) After an appropriate Wick

rotation, we can do the same for S5; combining the two spaces,

ds2 =
dx2 + dx2

0

x2
0

− dy2 + dy2
0

y2
0

=
dx2

x2
0

− dy2

y2
0

+ d ln(x0y0)d ln(x0/y0)

We can then identify x0y0 and x0/y0 as two null, spatial coordinates, to be used to

define our spacecone quantization.

The usual boundary limit of AdS is x0 → 0; we modify this to x0y0 → 0 (x0/y0

fixed), in line with our interpretation of x0y0 as the spacecone “time”. This leaves

us with 9 bosonic coordinates, 8 of which have translation invariance, and are to be

identified with the 4 x’s and 4 y’s of 4D N=4 projective superspace. (There is a

symmetry under translation of the 9th coordinate, but it requires also scaling of the

other 8, as well as the fermions. It is associated with a combination of a dilatation

with an R-symmetry U(1).)
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The boundary limit can be related to the limit where the AdS5 and S5 (equal)

radius R shrink to 0. This can be interpreted as the relation between active and

passive approaches: Instead of (Muhammad) moving to the boundary, we shrink the

distance scale, effectively moving the boundary closer. (It is a type of long-distance

limit, in contrast to the short-distance limit R→∞ related to flat space.) In terms of

the above metric, we first introduce the overall distance scale R2 (for the 10D space,

thus effectively treating all coordinates as “angles”), then rescale

x0 → Rx0, y0 → Ry0

R2ds2 → dx2

x2
0

− dy2

y2
0

+R2 d ln(x0y0)d ln(x0/y0)

(Alternatively, we can scale x → x/R, y → y/R instead.) The limit R → 0 pinches

AdS into a lightcone, reducing the conformal analysis to that of the projective light-

cone. (See subsection IA6.)

To generalize this limit to superspace, and see how it naturally arises in the

projective approach, consider a general supergroup element of PSU(4|2,2), which is a

symmetry on both the AdS and CFT sides (hence the correspondence). We want to

define the boundary limit as one which picks out N=4 projective superspace, while

preserving this symmetry (but perhaps not the gauge groups). Knowing how the

projective space fits into the group element (and its inverse), this limit must be the

R→ 0 limit after the rescaling

gM
A →

(√
RgM

A,
1√
R
z̄M

A′
)
, gA

M →
(

1√
R
zA
M,
√
RgA′

M
)

Note that the scaling by R is determined only by the A index, and is independent of

the symmetry index M.

This limit eliminates the v coordinates, which don’t appear in the projective

approach, and leaves w, but also some parts of u and ū, depending on the choice of

gauge group. After eliminating v, and expressing z and z̄ in terms of the rest, we see

the R scaling is

w → w, u→
√
Ru, ū→

√
Rū

In particular, it’s easy to pick out x0 and y0 as the pieces of u and ū invariant

under the manifest SO(3,1) Lorentz and SO(4) internal symmetries, after killing the

“PS” pieces of PSU(4|2,2):

u =

(√
y0I 0

0
√
x0I

)
u0, ū =

(√
y0I 0

0
√
x0I

)
ū0; sdet u0 = sdet ū0 = 1
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This can be seen, e.g., by considering the N=0 case, and noting that there det(zdz̄) =

dx2/x2
0 is the metric of the projective lightcone. We then have

sdet u = sdet ū =
y0

x0

Then we see that the R → 0 limit is the boundary limit, since now the scaling is on

just y0 → Ry0 and x0 → Rx0:

w → w, u0 → u0, ū0 → ū0,
y0

x0

→ y0

x0

; x0y0 → R2x0y0

10D field equations

The correspondence relates fundamental fields in the string theory to color-singlet

composite fields in the conformal field theory. Of particular interest are fields that

correspond to reducing the superstring to a superparticle: They describe 10D IIB

supergravity (again perturbed about AdS5×S5).

Both 10D IIB supergravity and 4D N=4 super Yang-Mills are representations of

the group PSU(4|2,2). But the physical interpretation is different: For example, they

satisfy different field equations, even at the free level. We saw the free field equations

for (the field strengths of) 4D super Yang-Mills, and applied them in projective su-

perspace. On the other hand, 10D supergravity satisfies different, weaker equations

(since more dimensions): Its free field equations are

GM
PGP

N = 0 mod δ terms

In the boundary limit these are not the 4D Yang-Mills equations, but the equations

satisfied by certain color-singlet composites of the Yang-Mills fields.

We saw the stronger equations implied p2 = 0 in D=4 by picking indices giving the

highest (engineering) dimension; thus the rest of the equations followed by conformal

supersymmetrization. That was easy, since all 4 indices were free in that case, whereas

here some are contracted. Now we restrict to the bosonic sector of the weaker 10D

equations, which is sufficient, as the supersymmetric generalization is unique. This

means we truncate the symmetry group to SU(4)⊗SU(2,2), which is not the same as

considering the N=0 case. The field equations are then of the form

Gm̄
p̄Gp̄

n̄ = δp̄m̄O, Gµ̄
ρ̄Gρ̄

ν̄ = δν̄µ̄O

for some operator O. These can be translated into vector notation as

G[mnGpq] = G[µνGρσ] = GmnGmn −GµνGµν = 0
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which generalize to arbitrary AdSm×Sn, wherem and µ are vector indices for SO(n+1)

and SO(m-1,2). If we plug in the usual representations of these symmetry groups on

these spaces, then the former 2 equations say that the corresponding spins vanish,

while the last is the Klein-Gordon equation in m+n dimensions. If we had set O
to vanish, decoupling the 2 spaces, we would instead have the m-dimensional Klein-

Gordon equation on AdS, while on the sphere we would leave only a constant solution.

In fact, the supersymmetric 10D equations above are satisfied by off-shell 4D

N=4 projective superpspace, simply as a consequence of reducing to just the w co-

ordinates. This result can be generalized a bit: Converting to the DD form of the

equations (by multiplying by g and g−1 appropriately to convert indices), still apply-

ing Dv = 0 (to allow the projective approach) and leaving Dw unconstrained, we can

consider modifying the Du and Dū constraints, as we did when considering arbitrary

(super)spin. The solution is that the field is a scalar, which we already knew was true

by construction as a superparticle, since no spin degrees of freedom were introduced.

More specifically, we find

DA
B = rδBA , DA′

B′ = r̄δB
′

A′ ; r = r̄

for some “central charge” r that commutes with Dw. From the previously given

solution to this constraint for any eigenvalue of r + r̄,

◦
Ψ(w, u, ū) = (sdet u)r(sdet ū)r̄Ψ(w)

(we should solve before setting sdet u = sdet ū, etc.) and our above choice for defining

y0/x0, we see that

r = r̄ =
∂

∂ ln(y0/x0)

and our general solution to the 10D field equations is in terms of a field that is an

arbitrary function of w and y0/x0. (The same result is obtained if we calculate directly

Du = ∂uu, etc., paying careful attention to signs from the grading. For example,

∂M
AuB

N = δBAδ
N
M has an implicit factor of (−1)A from the A being to the left of the

B.) Thus, in the same way that 4D supertwistors solve the free 4D field equations,

4D N=4 projective superspace (plus the coordinate ln(y0/x0)) can be considered to

be the supertwistor space of free 10D IIB supergravity on AdS5×S5. It solves these

10D field equations in terms of “initial conditions” (in the spacecone sense) at the 9D

boundary x0y0 = 0.
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Correspondence

We now investigate the significance of this 9th coordinate x0/y0 to the CFT.

Consider expansion of the 10D theory over S5 in terms of spherical harmonics. These

can all be expressed in terms of those for the vector harmonic, which are given by

a unit 6-vector; in the coordinates we’ve been using, these are (see again subsection

IXC2)

Y = (Y +, Y i, Y −) =
(1, yi, 1

2(y2 + y2
0))

y0

In the boundary limit, this becomes a null 6-vector,

Y →
(1, yi, 1

2y
2)

y0

homogeneous in y0. This y dependence can clearly be associated with that of the

scalars of 4D N=4 Yang-Mills, i.e., the field strength Φ at θ = 0.

A similar analysis can be made for the x0 dependence of the scalars. In this

case, it’s easier to take the boundary limit first; then we can use the projective

lightcone analysis directly. (Thus, X2 = 0 is treated as the limit R → 0 of X2 =

−R2.) For general spin, this analysis was described for free theories in exercise IIB1.3.

(In general, interactions modify this result; but for the fundamental fields of 4D

N=4 Yang-Mills, and the composite operators considered here, ultraviolet finiteness

preserves conformal weights.) Using an analysis of the type applied in exercise IA6.2

(paying careful attention to ordering), one finds in general D

◦
φ(x, x0) = x

(D−2)/2
0 φ(x)

where in this case

D = 4 ⇒
◦
φ(x, x0) = x0φ(x)

This result also follows from dimensional analysis: Since the original field
◦
φ was a

“scalar” under the conformal group (i.e., had vanishing scale weight), the engineering

dimension of the usual field φ(x) must be canceled by an appropriate power of x0. In

the usual holographic analysis, this is identified with holographic-“time” dependence:

If we write x0 = e−t, so the corresponding term in the metric is simply dt2, then the

dependence of a field in the limit t→∞ (x0 → 0) is e−t∆, where ∆ is the conformal

weight. Amputation of this factor in AdS amplitudes is then equivalent to use of the

interaction picture for this Euclidean time coordinate.

We can easily supersymmetrize this result to identify the other fields of the su-

permultiplet, and see how they appear in color singlets. Returning to our analysis of
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general spin, noting that Φ is a scalar with r + r̄ = −1, and again substituting for

the sdet, we have
◦
Φ(w, u, ū) =

x0

y0

Φ(w)

reproducing the x0 and y0 dependence found above for the scalars. (x0 dependence

is determined by the superscale weight of the multiplet, and y0 by the super-U(1)

weight. The corresponding symmetry generators also have θ∂/∂θ terms, giving dif-

ferent component scale and U(1) weights to the higher spins.) It then follows that

the supergravity superfield on the boundary must take the form

◦
Ψ

(
w,
x0

y0

)
= tr

{
f

[
◦
Φ

(
w,
x0

y0

)]}
for some (Taylor expandable) function f , and thus contains terms of the form

tr

{[
x0

y0

Φ(w)

]n}
Thus, the 9th bosonic coordinate on the boundary just counts the number of super-

gluons. Note that, unlike the usual x0 → 0 limit, in this limit the supergravity fields

are nonvanishing, having no dependence on x0y0 (but string excitations will have pos-

itive powers of x0y0, corresponding to anomalous dimensions in the 4D field theory).

Also for these supergravity fields on the boundary, the “momentum” conjugate to the

coordinate ln(x0/y0) is quantized.

The 10D supergravity superfield is real. (Y is real: Because of Wick rotation,

Y i is real but Y +* = −Y −. This implies the usual charge conjugation for y on

the boundary, while y0 gives the density part of charge conjugation to Φ.) It’s also

nonsingular on S5: Since it can be expanded in spherical harmonics, that means on

the boundary only nonnegative powers of y will appear. Thus Φ is forced to satisfy

its (interacting) field equations.

String cosets

So far we have avoided specifying the precise superpace used for describing the

superstring. However, we have seen how 4D N=4 projective superspace can arise

from taking the appropriate boundary limit, and how it appears upon solving the

10D equations of motion for the superparticle (supergravity). Certainly the string

superspace must include at least these coordinates (and x0y0). The action must also

explicitly depend on R, as defined above in terms of the group elements. (For example,

we saw for N=0 that R appears in the metric for AdS coset, but drops out in the

flat-space coset.)
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Superstrings, like superparticles, can be quantized in spacecone gauges. In such

gauges only the physical fermions survive, 1/4 of the fermions of the full superspace.

Also, all the physical bosons survive, corresponding to the dimension of spacetime.

However, in the string case there are “oscillators”, associated with excitations to

massive levels of the string, only for the transverse dimensions. (See subsection

XIB1.) Thus here we expect 8 fermions (and their canonical conjugates), with their

associated oscillators, and 10 bosons, only 8 of which have oscillators. The 8 fermions

+ 8 bosons are associated directly with the 4D N=4 projective coordinates, while

the 2 remaining “zero-modes” are associated with x0 and y0. Thus the AdS/CFT

correspondence for the superspaces is clear in the spacecone gauge.

We also know that the 10D superspace in a general gauge must have more

fermionic coordinates than the 8 fermions of the spacecone-gauge superspace: The

full 32 fermions of the group PSU(4|2,2) correspond directly to those of the full

superspace of 10D IIB supergravity. (An irreducible spinor of SO(9,1) has 16 com-

ponents.) This superspace has an unambiguous definition: Since we keep all the

fermions, we coset only the bosonic subgroup of the symmetry group PSU(4|2,2),

namely SU(4)⊗SU(2,2). As described in subsections IVA2-3, S5 is equivalent to the

coset SO(6)/SO(5) = SU(4)/USp(4). (For covering spaces, see subsection IC5.) Then

AdS5 is a Wick rotation, SO(4,2)/SO(4,1) = SU(2,2)/USp(2,2). (See also subsection

IXC2.) The full superspace is then the coset PSU(4|2,2)/USp(4)⊗USp(2,2).

It might also be useful to employ an intermediate superspace with 16 fermions,

analogous to the projective and (anti)chiral superspaces of D=4. Chiral and antichiral

10D IIB superspaces for supergravity are straightforward: Under the gauge group

USp(4)⊗USp(2,2), the 32 fermions divide up into a complex 4×4 and its complex

conjugate. Chiral superspace uses just one of these, antichiral just the other. So either

of these subspaces can be written as PSU(4|2,2)/I[USp(4)⊗USp(2,2)], where the “I”

refers to inhomogeneous. This preserves the symmetry because the complex fermion

(which was a 16-component 10D spinor in flat space) has a charge under a U(1) that

isn’t part of the symmetry algebra, and its complex conjugate the opposite charge,

while the bosons are all neutral (as for 4D N=1). As a result, its covariant derivatives

anticommute with themselves, and so can consistently vanish. Unfortunately, this

U(1) symmetry of the superparticle action (describing supergravity) is not a symmetry

of the superstring action (describing also massive 10D fields), so chiral superspace is

not defined for the whole superstring.

A possible alternative is a projective-like superspace PSU(4|2,2)/OSp(4|4), which

picks a real combination of the fermions, but leaves more bosons in the “internal”
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space, SU(4)/SO(4). These might be interpreted as the internal space accompanying

the 10D spacetime, just as 4D projective superspace needs y coordinates in addition

to the 4 spacetime coordinates x.
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